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 Problem Review 
  Solution Approach 
 Work Accomplished This Term 
 Upcoming Steps 
 Questions and Comments 





 Gain a broader, systems level view of 
biological processes and their underlying 
functional elements 
◦ Avoid a narrow focus on a limited subset of 

driving elements 
◦  Incisively identify the most promising targets 

for experimental exploration (to derive 
focused data for iteratively refining models) 



 Manually -  using expert knowledge, 
detailed review of research results 
◦ Only avenue until relatively recently 
◦ Necessarily small scale – a few reliable 

(experimentally verified) nodes and links, 
many, many missing ones. 

 Computationally – using large scale 
measurements of molecular expression 
(abundance) values over many biological 
samples 





X (N x D) 

N = ~10000 genes 
D = ~250 samples 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



  Input: X (N x D)  Output: Y (N x d) 
◦  Let x = ( x1, x2, …, xD) denote a row of X 
◦  Let y = ( y1, y2, …, yd) denote a row of Y 

  Step 1: Model Data Point Relationships 
◦  Build a graph G, with nodes i and j connected 

if xi is one of the k nearest neighbors of xj or 
vice versa (Euclidean distances used, 
alternatives are possible) 
◦  k is a local structure resolution parameter 



  Step 2: Form Weight Matrix 
◦  Form a diffusion weight matrix W, with entry 

Wi,j = exp{ - || xi – xj ||2   / σ},                               
if i and j are connected; 0 otherwise. 

  Step 3: Solve Minimization Problem 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j



  Step 3 (cont.) Solve Eigenvalue Problem 
◦ Given weight matrix W, let D be a N x N 

diagonal (‘connectivity’) matrix with entries 
recording the sum of edge weights for each 
data point-derived node 
◦  Let L = D – W denote the Laplacian matrix  
◦ We have: 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Given: 

 Basic results from linear algebra show 
that the optimal mapping can be obtained 
by solving generalized eigenvalue problem 
Lx = λDx, under the above constraint. 

  In particular, coordinates for the mapped 
vector yi can be extracted from the ith 
coordinates of the d eigenvectors with 
smallest nonzero eigenvalues. 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Additional Details: 
◦  Lx = λDx  (D-1/2 L D-1/2 )u = λu,             

where u = D1/2x, (D-1/2 L D-1/2 ) = Lsym 
◦  Estimation of intrinsic data dimensionality d 
◦  Selection of local neighborhood resolution 

parameter k 
◦  Selection of kernel width parameter σ 
◦ Approximate Nearest Neighbor Selection 

algorithms for managing larger data sets 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Given:  
◦ Target (fractional) valueα  
◦ N x N matrix W* capturing pairwise 

Euclidean distances between mapped gene 
expression profiles in reduced dimensional 
space. 

 Estimate: Distance Threshold 
◦ Rank mapped data space pairwise distances. 
◦  Select distance threshold that excludes upper   

(1-α) fraction of observed values. 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Phase I: Laplacian Eigenmaps + Network 
Reconstruction 
◦ Target Date: Middle of December 2010 
◦ Milestones:  
  (C++) Implementation and focused validation of    

Laplacian Eigenmaps  
  Basic (distance matrix threshold-based) network 

reconstruction. 



  Selecting and integrating appropriate 
(public domain) software to efficiently 
solve eigenvalue problem. 

 Organizing data structures and operations 
to conserve memory and support 
scalability. 



 Need to solve sparse, symmetric 
eigenvalue problem. 

 Basic BLAS/LAPACK largely emphasize 
dense matrices. 

 Evaluated several C++ packages 
◦  uBLAS (BLAS routines, relatively slow) 
◦ Armadillo++, Eigen (nice, almost MATLAB-like 

interface w/operator overloading, but meager 
support for sparse matrices/eigenproblems) 



 ARnoldi PACKage: Fortran 77 library for 
solving large scale sparse eigenvalue 
problems 

 Used by MATLAB (e.g., eigs function) 
  For symmetric matrices, applies Lanczos 

Algorithm 



 Reverse Communication Interface: 
◦ ARPACK routines do not operate directly on 

matrices 
◦  Instead: work with function defining matrix 

vector product.  Allows matrices to be stored 
in any suitable format (or not at all). 

  Implementation exploits this to represent 
matrices using compact adjacency lists, 
with fast ‘in-place’ operations where 
possible 



 Organized ARPACK interface code, 
compressed matrix classes into 
convenient package, with overloaded 
operators and high-level, template-based 
methods. 

 Basic, re-usable building block which will 
facilitate additional algorithm 
implementations. 



  extern "C" void dsaupd_(int *ido, char *bmat, 
int *n, char *which,int *nev, double *tol, 
double *resid, int *ncv, double *v, int *ldv, 
int *iparam, int *ipntr, double *workd, 
double *workl, int *lworkl, int *info); 

  template<typename T>                      
void sparseSymEigSolve(                           

  const CompressedMatrix<T>& M,             
const Matrix<T>& evecs,                   
const NumVector<T>& evals); 



  Laplacian Eigenmaps Implementation 
◦  Compared ARPACK interface code to corresponding 

MATLAB routines (leigs) 
◦  Compared to established MATLAB implementation 

over 4 published synthetic data sets. 



 Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦ Target Date: end of March 2011 
◦ Milestones: 
  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear 

dimensionality reduction (LE), linear dimensionality 
reduction (PCA), and original data 

  Approximate Nearest Neighbor Algorithm 
  Possible: Diffusion Maps 



  Integrated Network Reconstruction 
◦ Compare to published results for leading 

ARACNE network reconstruction method 
over: 
  Synthetic Gene Expression Data Set (allows 

objective scoring of ‘true’ edge recovery) 
  Well-studied biological data set (compare network 

reconstruction around MYC oncogene) 
◦ Compare results Laplacian Eigenmaps-based 

networks with those derived from original 
data, PCA-processed data. 
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