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 Gain a broader, systems level view of 
biological processes and their underlying 
functional elements 
◦ Avoid a narrow focus on a limited subset of 

driving elements 
◦  Incisively identify the most promising targets 

for experimental exploration (to derive 
focused data for iteratively refining models) 



 Manually -  using expert knowledge, 
detailed review of research results 
◦ Only avenue until relatively recently 
◦ Necessarily small scale – a few reliable 

(experimentally verified) nodes and links, 
many, many missing ones. 

 Computationally – using large scale 
measurements of molecular expression 
(abundance) values over many biological 
samples 





X (N x D) 

N = ~10000 genes 
D = ~250 samples 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



  Input: X (N x D)  Output: Y (N x d) 
◦  Let x = ( x1, x2, …, xD) denote a row of X 
◦  Let y = ( y1, y2, …, yd) denote a row of Y 

  Step 1: Model Data Point Relationships 
◦  Build a graph G, with nodes i and j connected 

if xi is one of the k nearest neighbors of xj or 
vice versa (Euclidean distances used, 
alternatives are possible) 
◦  k is a local structure resolution parameter 



  Step 2: Form Weight Matrix 
◦  Form a diffusion weight matrix W, with entry 

Wi,j = exp{ - || xi – xj ||2   / σ},                               
if i and j are connected; 0 otherwise. 

  Step 3: Solve Minimization Problem 

min(YT DY =I )
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  Step 3 (cont.) Solve Eigenvalue Problem 
◦ Given weight matrix W, let D be a N x N 

diagonal (‘connectivity’) matrix with entries 
recording the sum of edge weights for each 
data point-derived node 
◦  Let L = D – W denote the Laplacian matrix  
◦ We have: 

min(YT DY =I )
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 Given: 

 Basic results from linear algebra show 
that the optimal mapping can be obtained 
by solving generalized eigenvalue problem 
Lx = λDx, under the above constraint. 

  In particular, coordinates for the mapped 
vector yi can be extracted from the ith 
coordinates of the d eigenvectors with 
smallest nonzero eigenvalues. 

min(YT DY =I )
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 Additional Details: 
◦  Lx = λDx  (D-1/2 L D-1/2 )u = λu,             

where u = D1/2x, (D-1/2 L D-1/2 ) = Lsym 
◦  Estimation of intrinsic data dimensionality d 
◦  Selection of local neighborhood resolution 

parameter k 
◦  Selection of kernel width parameter σ 
◦ Approximate Nearest Neighbor Selection 

algorithms for managing larger data sets 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Given:  
◦ Target (fractional) valueα  
◦ N x N matrix W* capturing pairwise 

Euclidean distances between mapped gene 
expression profiles in reduced dimensional 
space. 

 Estimate: Distance Threshold 
◦ Rank mapped data space pairwise distances. 
◦  Select distance threshold that excludes upper   

(1-α) fraction of observed values. 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Phase I: Laplacian Eigenmaps + Network 
Reconstruction 
◦ Target Date: Middle of December 2010 
◦ Milestones:  
  (C++) Implementation and focused validation of    

Laplacian Eigenmaps  
  Basic (distance matrix threshold-based) network 

reconstruction. 



  Selecting and integrating appropriate 
(public domain) software to efficiently 
solve eigenvalue problem. 

 Organizing data structures and operations 
to conserve memory and support 
scalability. 



 Need to solve sparse, symmetric 
eigenvalue problem. 

 Basic BLAS/LAPACK largely emphasize 
dense matrices. 

 Evaluated several C++ packages 
◦  uBLAS (BLAS routines, relatively slow) 
◦ Armadillo++, Eigen (nice, almost MATLAB-like 

interface w/operator overloading, but meager 
support for sparse matrices/eigenproblems) 



 ARnoldi PACKage: Fortran 77 library for 
solving large scale sparse eigenvalue 
problems 

 Used by MATLAB (e.g., eigs function) 
  For symmetric matrices, applies Lanczos 

Algorithm 



 Reverse Communication Interface: 
◦ ARPACK routines do not operate directly on 

matrices 
◦  Instead: work with function defining matrix 

vector product.  Allows matrices to be stored 
in any suitable format (or not at all). 

  Implementation exploits this to represent 
matrices using compact adjacency lists, 
with fast ‘in-place’ operations where 
possible 



 Organized ARPACK interface code, 
compressed matrix classes into 
convenient package, with overloaded 
operators and high-level, template-based 
methods. 

 Basic, re-usable building block which will 
facilitate additional algorithm 
implementations. 



  extern "C" void dsaupd_(int *ido, char *bmat, 
int *n, char *which,int *nev, double *tol, 
double *resid, int *ncv, double *v, int *ldv, 
int *iparam, int *ipntr, double *workd, 
double *workl, int *lworkl, int *info); 

  template<typename T>                      
void sparseSymEigSolve(                           

  const CompressedMatrix<T>& M,             
const Matrix<T>& evecs,                   
const NumVector<T>& evals); 



  Laplacian Eigenmaps Implementation 
◦  Compared ARPACK interface code to corresponding 

MATLAB routines (leigs) 
◦  Compared to established MATLAB implementation 

over 4 published synthetic data sets. 



 Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦ Target Date: end of March 2011 
◦ Milestones: 
  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear 

dimensionality reduction (LE), linear dimensionality 
reduction (PCA), and original data 

  Approximate Nearest Neighbor Algorithm 
  Possible: Diffusion Maps 



  Integrated Network Reconstruction 
◦ Compare to published results for leading 

ARACNE network reconstruction method 
over: 
  Synthetic Gene Expression Data Set (allows 

objective scoring of ‘true’ edge recovery) 
  Well-studied biological data set (compare network 

reconstruction around MYC oncogene) 
◦ Compare results Laplacian Eigenmaps-based 

networks with those derived from original 
data, PCA-processed data. 
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