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Why Build Gene (etc.) Networks?

e Gain a broader, systems level view of
biological processes and their underlying
functional elements

o Avoid a narrow focus on a limited subset of
driving elements

° Incisively identify the most promising targets
for experimental exploration (to derive
focused data for iteratively refining models)



How to Build Biological Networks!?

e Manually - using expert knowledge,
detailed review of research results
> Only avenue until relatively recently

> Necessarily small scale — a few reliable
(experimentally verified) nodes and links,
many, many missing ones.

» Computationally — using large scale
measurements of molecular expression
(abundance) values over many biological
samples



Gene Expression Microarrays
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Starting Point: Gene Expression Data Matrix

genes

sample annotation
samples /

[

gene expression
matrix :{> X (N x D)

gene annotation

gene exprassion levels

N = ~10000 genes
D = ~250 samples



Basic Network Construction Workflow

e Starting from from the N x D gene
expression data matrix X, derive an N x d
matrix Y, (d < D) using Laplacian Eigenmaps
(or another dimensionality reduction
technique).

e Construct an N x N matrix W* capturing
pairwise Euclidean distances between row
vectors of Y (‘reduced gene profiles’).

» Apply a statistical significance-based
threshold to the elements of W* to obtain a
network (adjacency matrix) representation.



Laplacian Eigenmaps

e Input: X (N x D) = Output: Y (N x d)

> Let x = ( X/, Xy, ..., Xp) denote a row of X

> Lety = (Y, Yy ---»Yy) denote a row of Y
* Step |: Model Data Point Relationships

° Build a graph G, with nodes i and j connected
if X; is one of the k nearest neighbors of x; or
vice versa (Euclidean distances used,
alternatives are possible)

° kis a local structure resolution parameter



Laplacian Eigenmaps

* Step 2: Form Weight Matrix

> Form a diffusion weight matrix W, with entry
W, = exp{ - || x; — X I },
if i and j are connected; 0 otherwise.

 Step 3:Solve Minimization Problem
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Laplacian Eigenmaps

* Step 3 (cont.) Solve Eigenvalue Problem

> Given weight matrix W, let D bea N x N
diagonal (‘connectivity’) matrix with entries
recording the sum of edge weights for each
data point-derived node

> Let L = D — W denote the Laplacian matrix
> We have°

ley -y, W, mmYDY:I)trace(YTLY),

YDYI



Laplacian Eigenmaps

» Given: pip ley -y, W =min ,_ trace(t" LY),

YDYI

e Basic results from linear algebra show
that the optimal mapping can be obtained
by solving generalized eigenvalue problem
Lx = A Dx, under the above constraint.

e In particular, coordinates for the mapped
vector y, can be extracted from the i®"
coordinates of the d eigenvectors with
smallest nonzero eigenvalues.



Laplacian Eigenmaps

* Additional Details:
o Estimation of intrinsic data dimensionality d

> Selection of local neighborhood resolution
parameter k

e Possible Extension:

> Approximate Nearest Neighbor Selection
algorithms for managing larger data sets



Basic Network Construction Workflow
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Network Derivation

* Given:
> Target p-value o
> N x N matrix W* capturing pairwise Euclidean
distances between mapped gene expression
profiles in reduced dimensional space.
e Estimate: Distance Threshold
> Run (scaled) random data through workflow
> Rank mapped data space pairwise distances

> Select distance threshold that excludes upper
(I-a) fraction of observed values



Basic Network Construction Workflow
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Implementation Notes

e Overall Aims:
° Platform-independent, desktop hardware
° Free and open source
* Implementation Languages:
> Python (platform libraries, SciPy + matplotlib)
o C/C++ (core algorithm implementations)
* Libraries:

> Basic Linear Algebra
> Network Analysis and Visualization (iGraph)



Validation and Testing

e Laplacian Eigenmaps Implementation

> Compare to established implementation
(MATLAB DR Toolbox) over 4 published

synthetic data sets.
ﬁ
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Validation and Testing

* Integrated Network Reconstruction

o Compare to published results for leading
ARACNE network reconstruction method
over:

Synthetic Gene Expression Data Set (allows
objective scoring of ‘true’ edge recovery)

Well-studied biological data set (compare network
reconstruction around MYC oncogene)

> Compare results Laplacian Eigenmaps-based
networks with those derived from original
data, PCA-processed data.



Project Schedule and Milestones

* Phase I: Laplacian Eigenmaps + Network
Reconstruction
> Target Date: early December 2010

> Milestones:
Implementation and focused validation of
Laplacian Eigenmaps

Implementation of statistical significance-based
distance matrix thresholding for network
construction.



Project Schedule and Milestones

* Phase ll: Integrated Testing of Network
Reconstruction + Possible Extensions

o Target Date: end of March 201 |
> Milestones:

Integrated testing of network reconstruction

Comparison of results obtained using nonlinear
dimensionality reduction (LE), linear dimensionality
reduction (PCA), and original data

Possible: Approximate Nearest Neighbor Algorithm
Possible: Diffusion Maps



Deliverables

e Technical report outlining:
> Problem and general approach
> Algorithm implementation notes

> Validation and testing results, including
comparative assessment of nonlinear
dimensionality reduction in biological network
reconstruction

* Source Code — together with data sets
and scripts for reproducing results
presented in technical report.
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