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 Gain a broader, systems level view of 
biological processes and their underlying 
functional elements 
◦ Avoid a narrow focus on a limited subset of 

driving elements 
◦  Incisively identify the most promising targets 

for experimental exploration (to derive 
focused data for iteratively refining models) 



 Manually -  using expert knowledge, 
detailed review of research results 
◦ Only avenue until relatively recently 
◦ Necessarily small scale – a few reliable 

(experimentally verified) nodes and links, 
many, many missing ones. 

 Computationally – using large scale 
measurements of molecular expression 
(abundance) values over many biological 
samples 





X (N x D) 

N = ~10000 genes 
D = ~250 samples 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a statistical significance-based 
threshold to the elements of W* to obtain a 
network (adjacency matrix) representation. 



  Input: X (N x D)  Output: Y (N x d) 
◦  Let x = ( x1, x2, …, xD) denote a row of X 
◦  Let y = ( y1, y2, …, yd) denote a row of Y 

  Step 1: Model Data Point Relationships 
◦  Build a graph G, with nodes i and j connected 

if xi is one of the k nearest neighbors of xj or 
vice versa (Euclidean distances used, 
alternatives are possible) 
◦  k is a local structure resolution parameter 



  Step 2: Form Weight Matrix 
◦  Form a diffusion weight matrix W, with entry 

Wi,j = exp{ - || xi – xj ||2  },                               
if i and j are connected; 0 otherwise. 

  Step 3: Solve Minimization Problem 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j



  Step 3 (cont.) Solve Eigenvalue Problem 
◦ Given weight matrix W, let D be a N x N 

diagonal (‘connectivity’) matrix with entries 
recording the sum of edge weights for each 
data point-derived node 
◦  Let L = D – W denote the Laplacian matrix  
◦ We have: 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Given: 

 Basic results from linear algebra show 
that the optimal mapping can be obtained 
by solving generalized eigenvalue problem 
Lx = λDx, under the above constraint. 

  In particular, coordinates for the mapped 
vector yi can be extracted from the ith 
coordinates of the d eigenvectors with 
smallest nonzero eigenvalues. 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Additional Details: 
◦  Estimation of intrinsic data dimensionality d 
◦  Selection of local neighborhood resolution 

parameter k 

 Possible Extension: 
◦ Approximate Nearest Neighbor Selection 

algorithms for managing larger data sets 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a statistical significance-based 
threshold to the elements of W* to obtain a 
network (adjacency matrix) representation. 



 Given:  
◦  Target p-value α  
◦ N x N matrix W* capturing pairwise Euclidean 

distances between mapped gene expression 
profiles in reduced dimensional space. 

  Estimate: Distance Threshold 
◦  Run (scaled) random data through workflow 
◦  Rank mapped data space pairwise distances 
◦  Select distance threshold that excludes upper   

(1-α) fraction of observed values 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a statistical significance-based 
threshold to the elements of W* to obtain a 
network (adjacency matrix) representation. 



 Overall Aims: 
◦  Platform-independent, desktop hardware 
◦  Free and open source 

  Implementation Languages: 
◦  Python (platform libraries, SciPy + matplotlib) 
◦ C/C++ (core algorithm implementations) 

 Libraries: 
◦  Basic Linear Algebra 
◦ Network Analysis and Visualization (iGraph) 



 Laplacian Eigenmaps Implementation 
◦ Compare to established implementation  

(MATLAB DR Toolbox) over 4 published 
synthetic data sets. 



  Integrated Network Reconstruction 
◦ Compare to published results for leading 

ARACNE network reconstruction method 
over: 
  Synthetic Gene Expression Data Set (allows 

objective scoring of ‘true’ edge recovery) 
  Well-studied biological data set (compare network 

reconstruction around MYC oncogene) 
◦ Compare results Laplacian Eigenmaps-based 

networks with those derived from original 
data, PCA-processed data. 



 Phase I: Laplacian Eigenmaps + Network 
Reconstruction 
◦ Target Date: early December 2010 
◦ Milestones:  
  Implementation and focused validation of    

Laplacian Eigenmaps  
  Implementation of statistical significance-based 

distance matrix thresholding for network 
construction.  



 Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦ Target Date: end of March 2011 
◦ Milestones: 
  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear 

dimensionality reduction (LE), linear dimensionality 
reduction (PCA), and original data 

  Possible:  Approximate Nearest Neighbor Algorithm 
  Possible: Diffusion Maps 



 Technical report outlining: 
◦  Problem and general approach 
◦ Algorithm implementation notes 
◦ Validation and testing results, including 

comparative assessment of nonlinear 
dimensionality reduction in biological network 
reconstruction 

  Source Code – together with data sets 
and scripts for reproducing results 
presented in technical report. 
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