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Gene Networks
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Motivation

e Gain a broader, systems level view of
biological processes and their underlying
functional elements

o Avoid a narrow focus on a limited subset of
driving elements

° Incisively identify the most promising targets
for experimental exploration (to derive
focused data for iteratively refining models)



Gene Expression Microarrays
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Starting Point: Gene Expression Data Matrix

sample annotation
samples /

I
matrix :{> X (N x D)

gene exprassion levels

N = 12,600
D =336

genes

gene annotation



Basic Network Construction Workflow

e Starting from from the N x D gene
expression data matrix X, derive an N x d
matrix Y, (d < D) using Laplacian Eigenmaps
(or another dimensionality reduction
technique).

e Construct an N x N matrix W* capturing
pairwise Euclidean distances between row
vectors of Y (‘reduced gene profiles’).

* Apply a threshold to the elements of W* to
obtain a network (adjacency matrix)
representation.



Laplacian Eigenmaps

e Input: X (N x D) = Output: Y (N x d)

> Let x = ( X/, Xy, ..., Xp) denote a row of X

> Lety = (Y, Yy ---»Yy) denote a row of Y
* Step |: Model Data Point Relationships

° Build a graph G, with nodes i and j connected
if X; is one of the k nearest neighbors of x; or
vice versa (Euclidean distances used,
alternatives are possible)

° kis a local structure resolution parameter



Laplacian Eigenmaps

* Step 2: Form Weight Matrix

> Form a diffusion weight matrix W, with entry
W, = exp{ - || x; — % |> / o},
if i and j are connected; 0 otherwise.

 Step 3:Solve Minimization Problem
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Laplacian Eigenmaps

* Step 3 (cont.) Solve Eigenvalue Problem

> Given weight matrix W, let D bea N x N
diagonal (‘connectivity’) matrix with entries
recording the sum of edge weights for each
data point-derived node

> Let L = D — W denote the Laplacian matrix
> We have°

ley -y, W, mmYDY:I)trace(YTLY),

YDYI



Laplacian Eigenmaps

» Given: pip ley -y, W =min ,_ trace(t" LY),

YDYI

e Basic results from linear algebra show
that the optimal mapping can be obtained
by solving generalized eigenvalue problem
Lx = A Dx, under the above constraint.

e In particular, coordinates for the mapped
vector y, can be extracted from the i®"
coordinates of the d eigenvectors with
smallest nonzero eigenvalues.



Laplacian Eigenmaps

e Additional Details:
cLx= ADx & (D'2L D)y = Au,
where u = D'2x, (D2 L D) = L

o Estimation of intrinsic data dimensionality d

> Selection of local neighborhood resolution
parameter k

> Selection of kernel width parameter O



Basic Network Construction Workflow

e Starting from from the N x D gene
expression data matrix X, derive an N x d
matrix Y, (d < D) using Laplacian Eigenmaps
(or another dimensionality reduction
technique).

e Construct an N x N matrix W* capturing
pairwise Euclidean distances between row
vectors of Y (‘reduced gene profiles’).

* Apply a threshold to the elements of W* to
obtain a network (adjacency matrix)
representation.



Network Derivation

* Given:
o Target (fractional) value &

> N x N matrix W*¥* capturing pairwise
Euclidean distances between mapped gene
expression profiles in reduced dimensional
space.

* Estimate: Distance Threshold
> Rank mapped data space pairwise distances.

> Select distance threshold that excludes upper
(I- &) fraction of observed values.



Basic Network Construction Workflow

e Starting from from the N x D gene
expression data matrix X, derive an N x d
matrix Y, (d < D) using Laplacian Eigenmaps
(or another dimensionality reduction
technique).

e Construct an N x N matrix W* capturing
pairwise Euclidean distances between row
vectors of Y (‘reduced gene profiles’).

e Apply a threshold to the elements of W* to
obtain a network (adjacency matrix)
representation.



Original Milestones for First Term

* Phase I: Laplacian Eigenmaps + Network
Reconstruction

> Target Date: Middle of December 2010
> Milestones:

(C++) Implementation and focused validation of
Laplacian Eigenmaps

Basic (distance matrix threshold-based) network
reconstruction.



Work Accomplished During First Term

* Key ltems:

> Built clean, object-oriented interface to

efficient low-level linear algebra routines
(ARPACK, etc.)

> Organized data structures and associated
operations to conserve memory and support
scalability.

o Established basic correctness of
implementation using standard assessment
data sets.



Original Milestones for Second Term

* Phase ll: Integrated Testing of Network
Reconstruction + Possible Extensions

o Target Date: end of March 201 |

> Milestones:
Integrated testing of network reconstruction

Comparison of results obtained using nonlinear
dimensionality reduction (LE), linear dimensionality
reduction (PCA), and original data; comparison with
leading reconstruction method.

Parameter Tuning
Possible: Diffusion Maps



Current Term — Main Development Work

e Parameter Tuning: intrinsic dimensionality
estimators (maximum likelihood,
correlation).

* Parameter Tuning: nearest neighbor and
kernel bandwidth selection by clustering in
mapped data spaces (k-means algorithm,
cluster quality assessment measures).

* Validation Support: Implementation of code
to read/write network models, compare
model results against each other and against
known results.



Overview of Main Results

* Assessment using synthetic data from
small simulated gene networks.

* Assessment using large gene expression
data set with strong supporting
publications:

> Comparison with results obtained using
leading network reconstruction method.

o Comparison with results derived using
original data and PCA-mapped data.



Synthetic Network Example




Synthetic Networks — Results Overview

e Aiming to assess recovery of positive
interactions in 100 gene, 200 interaction
network. Input data is 100 x 10| expression
data matrix derived from (ODE) simulation.

* Average accuracy TP/(TP+FP) over 4 data sets.

Original Data PCA-Mapped LE-Mapped

0.46 0.47 0.44




Synthetic Networks - Discussion

* Results are not spectacular, but with
consideration, somewhat unsurprising.

» Relatively direct methods based on a global
distance threshold add many ‘extra’ edges in
simple, prescribed networks because
associations among co-regulated genes often
appear stronger than the ones with their
regulators. Such edges get selected first.

 LE focus on local neighborhoods may incur
some global accuracy cost. Better
parameter tuning may help, though hard in
this case due to small data set sizes.



Synthetic Networks - Discussion

* More successful methods for global
network recovery typically either:

° Filter a larger pool of initially admitted edges
using mathematical criteria, independent
experimental data, or prior biological
knowledge.

° Try to fit parameters of explicit ODE-based
models (currently only practical with simpler
microbial gene networks).



Local Network Recovery

* Global network recovery is hard - essentially
unrealistic without additional constraining data
and other criteria, especially in more complex
cells.

* Local network recovery around highly connected
‘hubs’ remains a more accessible and biomedically
relevant problem.

e Many potential interactions are known, but
challenge is to:

> Ildentify which ones are active in a given cell type or
disease context.

° Prioritize novel interactions for further investigation.



Local Network Recovery

e Somewhat different challenges:

> Much larger, noisier data sets with less
prescribed biological contexts (relative to
precise perturbation experiments simulated
with synthetic data).

> Relatively lower accuracy threshold relative to
(still limited) validation data. 3-4 fold
enrichment around hub gene (with respect to
known targets) can be a solid, useful result —
e.g., a starting point for prioritizing genes for
labor-intensive lab investigation.



MYC Network - Background

» MYC is the most frequently deregulated
gene in human cancers, largely due to its
prominent role as a ‘regulator of
regulators’.

* Hundreds of validated direct targets,
though far fewer are active in any given
cell type.

e Major challenge is to fill in the many gaps
— e.g., define cell/tumor type-specific
target sets, identify novel targets, etc.



Validation/Assessment Approach

e Expand local (first-neighbor) network
around MYC and match target genes against
established database of biologically validated
MYC (direct) targets.

* Leading network reconstruction method
(ARACNE) recovers 56 direct targets using
large cancer cell line data set.

> 24 of 56 match target database (~42.9%).

o Significant enrichment over ~ 10% expected by
chance.

> An additional set of 5 computationally identified
targets was selected and biochemically validated.



Assessment/Validation Results

* With selected MYC network derived
using Laplacian Eigenmaps-processed data,
23 of 61 direct targets match database.

o ~37.7% versus ~42.9% for ARACNE method

> Network derived by applying global threshold
yielding edges for smallest 1% of distances.

> Remark: ARACNE also applies thresholding
strategy, but with mutual information-based
measure, and subsequent edge pruning steps.



Assessment/Validation Details

* The 61 gene |t neighbor network of the LE-
based method overlaps with the

corresponding 56 gene network of the
ARACNE method by just 5 genes overall

(and 3 genes in the validated groups).

e Remark: ARACNE developers indicate that
their method does not aim to recover all
possible edges, but rather a substantially
enriched candidate set.

e Differences with respect to ARACNE could
represent new information, but further
assessment is required.



Assessment/Validation Details

e Parameter Selection

> Target Dimensionality was set to 28, based on
maximum over DR estimation methods.

> NN and kernel bandwidth ( 0) parameters
were set by running small grid of typically
applied parameter selections
NN = 8,12,16,20 o =0.5,1

> Selected results with best (k-means-derived)
cluster structure in LE-mapped space:
NN =16 o =0.5






Assessment/Validation Details

* Analogous network derivation strategy with
original data and PCA-mapped data did not yield
strong results. Percentage thresholds required to
recover network edges around MYC gene:

LE-Mapped PCA-Mapped Original Data
| % > 40% > 50%

* Unreasonably high thresholds are required in
original and PCA-mapped spaces.

o LE appears to produce meaningful distances over
local network neighborhoods.



Original Milestones for Second Term

* Phase Il: Integrated Testing of Network
Reconstruction + Possible Extensions

o Target Date: end of March 201 |

> Milestones:
Integrated testing of network reconstruction

Comparison of results obtained using nonlinear dimensionality
reduction (LE), linear dimensionality reduction (PCA), and original
data; comparison with leading reconstruction method.

Parameter Tuning

Possible: Diffusion Maps
* Very limited implementation

* Currently does not yield strong results, possibly due to steps taken to
allow sparse eigenvalue problem. Further work required.



Ongoing Work

* Improve Local Network Recovery

> Consider broader measures of gene
association, more sophisticated kernels.

> Filter edges and prioritize targets using
mathematical criteria, additional data sources.

e Further Assessment and Validation
o Consider other known network hubs.
> Broader biological database validation.

> Work with lab collaborators to see if selected
targets can be biochemically validated.
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Implementation Challenges

* Selecting and integrating appropriate
(public domain) software to efficiently
solve eigenvalue problem.

* Organizing data structures and operations
to conserve memory and support
scalability.



Linear Algebra Libraries

* Need to solve sparse, symmetric
eigenvalue problem.

 Basic BLAS/LAPACK largely emphasize
dense matrices.

 Evaluated several C++ packages
> UBLAS (BLAS routines, relatively slow)

> Armadillo++, Eigen (nice, almost MATLAB-like
interface w/operator overloading, but meager
support for sparse matrices/eigenproblems)



ARPACK

* ARnoldi PACKage: Fortran 77 library for
solving large scale sparse eigenvalue
problems

» Used by MATLAB (e.g., eigs function)

* For symmetric matrices, applies Lanczos
Algorithm



ARPACK and Memory Management

e Reverse Communication Interface:

> ARPACK routines do not operate directly on
matrices

° Instead: work with function defining matrix
vector product. Allows matrices to be stored
in any suitable format (or not at all).

* Implementation exploits this to represent
matrices using compact adjacency lists,

with fast ‘in-place’ operations where
possible



Linear Algebra/ ARPACK interface

* Organized ARPACK interface code,
compressed matrix classes into
convenient package, with overloaded
operators and high-level, template-based
methods.

* Basic, re-usable building block which will
facilitate additional algorithm
implementations.



Linear Algebra/ ARPACK Interface

* extern "C" void dsaupd (int *ido, char *bmat,
int *n, char *which,int *nev, double *tol,
double *resid, int *ncv, double *v, int *ldv,
int *iparam, int *ipntr, double *workd,
double *workl, int *lworkl, int *info);

* template<typename T>
void sparseSymEigSolve (

const CompressedMatrix<T>& M,
const Matrix<T>& evecs,
const NumVector<T>& evals);



Maximum Likelihood Estimate of

Intrinsic Dimensionality

* Let T, (x) denote the Euclidean distance
from a fixed point x to its k-th nearest
neighbor in the sample of size N.

- -1
e Set ()= Lkilo T, (x)
ST C1E R T (
S R 1 < .
Set = _zmk(xl)
N5

e Average above over k=6 ... |2



