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 Gain a broader, systems level view of 
biological processes and their underlying 
functional elements 
◦ Avoid a narrow focus on a limited subset of 

driving elements 
◦  Incisively identify the most promising targets 

for experimental exploration (to derive 
focused data for iteratively refining models) 





X (N x D) 

N = 12,600 
D = 336  



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



  Input: X (N x D)  Output: Y (N x d) 
◦  Let x = ( x1, x2, …, xD) denote a row of X 
◦  Let y = ( y1, y2, …, yd) denote a row of Y 

  Step 1: Model Data Point Relationships 
◦  Build a graph G, with nodes i and j connected 

if xi is one of the k nearest neighbors of xj or 
vice versa (Euclidean distances used, 
alternatives are possible) 
◦  k is a local structure resolution parameter 



  Step 2: Form Weight Matrix 
◦  Form a diffusion weight matrix W, with entry 

Wi,j = exp{ - || xi – xj ||2   / σ},                               
if i and j are connected; 0 otherwise. 

  Step 3: Solve Minimization Problem 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j



  Step 3 (cont.) Solve Eigenvalue Problem 
◦ Given weight matrix W, let D be a N x N 

diagonal (‘connectivity’) matrix with entries 
recording the sum of edge weights for each 
data point-derived node 
◦  Let L = D – W denote the Laplacian matrix  
◦ We have: 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Given: 

 Basic results from linear algebra show 
that the optimal mapping can be obtained 
by solving generalized eigenvalue problem 
Lx = λDx, under the above constraint. 

  In particular, coordinates for the mapped 
vector yi can be extracted from the ith 
coordinates of the d eigenvectors with 
smallest nonzero eigenvalues. 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Additional Details: 
◦  Lx = λDx  (D-1/2 L D-1/2 )u = λu,             

where u = D1/2x, (D-1/2 L D-1/2 ) = Lsym 
◦  Estimation of intrinsic data dimensionality d 
◦  Selection of local neighborhood resolution 

parameter k 
◦  Selection of kernel width parameter σ 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Given:  
◦ Target (fractional) valueα  
◦ N x N matrix W* capturing pairwise 

Euclidean distances between mapped gene 
expression profiles in reduced dimensional 
space. 

 Estimate: Distance Threshold 
◦ Rank mapped data space pairwise distances. 
◦  Select distance threshold that excludes upper   

(1-α) fraction of observed values. 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Phase I: Laplacian Eigenmaps + Network 
Reconstruction 
◦ Target Date: Middle of December 2010 
◦ Milestones:  
  (C++) Implementation and focused validation of    

Laplacian Eigenmaps  
  Basic (distance matrix threshold-based) network 

reconstruction. 



 Key Items: 
◦  Built clean, object-oriented interface to 

efficient low-level linear algebra routines 
(ARPACK, etc.) 
◦ Organized data structures and associated 

operations to conserve memory and support 
scalability. 
◦  Established basic correctness of 

implementation using standard assessment 
data sets. 



  Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦  Target Date: end of March 2011 
◦ Milestones: 
  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear 

dimensionality reduction (LE), linear dimensionality 
reduction (PCA), and original data; comparison with 
leading reconstruction method. 

  Parameter Tuning 
  Possible: Diffusion Maps 
  Possible: Approximate Nearest Neighbor Algorithm 



  Parameter Tuning: intrinsic dimensionality 
estimators (maximum likelihood, 
correlation). 

  Parameter Tuning: nearest neighbor and 
kernel bandwidth selection by clustering in 
mapped data spaces (k-means algorithm, 
cluster quality assessment measures). 

  Validation Support: Implementation of code 
to read/write network models, compare 
model results against each other and against 
known results. 



 Assessment using synthetic data from 
small simulated gene networks. 

 Assessment using large gene expression 
data set with strong supporting 
publications: 
◦ Comparison with results obtained using 

leading network reconstruction method. 
◦ Comparison with results derived using 

original data and PCA-mapped data. 





  Aiming to assess recovery of positive 
interactions in 100 gene, 200 interaction 
network.  Input data is 100 x 101 expression 
data matrix derived from (ODE) simulation. 

  Average accuracy TP/(TP+FP) over 4 data sets. 

Original Data PCA-Mapped LE-Mapped 

0.46 0.47 0.44 



  Results are not spectacular, but with 
consideration, somewhat unsurprising. 

  Relatively direct methods based on a global 
distance threshold add many ‘extra’ edges in 
simple, prescribed networks because 
associations among co-regulated genes often 
appear stronger than the ones with their 
regulators. Such edges get selected first. 

  LE focus on local neighborhoods may incur 
some global accuracy cost.  Better 
parameter tuning may help, though hard in 
this case due to small data set sizes. 



 More successful methods for global 
network recovery typically either: 
◦  Filter a larger pool of initially admitted edges 

using mathematical criteria, independent 
experimental data,  or prior biological 
knowledge. 
◦ Try to fit parameters of explicit ODE-based 

models (currently only practical with simpler 
microbial gene networks). 



  Global network recovery is hard -  essentially 
unrealistic without additional constraining data 
and other criteria, especially in more complex 
cells. 

  Local network recovery around highly connected 
‘hubs’ remains a more accessible and biomedically 
relevant problem. 

  Many potential interactions are known, but 
challenge is to: 
◦  Identify which ones are active in a given cell type or 

disease context. 
◦  Prioritize novel interactions for further investigation. 



  Somewhat different challenges: 
◦ Much larger, noisier data sets with less 

prescribed  biological contexts (relative to 
precise perturbation experiments simulated 
with synthetic data). 
◦ Relatively lower accuracy threshold relative to 

(still limited) validation data.  3-4 fold  
enrichment around hub gene (with respect to 
known targets) can be a solid, useful result – 
e.g., a starting point for prioritizing genes for 
labor-intensive lab investigation. 



 MYC is the most frequently deregulated 
gene in human cancers, largely due to its 
prominent role as a ‘regulator of 
regulators’. 

 Hundreds of validated direct targets, 
though far fewer are active in any given 
cell type. 

 Major challenge is to fill in the many gaps 
– e.g., define cell/tumor type-specific 
target sets, identify novel targets, etc. 



  Expand local (first-neighbor) network 
around MYC and match target genes against 
established database of biologically validated 
MYC (direct) targets. 

  Leading network reconstruction method 
(ARACNE) recovers 56 direct targets using 
large cancer cell line data set. 
◦  24 of 56 match target database (~42.9%). 
◦  Significant enrichment over ~ 10% expected by 

chance. 
◦  An additional set of 5 computationally identified 

targets was selected and biochemically validated. 



 With selected MYC network derived 
using Laplacian Eigenmaps-processed data, 
23 of 61 direct targets match database. 
◦  ~37.7% versus ~42.9% for ARACNE method 
◦   Network derived by applying global threshold 

yielding edges for smallest 1% of distances. 
◦ Remark:  ARACNE also applies thresholding 

strategy, but with mutual information-based 
measure, and subsequent edge pruning steps. 



  The 61 gene 1st neighbor network of the LE-
based method overlaps with the 
corresponding 56 gene network of the 
ARACNE method by just 5 genes overall 
(and 3 genes in the validated groups). 

  Remark:  ARACNE developers indicate that 
their method does not aim to recover all 
possible edges, but rather a substantially 
enriched candidate set. 

 Differences with respect to ARACNE could 
represent new information, but further 
assessment is required. 



 Parameter Selection 
◦ Target Dimensionality was set to 28, based on 

maximum over DR estimation methods. 
◦ NN and kernel bandwidth (σ) parameters 

were set by running small grid of typically 
applied parameter selections  
  NN = 8,12,16,20  σ = 0.5, 1 

◦  Selected results with best (k-means-derived) 
cluster structure in LE-mapped space: 
  NN = 16   σ = 0.5 





  Analogous network derivation strategy with 
original data and PCA-mapped data did not yield 
strong results.  Percentage thresholds required to 
recover network edges around MYC gene: 

  Unreasonably high thresholds are required in 
original and PCA-mapped spaces. 

  LE appears to produce meaningful distances over 
local network neighborhoods. 

LE-Mapped PCA-Mapped Original Data 

1% > 40% > 50% 



  Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦  Target Date: end of March 2011 
◦  Milestones: 

  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear dimensionality 

reduction (LE), linear dimensionality reduction (PCA), and original 
data; comparison with leading reconstruction method. 

  Parameter Tuning 
  Possible: Diffusion Maps 

  Very limited implementation 
  Currently does not yield strong results, possibly due to steps taken to 

allow sparse eigenvalue problem. Further work required. 
  Possible: Approximate Nearest Neighbor Algorithm 

  Not implemented due to time constraints, limited motivation with 
manageable run times, and desire to focus on assessing and improving 
structure recovery without introducing potentially confounding factor. 



  Improve Local Network Recovery 
◦ Consider broader measures of gene 

association, more sophisticated kernels. 
◦  Filter edges and prioritize targets using 

mathematical criteria, additional data sources. 
  Further Assessment and Validation 
◦ Consider other known network hubs. 
◦  Broader biological database validation. 
◦ Work with lab collaborators to see if selected 

targets can be biochemically validated. 
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  Selecting and integrating appropriate 
(public domain) software to efficiently 
solve eigenvalue problem. 

 Organizing data structures and operations 
to conserve memory and support 
scalability. 



 Need to solve sparse, symmetric 
eigenvalue problem. 

 Basic BLAS/LAPACK largely emphasize 
dense matrices. 

 Evaluated several C++ packages 
◦  uBLAS (BLAS routines, relatively slow) 
◦ Armadillo++, Eigen (nice, almost MATLAB-like 

interface w/operator overloading, but meager 
support for sparse matrices/eigenproblems) 



 ARnoldi PACKage: Fortran 77 library for 
solving large scale sparse eigenvalue 
problems 

 Used by MATLAB (e.g., eigs function) 
  For symmetric matrices, applies Lanczos 

Algorithm 



 Reverse Communication Interface: 
◦ ARPACK routines do not operate directly on 

matrices 
◦  Instead: work with function defining matrix 

vector product.  Allows matrices to be stored 
in any suitable format (or not at all). 

  Implementation exploits this to represent 
matrices using compact adjacency lists, 
with fast ‘in-place’ operations where 
possible 



 Organized ARPACK interface code, 
compressed matrix classes into 
convenient package, with overloaded 
operators and high-level, template-based 
methods. 

 Basic, re-usable building block which will 
facilitate additional algorithm 
implementations. 



  extern "C" void dsaupd_(int *ido, char *bmat, 
int *n, char *which,int *nev, double *tol, 
double *resid, int *ncv, double *v, int *ldv, 
int *iparam, int *ipntr, double *workd, 
double *workl, int *lworkl, int *info); 

  template<typename T>                      
void sparseSymEigSolve(                           

  const CompressedMatrix<T>& M,             
const Matrix<T>& evecs,                   
const NumVector<T>& evals); 



 Let Tk(x) denote the Euclidean distance 
from a fixed point x to its k-th nearest 
neighbor in the sample of size N. 

  Set 

  Set  

 Average above over k = 6 … 12 

m̂k (x) =
1

k −1
log Tk (x)

Tj (x)j=1

k−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

m̂k =
1
N

m̂k (xi )
i=1

N

∑


