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 Gain a broader, systems level view of 
biological processes and their underlying 
functional elements 
◦ Avoid a narrow focus on a limited subset of 

driving elements 
◦  Incisively identify the most promising targets 

for experimental exploration (to derive 
focused data for iteratively refining models) 





X (N x D) 

N = 12,600 
D = 336  



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



  Input: X (N x D)  Output: Y (N x d) 
◦  Let x = ( x1, x2, …, xD) denote a row of X 
◦  Let y = ( y1, y2, …, yd) denote a row of Y 

  Step 1: Model Data Point Relationships 
◦  Build a graph G, with nodes i and j connected 

if xi is one of the k nearest neighbors of xj or 
vice versa (Euclidean distances used, 
alternatives are possible) 
◦  k is a local structure resolution parameter 



  Step 2: Form Weight Matrix 
◦  Form a diffusion weight matrix W, with entry 

Wi,j = exp{ - || xi – xj ||2   / σ},                               
if i and j are connected; 0 otherwise. 

  Step 3: Solve Minimization Problem 

min(YT DY =I )
1
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|| yi − yj ||
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i, j
∑ Wi, j



  Step 3 (cont.) Solve Eigenvalue Problem 
◦ Given weight matrix W, let D be a N x N 

diagonal (‘connectivity’) matrix with entries 
recording the sum of edge weights for each 
data point-derived node 
◦  Let L = D – W denote the Laplacian matrix  
◦ We have: 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Given: 

 Basic results from linear algebra show 
that the optimal mapping can be obtained 
by solving generalized eigenvalue problem 
Lx = λDx, under the above constraint. 

  In particular, coordinates for the mapped 
vector yi can be extracted from the ith 
coordinates of the d eigenvectors with 
smallest nonzero eigenvalues. 

min(YT DY =I )
1
2

|| yi − yj ||
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i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),



 Additional Details: 
◦  Lx = λDx  (D-1/2 L D-1/2 )u = λu,             

where u = D1/2x, (D-1/2 L D-1/2 ) = Lsym 
◦  Estimation of intrinsic data dimensionality d 
◦  Selection of local neighborhood resolution 

parameter k 
◦  Selection of kernel width parameter σ 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Given:  
◦ Target (fractional) valueα  
◦ N x N matrix W* capturing pairwise 

Euclidean distances between mapped gene 
expression profiles in reduced dimensional 
space. 

 Estimate: Distance Threshold 
◦ Rank mapped data space pairwise distances. 
◦  Select distance threshold that excludes upper   

(1-α) fraction of observed values. 



  Starting from from the N x D gene 
expression data matrix X, derive an N x d 
matrix Y, (d < D) using Laplacian Eigenmaps 
(or another dimensionality reduction 
technique). 

 Construct an N x N matrix W* capturing 
pairwise Euclidean distances between row 
vectors of Y (‘reduced gene profiles’). 

 Apply a threshold to the elements of W* to 
obtain a network (adjacency matrix) 
representation. 



 Phase I: Laplacian Eigenmaps + Network 
Reconstruction 
◦ Target Date: Middle of December 2010 
◦ Milestones:  
  (C++) Implementation and focused validation of    

Laplacian Eigenmaps  
  Basic (distance matrix threshold-based) network 

reconstruction. 



 Key Items: 
◦  Built clean, object-oriented interface to 

efficient low-level linear algebra routines 
(ARPACK, etc.) 
◦ Organized data structures and associated 

operations to conserve memory and support 
scalability. 
◦  Established basic correctness of 

implementation using standard assessment 
data sets. 



  Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦  Target Date: end of March 2011 
◦ Milestones: 
  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear 

dimensionality reduction (LE), linear dimensionality 
reduction (PCA), and original data; comparison with 
leading reconstruction method. 

  Parameter Tuning 
  Possible: Diffusion Maps 
  Possible: Approximate Nearest Neighbor Algorithm 



  Parameter Tuning: intrinsic dimensionality 
estimators (maximum likelihood, 
correlation). 

  Parameter Tuning: nearest neighbor and 
kernel bandwidth selection by clustering in 
mapped data spaces (k-means algorithm, 
cluster quality assessment measures). 

  Validation Support: Implementation of code 
to read/write network models, compare 
model results against each other and against 
known results. 



 Assessment using synthetic data from 
small simulated gene networks. 

 Assessment using large gene expression 
data set with strong supporting 
publications: 
◦ Comparison with results obtained using 

leading network reconstruction method. 
◦ Comparison with results derived using 

original data and PCA-mapped data. 





  Aiming to assess recovery of positive 
interactions in 100 gene, 200 interaction 
network.  Input data is 100 x 101 expression 
data matrix derived from (ODE) simulation. 

  Average accuracy TP/(TP+FP) over 4 data sets. 

Original Data PCA-Mapped LE-Mapped 

0.46 0.47 0.44 



  Results are not spectacular, but with 
consideration, somewhat unsurprising. 

  Relatively direct methods based on a global 
distance threshold add many ‘extra’ edges in 
simple, prescribed networks because 
associations among co-regulated genes often 
appear stronger than the ones with their 
regulators. Such edges get selected first. 

  LE focus on local neighborhoods may incur 
some global accuracy cost.  Better 
parameter tuning may help, though hard in 
this case due to small data set sizes. 



 More successful methods for global 
network recovery typically either: 
◦  Filter a larger pool of initially admitted edges 

using mathematical criteria, independent 
experimental data,  or prior biological 
knowledge. 
◦ Try to fit parameters of explicit ODE-based 

models (currently only practical with simpler 
microbial gene networks). 



  Global network recovery is hard -  essentially 
unrealistic without additional constraining data 
and other criteria, especially in more complex 
cells. 

  Local network recovery around highly connected 
‘hubs’ remains a more accessible and biomedically 
relevant problem. 

  Many potential interactions are known, but 
challenge is to: 
◦  Identify which ones are active in a given cell type or 

disease context. 
◦  Prioritize novel interactions for further investigation. 



  Somewhat different challenges: 
◦ Much larger, noisier data sets with less 

prescribed  biological contexts (relative to 
precise perturbation experiments simulated 
with synthetic data). 
◦ Relatively lower accuracy threshold relative to 

(still limited) validation data.  3-4 fold  
enrichment around hub gene (with respect to 
known targets) can be a solid, useful result – 
e.g., a starting point for prioritizing genes for 
labor-intensive lab investigation. 



 MYC is the most frequently deregulated 
gene in human cancers, largely due to its 
prominent role as a ‘regulator of 
regulators’. 

 Hundreds of validated direct targets, 
though far fewer are active in any given 
cell type. 

 Major challenge is to fill in the many gaps 
– e.g., define cell/tumor type-specific 
target sets, identify novel targets, etc. 



  Expand local (first-neighbor) network 
around MYC and match target genes against 
established database of biologically validated 
MYC (direct) targets. 

  Leading network reconstruction method 
(ARACNE) recovers 56 direct targets using 
large cancer cell line data set. 
◦  24 of 56 match target database (~42.9%). 
◦  Significant enrichment over ~ 10% expected by 

chance. 
◦  An additional set of 5 computationally identified 

targets was selected and biochemically validated. 



 With selected MYC network derived 
using Laplacian Eigenmaps-processed data, 
23 of 61 direct targets match database. 
◦  ~37.7% versus ~42.9% for ARACNE method 
◦   Network derived by applying global threshold 

yielding edges for smallest 1% of distances. 
◦ Remark:  ARACNE also applies thresholding 

strategy, but with mutual information-based 
measure, and subsequent edge pruning steps. 



  The 61 gene 1st neighbor network of the LE-
based method overlaps with the 
corresponding 56 gene network of the 
ARACNE method by just 5 genes overall 
(and 3 genes in the validated groups). 

  Remark:  ARACNE developers indicate that 
their method does not aim to recover all 
possible edges, but rather a substantially 
enriched candidate set. 

 Differences with respect to ARACNE could 
represent new information, but further 
assessment is required. 



 Parameter Selection 
◦ Target Dimensionality was set to 28, based on 

maximum over DR estimation methods. 
◦ NN and kernel bandwidth (σ) parameters 

were set by running small grid of typically 
applied parameter selections  
  NN = 8,12,16,20  σ = 0.5, 1 

◦  Selected results with best (k-means-derived) 
cluster structure in LE-mapped space: 
  NN = 16   σ = 0.5 





  Analogous network derivation strategy with 
original data and PCA-mapped data did not yield 
strong results.  Percentage thresholds required to 
recover network edges around MYC gene: 

  Unreasonably high thresholds are required in 
original and PCA-mapped spaces. 

  LE appears to produce meaningful distances over 
local network neighborhoods. 

LE-Mapped PCA-Mapped Original Data 

1% > 40% > 50% 



  Phase II: Integrated Testing of Network 
Reconstruction + Possible Extensions 
◦  Target Date: end of March 2011 
◦  Milestones: 

  Integrated testing of network reconstruction 
  Comparison of results obtained using nonlinear dimensionality 

reduction (LE), linear dimensionality reduction (PCA), and original 
data; comparison with leading reconstruction method. 

  Parameter Tuning 
  Possible: Diffusion Maps 

  Very limited implementation 
  Currently does not yield strong results, possibly due to steps taken to 

allow sparse eigenvalue problem. Further work required. 
  Possible: Approximate Nearest Neighbor Algorithm 

  Not implemented due to time constraints, limited motivation with 
manageable run times, and desire to focus on assessing and improving 
structure recovery without introducing potentially confounding factor. 



  Improve Local Network Recovery 
◦ Consider broader measures of gene 

association, more sophisticated kernels. 
◦  Filter edges and prioritize targets using 

mathematical criteria, additional data sources. 
  Further Assessment and Validation 
◦ Consider other known network hubs. 
◦  Broader biological database validation. 
◦ Work with lab collaborators to see if selected 

targets can be biochemically validated. 
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  Selecting and integrating appropriate 
(public domain) software to efficiently 
solve eigenvalue problem. 

 Organizing data structures and operations 
to conserve memory and support 
scalability. 



 Need to solve sparse, symmetric 
eigenvalue problem. 

 Basic BLAS/LAPACK largely emphasize 
dense matrices. 

 Evaluated several C++ packages 
◦  uBLAS (BLAS routines, relatively slow) 
◦ Armadillo++, Eigen (nice, almost MATLAB-like 

interface w/operator overloading, but meager 
support for sparse matrices/eigenproblems) 



 ARnoldi PACKage: Fortran 77 library for 
solving large scale sparse eigenvalue 
problems 

 Used by MATLAB (e.g., eigs function) 
  For symmetric matrices, applies Lanczos 

Algorithm 



 Reverse Communication Interface: 
◦ ARPACK routines do not operate directly on 

matrices 
◦  Instead: work with function defining matrix 

vector product.  Allows matrices to be stored 
in any suitable format (or not at all). 

  Implementation exploits this to represent 
matrices using compact adjacency lists, 
with fast ‘in-place’ operations where 
possible 



 Organized ARPACK interface code, 
compressed matrix classes into 
convenient package, with overloaded 
operators and high-level, template-based 
methods. 

 Basic, re-usable building block which will 
facilitate additional algorithm 
implementations. 



  extern "C" void dsaupd_(int *ido, char *bmat, 
int *n, char *which,int *nev, double *tol, 
double *resid, int *ncv, double *v, int *ldv, 
int *iparam, int *ipntr, double *workd, 
double *workl, int *lworkl, int *info); 

  template<typename T>                      
void sparseSymEigSolve(                           

  const CompressedMatrix<T>& M,             
const Matrix<T>& evecs,                   
const NumVector<T>& evals); 



 Let Tk(x) denote the Euclidean distance 
from a fixed point x to its k-th nearest 
neighbor in the sample of size N. 

  Set 

  Set  

 Average above over k = 6 … 12 
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