
IMAGE DEBLURRING - COMPUTATION OF
CONFIDENCE INTERVALS

VIKTORIA TAROUDAKI
tarvic@math.umd.edu

AMSC Program, University of Maryland, College Park

Advisor: Prof.Dianne P. O’Leary
oleary@cs.umd.edu

Professor, Computer Science Department
and Institute for Advanced Computer Studies

University of Maryland

Fall Semester 2010

Abstract

Pictures that cameras take can be blurred images of the original object. The
restoration- deblurring of the image is not a trivial procedure and it can be very
expensive depending on the size of the image. In this project we are trying to effi-
ciently compute confidence intervals for the digital values that represent the image
and visualize them so that the viewer can distinguish truth from uncertainty.

1

mailto:tarvic@math.umd.edu
mailto:oleary@cs.umd.edu

1 Project Background- Introduction

People always wanted to keep snapshots of their everyday life for reference at a later
time or for research and educational purposes. Cavemen drew on the walls of the
caves using colors made from nature. Later artists painted their houses, graves and
other buildings, objects or paintings with various scenes. More recently, cameras
were invented, first engraving, then analog cameras and at last digital cameras. In
none of these cases is the object represented exactly in the image. But as technology
progresses, the accuracy of the representation increases. Digital cameras give us
very good representations of the true image but due to the procedure that the image
passes through, blurring occurs. This blurring can be caused by the machine errors in
transforming the image into data in the camera and from the background and the way
of taking the picture. Having clear images is not a luxury. Sometimes it is a matter
of life and death, like in surgeries where the doctor needs to know exactly where to
operate, or in weather forecasts.

An image is divided into pixels which have several values which denote the color of
that pixel. A grayscale image, which we will use for simplicity, has one value for each
pixel, an integer in the interval [0, 255]. 0 is the black color and 255 is the white color.
Blurring occurs when the values of the pixels are distorted. In this project, we will
assume that this distortion is caused by a linear transformation from the camera.

We will use the following notation:

Symbol Size Explanation

K m× n Matrix defined through the Point Spread function (PSF) in the
case of a linear problem

X Original Clear Image
x n× 1 Vector containing the values corresponding to the pixels of

the image X
B The blurred image we measure
b m× 1 Vector which contains the values of the pixels of the

blurred image B
e m× 1 Noise Vector

With the above notation, the model of the blurred image is described by the equation:

b = Kx+ e.

In general, the goal is given the vector b and the matrix K and also given a distribution
for the noise such that the mean value is 0 and the variance is a nonsingular matrix

2

S2 , we need to compute confidence intervals (i.e. intervals in which the values of the
object we calculate fall into the intervals with a certain confidence) for the quantities
ϕ∗
k = wTk x for k = 1, 2, . . . , p , where wk are given vectors. If wk is a column from the

identity matrix, then we obtain a confidence interval for a single pixel.

Two different types of confidence intervals are of interest.

Definition 1 The one-at a time confidence intervals bound each ϕ∗
k individually proba-

bility α (α%confidence).

Pr{lk ≤ ϕ∗
k ≤ uk} = α, k = 1, 2, . . . , p

Definition 2 The simultaneous confidence intervals bound all the ϕ∗
k simultaneously

with a probability greater than α .

Pr{lk ≤ ϕ∗
k ≤ uk, k = 1, 2, . . . , p} ≥ α

O’Leary and Rust [?] have proven the following theorems.

Theorem 3 Suppose that the noise is normally distributed, and that x̂ is an unbiased
estimate of the true solution x. Then, given α in (0, 1), there is a 100α% probability that
the true value of wTk x is contained in the interval [lk, uk] where

lk = minx{wTk x : ‖K(x− x̂)‖2S = κ2}
and

uk = maxx{wTk x : ‖K(x− x̂)‖2S = κ2},
where ‖K(x− x̂)‖2S = [K(x− x̂)]TS−2[K(x− x̂)] and κ is such that α =

∫ κ
−κ n(x; 0, 1)dx

where n(x; 0, 1) is the normal distribution of x with mean value 0 and variance 1.

Since we know that the true pixel values lie between 0 and 255, we want to use this
information to reduce the length of the confidence intervals.

Theorem 4 With the same assumptions as before and also assuming that x is nonneg-
ative and less than 255, as well as that the matrix S is nonsingular and symmetric, the
computation of the lower and upper bounds of the confidence intervals have also been
done. In [?] we are given that: "Under the above assumptions, the probability that ϕ is
contained in the interval [lk, uk] is greater than or equal to α where

lk = min{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ x ≤ 255}

and
uk = max{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ x ≤ 255},

rank(K) = q ,
∫ γ2
0
χ2
q(ρ)dρ = α, r0 = minx≥0‖Kx − b‖2S ,µ2 = r0 + γ2 and χ2

q is the
probability density function for the chi-squared distribution with q degrees of freedom".

3

Other tools like those using Chebyshev’s Inequality are useful for problems where the
noise is not normally distributed, but this is not the main purpose of this project
and so it will not be examined here unless there is some more time at the end than
expected.

2 Approach

2.1 Point-Spread Function and Blurring Matrix K

In general, the matrixK can be experimentally measured using point spread functions
for each one of the pixels of the original image. An easy way to do this is by constructing
an artificial image which contains only one white point (of value 255) in the target
pixel, say the (i, j) pixel of the image X, or the (j − 1) · m + i element of the vector
x corresponding to that clear image and black anywhere else (value 0). We consider
this as a clear image and we blur it the same way as we would blur the original image
(or the vector corresponding to the original). Then, we measure the blurred vector b
which corresponds to the blurred image we take corresponding to the artificial image.
This vector b is going to be the (j − 1) ·m+ i column of the matrix K and it’s a vector
corresponding to the Point Spread Function of the blur for the (i, j) pixel of the image
X, or the (j − 1) ·m+ i element of the vector x.

If we know that the blur is spatially invariant, and it usually is as it affects only
neighboring points of the source point, then having measured only one column of the
blurring matrix K is enough to determine the whole matrix as the rest of the columns
of K are simply going to be some displacement of that one column.

If the blur is spatially variant, we need to move the source point to all the pixels of the
image and measure the blur to compute all the columns of the blurring matrix but
we will not consider this case in this project. For more information, someone could
consult [?].

For the purposes of this project, the blurring matrixK was constructed using spatially
invariant blur and Gaussian Point Spread Functions. As usually these Point Spread
Functions are of much smaller size than the original image. We used Point Spread
Functions of size 5× 5 and some parameters s1 = s2 = 3. So, for k, l = 1 . . . 5, we get
that

PSF (k, l) = exp
(
− 1

2

(k − c1)2

s21
− 1

2

(l − c2)2

s22

)
where c1 and c2 are the coordinates of the center of the Point Spread Function which

4

for a Point Spread Function which corresponds to the pixel (i, j) are equivalent to i
and j respectively. Appropriate displacement follows.

An example of this procedure is given for an image of size 5 × 5 and a Point Spread
Function of size 3 × 3. (The size of the PSF in this example is different from the one
used in the codes of the project).

Let the PSF array be a matrix of the form:
× × ×
× × ×
× × ×

where the red denotes the center of the matrix and the × denotes non zero elements.
Then the Point Spread Function for the first pixel of the image will affect only the pixels
which are immediate neighbors. That means that the blurred image of the artificially
made having a white color (255) at the first pixel and black (0) everywhere else will

look like

× × 0 0 0
× × 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

and reshaping this, column by column, we get the first column of the blurring matrix
K.

As MatLab is column oriented, we count the pixels column by column, so the second
pixel is the one which is in the second row but first column.

So, for the second pixel, the blurred image will look like:

× × 0 0 0
× × 0 0 0
× × 0 0 0
0 0 0 0 0
0 0 0 0 0

and reshaping this, column by column, we get the second column of the blurring
matrix K.

If we do this for all the pixels of the image we will end up having the tri-block-diagonal
blurring matrix K shown in figure ??.

2.2 Blurring an Image and Constructing Noise

When the blurring matrix K has been computed, then the clear blurred image, i.e.,
the blurred image without noise is simply the array which corresponds to the product

5

Figure 1: Blurring Matrix K for an image of size 5× 5 with Point Spread Functions of
size 3× 3.

vector: Kx. But in order to be able to use the theory of the confidence intervals, we
need to add noise to the clear blurred image so that we can actually have the standard
deviation matrix S of the noise which also needs to be symmetric and non-singular.
To do this, we construct a random vector, e, of same length as the size of the original
image (we use square blurring matrices throughout the project) with elements with
mean 0 and without loss of generality, standard deviation a specified number sdv.
The standard deviation matrix in this case is the identity matrix multiplied by the
number sdv which is apparently symmetric and invertible. The noisy blurred image
thus corresponds to the sum b = Kx+ e.

2.3 Computing the µ2

By theorem ??, knowing the matrices K and S of the blurring function and the
standard deviation of the noise as well as the blurred vector b, we can easily find what
the value for q = rank(K) is. Also using the inverse of the χ2 distribution we can
find what the γ2 is when

∫ γ2
0
χ2
q(ρ)dρ = α with α being the desired probability that

defines the confidence intervals. For the purposes of this project, we use α = 0.95. In
addition, we can compute the minimum of a norm: r0 = minx≥0‖Kx− b‖2S and finally

6

add those two things up to get µ2 = r0 + γ2.

The γ2 is computed in MatLab using the command chi2inv(1-a,q). the minimization
of the norm, we can use either the lsqlin command of MatLab or the quadprog which
use linear least squares and quadratic programming respectively with the constraints
that the image imposes. To do this, the first thing we need to do is to tranform the
S-norm to the 2-norm that MatLab can handle. Thus,

‖Kx−b‖2S = (Kx−b)TS−2(Kx−b) = (S−1(Kx−b)T)(S−1(Kx−b)) = ‖S−1Kx−S−1b‖2

The matrices and vectors manipulated by lsqlin are the same of the problem. For
quadprog, we need to modify the matrices and vectors to get the appropriate H and f
that it takes as input.

2.4 Lower and Upper Bounds of Confidence Intervals

So, now with this information, we need to identify the confidence intervals whose
bounds are given by the following equations:

lk = min{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ x ≤ 255}

uk = max{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ x ≤ 255}.

O’Leary and Rust ([?]) have proven the following theorem:

Theorem 5 The values lk and uk are defined by the two extreme roots of L(ϕ)−µ2 = 0
where L(ϕ) = minx{‖Kx− b‖2S : x ≥ 0, wTk x = ϕ}

The solution of the minimization of a norm problem can be solved in MatLab calling
the lsqlin or the quadprog functions and transforming the data each time as described
in the previous section. The main idea here was to make a function of ϕ that finds the
minimum of the norm for all x with the constraints of the image, i.e., 0 ≤ xi ≤ 255 for
all i. The output of this, the minimum norm, would be a function of ϕ as well which
we would like to set equal to the parameter µ and find the zeros. This would give us
values for ϕ where ϕ = wTx. If, as in this project, w are the columns of the identity
matrix, then for each one of these, we get the value of one pixel. The lower and upper
bounds of the confidence intervals will then give us the lower and the upper limits of
the value of each one of the pixels with the probability that we used to compute the µ.

7

2.5 Sub-images and Sub-matrices

In this project we will use a function K which will be given by a square matrix. This
matrix can be very large depending on the size of the image. To reduce the expense,
we need to partition it into sub-matrices and so the whole problem into p smaller
problems which can be solved individually. These sub-problems are much easier to
solve. This will be done using parallel computing.

Let’s consider again the problem: b = Kx where K is the n × n PSF matrix, x is
the vector corresponding to the original image and b the vector corresponding to the
blurred image. If we want to make a sub-problem of size r × c (r rows and c columns
on the sub-image defining the sub-problem), we proceed as follows. Using a matrix
E with n rows and rc columns, with columns that are unit vectors corresponding to
the pixels in the sub-image, and a matrix Ē that corresponds to the other n− rc unit
vectors we have:

ET b = ETKx = (ETK[EĒ])
([ET

Ē

]
x
)

= ET [K̂sK̂t]
[xs
xt

]
= [KsKt]

[xs
xt

]
= Ksxs+Kt

where xs is the vector corresponding to the sub-image of the original image. Ignoring
the second term of the right hand side we have that bs = Ksxs which is a sub-problem
we need to solve. E is a matrix of unit vectors that we choose but in this project we will
use the matrix which is part of the identity matrix corresponding to the sub-problem,

i.e., if we have xs =
(x1
x2

)
, then we will take E to be the first two columns of the identity

matrix with size n× n so that the matrix Ks is going to be 2× 2.

The methods used in the introduction can now be applied to these smaller problems.
We compute the confidence intervals for these. To verify that the computed intervals
are correct, we can take a blurred image and deblur it. We can have many different
samples of deblurred images. Then we can display these deblurred images and see
if see if the values of the pixels of the deblurred image are in the confidence interval
with a probability that is defined by the construction of the confidence interval.

3 Implementation

The implementation of the codes will be done in MatLab. There are some already de-
veloped MatLab programs that may be used and are included in the Image Processing
toolbox. These are mostly input, output and display tools. Some commands of this

8

type are the imshow(A) which displays the image A, the im2double(A) which converts
the image A from uint8 to double etc. Some of these commands can be replaced by
others which are provided by the general MatLab but then, different operations should
be done to obtain the same result. For example, the command double(A) also trans-
forms a uint8 image to a double image but then the values are from 0 to 255 whereas
the values from the im2double(A) are from 0 to 1. The problem then is what we use to
turn these values back into an image. When we are dealing with a grayscale image,
then imshow(A) returns white for every value that is greater or equal to 1. That means
that we will either use the floating point arithmetic from 0 to 1 to visualize the image
or we will need to change accordingly the integer values. Similar outcomes come from
the displaying tools of MatLab image(A) and imagesc(A). Appropriate values need to be
used and they do not always coincide.

The problem involves matrices and vector operations which are easy to be handled
using the available linear algebra tools of MatLab. These matrices and vectors can
be of very small sizes or of big sizes depending on the original image and its size.
Because of that, particular attention was used so that MatLab can control relatively
big problems. For this, we had to take into account how operations are done in MatLab
and how matrices and vectors are allocated in memory. MatLab cannot handle every
size of initial image though. The limit is set by the MatLab memory. So one goal was
to minimize as much as possible the variables that are saved but without having to
recompute variables or other vectors and matrices all the time so that we reduse the
running time and any machine and floating point arithmetic errors that may come up.

The problem can also be divided into smaller in size problems which can be solved
more easily. If the blur is spatially invariant, these sub-problems involve the same
matrix. These sub-problems can be solved using parallel computing. So even if
MatLab’s optimization tools may be used, they will need to be modified so that they
can also be used in parallelizing the problem. Parallel computing will be useful to
handle bigger images in about the same time that MatLab needs for a smaller image
or to have results much faster for images of size of the same order in parallel and in
MatLab. This will be attempted next semester as the project schedule suggests.

4 Databases

A big image database is the USC-SIPI Image Database which belongs to the Signal and
Image Processing Institute of the University of Southern California and can be accessed
here: http://sipi.usc.edu/database/. The database includes grayscale and
color images saved in TIFF- format. They are of different sizes, 256 × 256, 512 × 512
and 1024 × 1024. The grayscale pictures have 8 bits/ pixel whereas the color images

9

http://sipi.usc.edu/database/

have 16 bits/pixel.

Also, a variety of image databases can be found through the Image Processing Place by
the link: http://www.imageprocessingplace.com/root_files_V3/image_
databases.htm

The images that have been used so far for the purpose of the project are grayscale
images of various sizes. For validation, it was better to use small images that need
less memory allocation and less running time. Bigger images produce huge blurring
matrices that need care when used in MatLab. For this reason, the images were of size
16×16. The maximum size of the images that can be used by the code are determined
by the memory that MatLab can handle.

An example of a test image is the firework image (figure ??) which was cropped (figure
??) and used at the initial steps of validating the code.

Figure 2: The original 3648× 2736 image

Figure 3: The cropped 16× 16 image

10

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

5 Validation

In order to validate the code, we need to run the program using data which when
used, give us a known result. As data, we mean blurred images that we know their
origin, i.e., the clear image. In detail, we take some images which are considered as
the clear images. The confidence intervals that we compute should give us images that
approximate these clear images. Then, we blur these images to obtain the input in our
code. Noise is also to be added to the blurred images. Then, deblurring of the images
takes place. We also compute the confidence intervals using our code and we count
how many samples fall within the intervals. As the same code is going to be used to
compute the 95% confidence intervals for all the pixels in the image, it is enough that
close to 95% of the pixel values of the same image are between the computed values.
If not, we should check every part of the code and the correspondence of the theory
as well as some special circumstances which may be developed from the image and
affect the outcomes. The images that are to be used are taken from the databases
mentioned above or are cropped images from other bigger images that can also be
obtained from these databases. For the moment, we use images of size 16×16. Bigger
images were also used but the running time indicated that smaller images were better
for validation and tests.

Also, to validate the code in general, each of its parts was run independently with
input artificially made data so that the expected results are known.

More specifically, to validate the construction of the blurring matrix, the spy command
of MatLab was used to visualize the matrix and verify that the structure of the blurring
matrix was the anticipated one. In addition, the clear image, the true blurred image
and the blurred image infected by noise were shown to see the differences between
them and the affect of the blurring matrix. During the construction, the spy command
was also used for the Point Spread Function and the Embedded Point Spread Function
matrix. To compute the µ2 we needed to compute the rank of the blurring matrix, to
minimize a norm and find the γ2 of the χ2 cumulative distribution function. γ2 can
be computed by MatLab using the command chi2inv given the rank of the blurring
matrix and a probability α. The result of this can be easily verified using tables of the
χ2 distribution. Using a known matrix, the verification of the rank of the matrix is
easy as we can use a matrix of a desired rank. Finally, the minimization of the norm
can be verified using a vector that is simply modified by the product of the matrix we
have and the solution vector that we want. The last part of the code is finding the
lower and upper bounds of the confidence intervals. This can only be computed when
we have constructed and verified all of the above parts of the code. We use a known
initial image and at the end we expect to find confidence intervals that contain the

11

true value of the pixels of the image approximately in 95% of the cases.

Whenever something of the above was not as expected, we went back to the theory to
confirm the method used or to find the correct method and looked at each part of the
code to verify that the inputs and outputs that we had were the correct and that the
theory was implemented correctly. After all the necessary changes, the code was run
again with the known data and went over the validation procedure again till the point
that the code needed no more changes.

6 Testing

A good code should give the right results in a relatively short time without much cost
in memory. The time may depend on the size of the image, its format and the way
that the values of the pixels are stored. The same affects the cost in memory. Also, for
various types of blurring (Point Spread Function) the time for the same image may be
different. All of the above are going to be studied and compared. For the moment, the
behavior of different sizes of Point Spread Functions has been studied an what is the
image that the lower bounds produce as an approximation to the initial image given
the blurred image, the blurring matrix K and the standard deviation of the noise.

In figure ?? there is the figure of the original 16 × 16 cropped fireworks image (left)
with its clear blurred image (middle) and the noisy blurred image (right). The blurring
occurred using the Gaussian Point Spread Function of size 5× 5.

Figure 4: Original image, Clear Blurred Image, Blurred Image with noise

12

It is not difficult to see that the original image has been faded but still it is clear where
the dark or bright color is.

On the contrary, when we use the 7 × 7 image (left) in figure ?? which was blurred
using a Gaussian PSF function of size 5× 5 (middle image) and noise was also added
to it (right image), the new distrorted image doesn’t remind the initial one. The original
image had only the middle pixel white and everything else black but the blurred image
is more close to a big dark grey square with a black frame.

Figure 5: Original image, Clear Blurred Image, Blurred Image with noise

Nevertheless, the restored image (right image in ??) is a very good approximation of
the original one (left).

To further examine this behavior, a smaller test image was constructed. The domino
image in figure ?? is an image 2 × 2. That means that the PSF function of size 5 × 5
would exceed the size of the image. So we constructed several PSF functions of sizes
1× 1, 2× 2, 3× 3 4× 4 and 5× 5. Only the first 3 are shown below as they illustrate
the behavior for all the PSF matrix sizes.

It is obvious that the blurred image is more close to the original when the PSF is of
smaller size. In particular, in the first case, the blurred image is the original one and
the only alteration comes from the noise which is set to have a standard deviation of
0.01. Also, as long as the PSF function has size less or equal to the size of the original
image, the restored image is a good approximation. On the other hand, when the PSF
function exceeds the size of the original image, then the restored image does not give
us an image like the original one.

13

Figure 6: Original Image, Recovered Image

7 Project Schedule

September Study the literature, get familiar with the image toolbox and
the commands of MatLab for images, write and present project
proposal.

October Study the literature- understand all the aspects of
the problem- write code.

November Write the code and validate it. Prepare and complete
Midyear Presentation

Early December Write midyear report.

Late January Test various images, begin to exercise on parallel computing.

February Work on the parallel part of the code.

March Test various images, validate and correct code if necessary.

April Validate and correct code if necessary, write final report.

May Present final report.

14

Figure 7: Original image, Clear Blurred Image, Blurred Image with noise

Figure 8: Original Image, Recovered Image

15

Figure 9: Original image, Clear Blurred Image, Blurred Image with noise

Figure 10: Original Image, Recovered Image

16

Figure 11: Original image, Clear Blurred Image, Blurred Image with noise

Figure 12: Original Image, Recovered Image

17

8 Milestones

End of September Having a good understanding of the literature,
having used MatLab image toolbox to get familiar with it,
having prepared and presented the project proposal.

End of October Having finished studying the basic literature,
having set a database- having started writing the code.

End of November Having finished the basic writing of the code.
(Ideal: Having finished the MatLab part of the code).
Having validated it and corrected it if needed. Prepare
and Present the work done throughout the semester

Middle of December Having written the midyear report.

End of January Having tested several images,
getting acquainted with parallel programming.

End of February Having chosen open MP or MPI and having worked
on the parallel computing part of the code.
(Ideal: having finished with parallel programming)

End of March Having tested various images, having validated the code.
If in need, having corrected the code
(Ideal: by the end of March the code works producing the
correct results in little time)

End of April Having an efficiently working code. Having written
the biggest part of the final report.

Middle of May Having presented the project and turned in code,
final report and validation results.

During September, I studied the literature to understand the problem. After meeting
with both my advisor and the instructors, I wrote a first draft of the project proposal
which was soon finalized to be used for the project proposal presentation. I was also
exposed to the Image Processing Toolbox of MatLab (Simple codes for creating and
transforming images).

After presenting the project proposal, I continued studying the literature and I started

18

writing the parts of the code. Till the beginning of November, the code was written and
only validation was needed. Validation started at that point and correction of various
parts of the code were corrected or optimized for better efficiency of the code.

References

[1] Tony F. Chan and Jianhong (Jackie) Shen, "Image Processing and Analysis",SIAM,
Philadelphia, 2005

[2] Martin Hanke, James Nagy and Robert Plemmons, "Preconditioned Iterative Reg-
ularization For Ill-Posed Problems", IMA Preprint Series n 1024, 1992

[3] Per Christian Hansen, James G. Nagy and Dianne P. O’Leary, "Deblurring Images
Matrices, Spectra, and Filtering", SIAM, Philadelphia, 2006

[4] Richard A. Johnson, Gouri K. Bhattacharyya, "Statistics: Principles and Methods",
John Wiley & Sons, Inc., 2006

[5] Jodi L. Mead, Rosemary A Renaut, "Least squares problems with inequality con-
straints as quadratic constraints",Linear Algebra and its Applications, 432, 2010,
p. 1936–1949

[6] James G. Nagy and Dianne P. O’Leary, "Restoring Images Degraded By Spatially-
Variant Blur", SIAM J. Sci. Comput., Vol 19, No 4, 1998, p. 1063-1082

[7] James G. Nagy and Dianne P. O’Leary, "Image Restoration through Subimages and
Confidence Images", Electronic Transactions on Numerical Analysis, 13, 2002, p.
22-37

[8] Dianne P. O’Leary and Bert W. Rust, "Confidence Intervals for inequality con-
strained least squares problems, with applications to ill-posed problems", SIAM
Journal on Scientific and Statistical Computing, 7, 1986, p. 473-489

[9] Bert W. Rust and Dianne P. O’Leary, "Confidence intervals for discrete approxima-
tions to ill-posed problems", The Journal of Computational and Graphical Statis-
tics, 3, 1994, p. 67-96

19

