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Introduction: The image

@ An image is an array of pixels

e For a grayscale image, these values are in the interval [0,255]
0= black
255 =  white
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Introduction: The problem

o Notation:
] Symbol \ Size \ Explanation
K m x n | Matrix defined through the Point Spread
function (PSF) in the case of a linear prob-
lem
X Original Clear Image
X n x 1 | Vector containing the values corresponding
to the pixels of the image X
B The blurred image we measure
b m x 1 | Vector which contains the values of the pix-
els of the blurred image B
e m x 1 | Noise Vector
e b=Kx+e
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Introduction: Confidence intervals

Two different types of confidence intervals are of interest.

Definition

One-at-a-time confidence intervals bound each ¢y indvidually with
probability a (a%confidence).

Pr{ilk <o <w}=a,k=1,2,...,p

Definition

Simultaneous confidence intervals which bound all the ¢ simultaneously
with a probability greater than «.

Prilk <ok <u,k=1,2,...,p} >«
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Introduction: Confidence intervals
O’Leary and Rust have proven that:

Theorem

Supposing that the noise is normally distributed with mean zero and
standard deviation a matrix S nonsingular and symmetric, and also
assuming that x is nonnegative and less than 255, then the probability
that oy = Wka is contained in the interval [ly, uy] is greater than or equal
to o where

Iy = min{w] x : ||[Kx — b||s < 11,0 < x < 255}

and
e = max{wy x : |Kx — b||s < 1,0 < x < 255},

2
rank(K) = q ., [ x3(p)dp = a, ro = mine>ol|Kx — b||5 .p? = ro ++°
and Xf, is the probability density function for the chi-squared distribution
with q degrees of freedom.

v
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Approach: Point Spread Function, (PSF)

@ The blurring matrix K is defined by the Point Spread Functions.

@ A Point Spread Function is the function that blurs an image of a
single white point.

@ Example: image of single white point 5 x 5

white pixel: [ white pixel: (3,3) white pixel: (5,4)

o If the blur is spatially invariant(affects only neighboring pixels), then
having measured only one cqumn of the blurring matrix K is enough
to determine the whole matrix.
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Approach: Gaussian Point Spread Function

The Point Spread Functions are constructed as Gaussian of size 5 x 5:

L(k—c)? 1(/—c)?
PSF(k,I):exp(—E( 2 ) —5( 2 ))

for k,/ =1...5, where s; = s, =3 and ¢; and ¢, are the coordinates of
the center of the Point Spread Function.
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Approach: Construction of the blurring matrix

Image 5 x 5, PSF 3 x 3

PSF array:

X X X

For the pixels (1,1) and (2,1), the PSFs will be of the form:

X
X
0
0
0

X
X
0
0
0

0
0
0
0
0

o O O o

0

O O O O o

X
X
X
0

0

o X X X

0

0
0
0
0
0

0
0
0
0
0

0

o O O O

Reshaping these matrices into vectors column by column, we get the first

two columns of the blurring matrix K.
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Approach: The blurring Matrix K

If we do this for all the pixels of the image we will end up having the

block-tridiagonal blurring matrix K shown in the figure below.

20

2%

Figure: Blurring Matrix K for an image of size 5 x 5 with Point Spread Functions

of size 3 x 3.
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Approach: Including noise

@ Blurred image without noise Kx, where K is the blurring matrix and x
the vector of the initial image.

@ In order to use the theory of the confidence intervals, we need the
standard deviation matrix S of the noise symmetric and non-singular.
To construct the noise, we use a random vector, e, with elements
with mean 0 and standard deviation a specified number sdv. The
standard deviation matrix in this case is the identity matrix multiplied
by the number sdv, apparently symmetric and invertible.

@ The noisy blurred image thus corresponds to the sum b= Kx + e.
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Approach: Computation of 12

@ By the theorem of Rust and O’Leary, we need to compute:
Iy = min{w, x : ||[Kx — b||s < 11,0 < x < 255}

and
ug = max{wy x : |Kx — b||s < p,0 < x < 255},

2 .
where [ x5(p)dp = a, ro = ming<x<ass||Kx — b5, p* = ro +*

and X<27 is the probability density function for the chi-squared
distribution with g degrees of freedom, g = rank(K).

@ To compute the minimum of the norm ry, we first transform the
S-norm to the 2-norm that matlab can handle. Thus,

|Kx—b||%2 = (Kx—b)TS7?(Kx—b) = (S} (Kx—b)T)(S 1 (Kx—b)) =

= || Kx — S71b|?
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Approach: Computation of 12

@ g = rank(K) can be easily computed using the SVD decomposition of
the blurring matrix.

@ Using g and the desired probability that defines the confidence
intervals, ¥2 can also be computed by Matlab or by interpolation of
the values of the tables of the x? distribution. (For the purposes of
this project, we use o = 0.95.)

@ In addition, we can compute the minimum of a norm:
ro = ming<x<ass||Kx — b||_2§ using a least squares method with
inequality constraints or by quadratic programming.

o Finally we add those to get u? = rg + 2.
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Approach: Confidence Intervals

O'Leary and Rust have proven the following theorem:

The values Iy and uy are defined by the two extreme roots of
L(p) — u? = 0 where L(p) = min {||Kx — b[|% : 0 < x < 255, w,] x = ¢}

If we choose w to be the columns of the identity matrix, then for each one
of these, we get the value of one pixel. The lower and upper bounds of the
confidence intervals will then give us the lower and the upper limits of the
value of each one of the pixels with the probability that we used to

compute the p.
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Databases

@ Grayscale images of various sizes.
For validation, better to use small images.
The maximum size of the images that can be used by the code are
determined by the memory that matlab can handle.

@ An example of a test image is the firework image (left) which was
cropped (right) and used at the initial steps of validating the code.

Figure: original 3648 x 2736 image, cropped 16 x 16 image
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Validation

@ Blurring matrix — Small image and spy command of matlab to
visualize it and see if it affects the correct pixels.
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Validation

@ Blurring matrix — Small image and spy command of matlab to
visualize it and see if it affects the correct pixels.

@ Blurred image without and with noise— show the original and the
two blurred images using the imshow command of the Image
Processing Toolbox of Matlab.
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Validation

@ Blurring matrix — Small image and spy command of matlab to
visualize it and see if it affects the correct pixels.

@ Blurred image without and with noise— show the original and the
two blurred images using the imshow command of the Image
Processing Toolbox of Matlab.

o u?
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Validation

Blurring matrix — Small image and spy command of matlab to
visualize it and see if it affects the correct pixels.

Blurred image without and with noise— show the original and the
two blurred images using the imshow command of the Image
Processing Toolbox of Matlab.

12

g=rank(K) — use of a matrix with known rank

v?—chi2inv command of matlab given the rank of the blurring matrix
and a probability o. (easily verified using tables of the x?
distribution).

ro = ming<x<2s5||Kx — b||% — use of a vector slightly modified by the
product of the matrix we have and the solution vector that we want.
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Validation

Blurring matrix — Small image and spy command of matlab to
visualize it and see if it affects the correct pixels.

Blurred image without and with noise— show the original and the
two blurred images using the imshow command of the Image

Processing Toolbox of Matlab.

12

g=rank(K) — use of a matrix with known rank

~2—chi2inv command of matlab given the rank of the blurring matrix
and a probability o. (easily verified using tables of the x?
distribution).

ro = ming<x<2s5||Kx — b||% — use of a vector slightly modified by the
product of the matrix we have and the solution vector that we want.

Bounds of the Confidence intervals — Known initial image. Expect to
find confidence intervals that contain the true value of the pixels of
the image approximately in 100a% of the cases.
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Relative size of PSF. Size of image change

Following is the figure of the original 16 x 16 cropped fireworks image
(left) with its clear blurred image (middle) and the noisy blurred image

(right). The blurring occurred using the Gaussian Point Spread Function
of size 5 x 5.
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Relative size of PSF. Size of image change

When we use the following 7 x 7 image (left) which was blurred using a
Gaussian PSF function of size 5 x 5 (middle) and noise was also added to
it (right), the new distorted image doesn’t remind the initial one.
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Relative size of PSF. Size of image change

The restored image (right) is a very good approximation of the original
one (left).
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Size of PSF change. The 2 x 2 domino image
PSF size 1 x 1

"n "n "n
"n s
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Size of PSF change. The 2 x 2 domino image

PSF size 2 x 2
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Size of PSF change. The 2 x 2 domino image
PSF size 3 x 3
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Next Steps

© Revise the code
@ Run the code for bigger images
© Develop a parallel code

@ Use sub-images and sub-matrices
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