IMAGE DEBLURRING - COMPUTATION OF CONFIDENCE INTERVALS

VICTORIA TAROUDAKI Prof. Dianne P. O'Leary

UNIVERSITY OF MARYLAND

MAY 3, 2011

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

MAY 3, 2011 1 / 40

.

Outline

Introduction

- Project Background
- 3 Approach
 - Implementation
 - 5 Database

- 8 Schedule-Milestones
- 9 Deliverables

< 回 > < 三 > < 三 >

Blurred Images are everywhere

(a) Actual scene

(b) Blurred Image

(c) Ideal recovered image

The image

- An image is an array of pixels
- For a grayscale image, these values are in the interval [0,255]
 0 = black
 255 = white

- ∢ ∃ ▶

The problem

• Notation:

Symbol	Size	Explanation				
K	$m \times n$	Matrix defined through the Point Spread				
		function (PSF) in the case of a linear prob-				
		lem				
X		Original Clear Image				
X	$n \times 1$	Vector containing the values corresponding				
		to the pixels of the image X				
В		The blurred image we measure				
b	m imes 1	Vector which contains the values of the pix-				
		els of the blurred image B				
е	m imes 1	Noise Vector				

•
$$b = Kx + e$$

-

・ロト ・ 日 ト ・ 田 ト ・

PSF-Blurring matrix

- The Point Spread Function (PSF) used is the Gaussian.
- The blurring matrix is block diagonal with so many diagonal blocks as the number of columns of the PSF matrix.
- Example for a 3×3 PSF with a 5×5 image:

(e) Blurring matrix of an image 5×5 using a PSF 3×3

Computation of Confidence Intervals for Images blurred by

b=Kx+e

-

• • • • • • • • • • • •

Confidence Intervals

Definition

One-at-a-time confidence intervals bound each φ_k individually with probability α (α %confidence).

$$\Pr\{I_k \leq \varphi_k \leq u_k\} = \alpha, k = 1, 2, \dots, p$$

Definition

Simultaneous confidence intervals which bound all the φ_k simultaneously with a probability greater than or equal to α .

$$\Pr\{l_k \leq \varphi_k \leq u_k, k = 1, 2, \dots, p\} \geq \alpha$$

→ ∃ →

Assumptions- Notation

Assumptions

- Noise (e) normally distributed with mean zero and standard deviation S. $(e \sim \mathcal{N}(0, S^2))$
- S nonsingular and symmetric

Notation

- *Ib_i* The lower bound of the confidence interval corresponding to the pixel *i*
- *ub_i* The upper bound of the confidence interval corresponding to the pixel *i*

Serial Algorithm - The image as a Whole

Algorithm

for each pixel i of the image

solve
$$min\{w_k^T x : \|Kx - b\|_S \le \mu, 0 \le x \le 255\}$$
 for the lb_i
solve $max\{w_k^T x : \|Kx - b\|_S \le \mu, 0 \le x \le 255\}$ for the ub_i

end

/□ ▶ 《 ⋽ ▶ 《 ⋽

Parallel Algorithm - The image as a Whole

Algorithm

parfor each pixel i of the image

solve $min\{w_k^T x : ||Kx - b||_S \le \mu, 0 \le x \le 255\}$ for the lb_i solve $max\{w_k^T x : ||Kx - b||_S \le \mu, 0 \le x \le 255\}$ for the ub_i

end

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

▲ ▲ 볼 ▶ 볼 ∽ 즉 MAY 3, 2011 11 / 40

▲圖▶ ▲ 圖▶ ▲ 圖▶

Main problem of the full image approach

- For each one of the pixels in the image we use iterative methods for the minimization (or maximization) of the norms.
- These methods use the blurring matrix K which for an n × n image is of size n² × n² (e.g. for a 256 × 256 image, K is of size 65536 × 65536).

To deal with this problem, we use another approach, that of the sub-images and the sub-matrices.

Construction of Sub-Images

 x_s the sub-image of desirable size x_b the boundary of appropriate size

Notation for the sub-problems

• Notation:

Symbol	Size	Explanation					
Ks	$\mathit{rc} imes \mathit{rc}$	Part of the blurring matrix K that corre-					
		sponds to the subimage					
Xs	r × c	Original Clear Sub-Image					
Xs	$\mathit{rc} imes 1$	Vector containing the values corresponding					
		to the pixels of the sub-image X_s					
Xt		The vector of values of the rest of the pixels					
		in the image					
K _t		Part of the blurring matrix K that corre-					
		sponds to x_t					
bs	$\mathit{rc} imes 1$	Vector which contains the values of the pix-					
		els of the blurred image B_s					

• $b_s - K_t x_t = K_s x_s \leftrightarrow b_{st} = K_s x_s$

3

< /□ > < 三

Serial Algorithm - Use of Sub-Images

Algorithm

for each sub-image s

for each pixel i of the sub-image

solve
$$min\{w_k^T x_s : ||K_s x_s - b_{st}||_S \le \mu, 0 \le x_s \le 255\}$$
 for the lb_i
solve $max\{w_k^T x_s : ||K_s x_s - b_{st}||_S \le \mu, 0 \le x_s \le 255\}$ for the ub_i

end

end

/□ ▶ 《 ⋽ ▶ 《 ⋽

Parallel Algorithm - Use of Sub-Images

Algorithm

for each sub-image s

parfor each pixel i of the sub-image

solve
$$min\{w_k^T x_s : \|K_s x_s - b_{st}\|_S \le \mu, 0 \le x_s \le 255\}$$
 for the lb_i
solve $max\{w_k^T x_s : \|K_s x_s - b_{st}\|_S \le \mu, 0 \le x_s \le 255\}$ for the ub_i

end

end

-

► < ∃ ►</p>

Database

Gray-scale images of various sizes.

Examples of test images:

Example of sub-images

(f) 4 16 \times 16 sub-images

(g) 8 16 \times 16 sub-images

A⊒ ▶ < ∃

Validation

For α % confidence interval with (0 < α < 100) the validation is done by multiple runs of the code using the same data and values of parameters.

Validation of the code computing Simultaneous Confidence Intervals

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

MAY 3, 2011 19 / 40

"Eiffel Tower 32", subimages 4×4

MAY 3, 2011 20 / 40

(日) (同) (三) (三)

"Eiffel Tower 32", subimages 8×8

(日) (周) (三) (三)

Boundary

 Formula to compute the number of pixels in the boundary (BP) of a subimage given its size (n × n) and the size of the PSF (p × p) is the following

$$BP = 4\left(n + \frac{p-1}{2}\right)\frac{p-1}{2} = 2(p-1)\left(n + \frac{p-1}{2}\right)$$

• Table with the number of the pixels on the boundary for several subimage and PSF sizes.

PSF size Subimage Size		3	5	7	9	11	13
16	4×4	20	48	84	128	180	240
64	8×8	36	80	132	192	260	336
256	16×16	68	144	228	320	420	528
1024	32×32	132	272	420	576	740	912
4096	64×64	260	528	804	1088	1380	1680

Validation

(h) Histogram with subimages $4\times4~$ (i) Histogram with subimages 8×8

Figure: Validation Histograms.

Final Presentation AMSC 664

"stripes 8" image, fp

MAY 3, 2011 24 / 40

"vertical line 8" image, fs

■ ◆ ■ ▶ ■ つへへ MAY 3, 2011 25 / 40

イロト イポト イヨト イヨト

"Capitol 32" image, 4s

.2

twinkled image

upper bounds image

lower bounds image

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

 ▲ ■ ▶ ■
 ♡ ९ ○

 MAY 3, 2011
 26 / 40

・ロン ・四 ・ ・ ヨン ・ ヨン

"Capitol 64" image, 4p

noisy bluned image, size(PSF)#3

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

▲ ▲ ■ ▶ ■ ∽ ९ ↔ MAY 3, 2011 27 / 40

・ロン ・四 ・ ・ ヨン ・ ヨン

"La Rochelle 64" image, 4s and 8p

upper bounds image

noisy blurred image, size(PSF)#3

Image: A (□)

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

Size of image vs running time

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

MAY 3, 2011 29 / 40

イロト イヨト イヨト イヨト

Size of image vs running time (8×8)

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

MAY 3, 2011 30 / 40

イロト イヨト イヨト イヨト

Size of image vs running time (4×4)

VICTORIA TAROUDAKI (UMD)

Final Presentation AMSC 664

MAY 3, 2011 31 / 40

3

<ロ> <問> <問> < 回> < 回>

Conclusions

- The parallel codes work better than the corresponding serial ones.
- The sub-images code is quicker than the full image except for the case when the codes deal with the image on the same way, i.e., when the sub-image is of the same size of the original image.

Size and number of sub-images vs running time

MAY 3, 2011 33 / 40

(日) (同) (三) (三)

Conclusions

- When we double the size of the sub-images, the number of them is divided by 4.
- With increasing size of the sub-images, the running time increases.
- Size of sub-images more dominant than their number.

Schedule-Milestones

Phase I: Serial Code for the computation of the confidence intervals

Finished

Phase II:Parallel Code for computing the confidence intervals using sub-images and sub-matrices

Finished

Deliverables

- Code
 - Full-image serial code
 - Full-image parallel code
 - Sub-images serial code
 - Sub-images parallel code
- Database images
- Validation module
- Report

Summary

- Code that computes the confidence intervals of a whole image and of sub-images
- Parallelization of the codes to improve speed
- Experiment with different types and sizes of images, different sizes of PSF functions
- Comparison of the results with respect to time

Results showed that the parallelized method of computing the confidence intervals using sub-images works the best

Bibliography

- Tony F. Chan and Jianhong (Jackie) Shen, "Image Processing and Analysis", SIAM, Philadelphia, 2005
- Martin Hanke, James Nagy and Robert Plemmons, "Preconditioned Iterative Regularization For III-Posed Problems", IMA Preprint Series n 1024, 1992
- Per Christian Hansen, James G. Nagy and Dianne P. O'Leary, "Deblurring Images Matrices, Spectra, and Filtering", SIAM, Philadelphia, 2006
- Richard A. Johnson, Gouri K. Bhattacharyya, "Statistics: Principles and Methods", John Wiley & Sons, Inc., 2006
- Charles L. Lawson and Richard J. Hanson, "Solving Least Squares problems", SIAM, Philadelphia, 1995
- Jodi L. Mead, Rosemary A Renaut, "Least squares problems with inequality constraints as quadratic constraints", Linear Algebra and its Applications, 432, 2010, p. 1936ffl1949

(日) (周) (三) (三)

Bibliography

- James G. Nagy and Dianne P. O'Leary, "Restoring Images Degraded By Spatially- Variant Blur", SIAM J. Sci. Comput., Vol 19, No 4, 1998, p. 1063-1082
- James G. Nagy and Dianne P. O'Leary, "Image Restoration through Subimages and Confidence Images", Electronic Transactions on Numerical Analysis, 13, 2002, p. 22 – 37
- Dianne P. O'Leary and Bert W. Rust, "Confidence Intervals for inequality constrained least squares problems, with applications to ill-posed problems", SIAM Journal on Scientific and Statistical Computing, 7, 1986, p. 473 – 489
- Bert W. Rust and Dianne P. O'Leary, "Confidence intervals for discrete approximations to ill-posed problems", The Journal of Computational and Graphical Statistics, 3, 1994, p. 67 96
- L. Tenorio, A.Fleck and K. Moses, "Confidence intervals for linear discrete inverse problems with non negativity constraint", Inverse Problems, 23, 2007, p. 669-681

イロト 不得下 イヨト イヨト 二日

Thank you

subimage:8

subimage:12

<ロ> (日) (日) (日) (日) (日)

subimage: 16

subimage:13

VICTORIA TAROUDAKI (UMD)

3 MAY 3, 2011 40 / 40