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Abstract

We are interested in finding sparse solutions to systems of linear equations Ax = b,
where A is underdetermined and fully-ranked, as presented in [1]. In this report we
examine an implementation of the orthogonal matching pursuit algorithm, an algorithm
to find sparse solutions to equations like the one described above, and present a logic
for its validation and corresponding validation results.

This is the midyear report for the class project in AMSC 663/664. For a detailed
description of the project, please see [4].

1 Introduction and context

Let n and m be two positive natural numbers such that n < m, and consider a full rank
matrix A ∈ Rn×m. Given a column vector b ∈ Rn, we know that there is an infinite number
of solutions to the system of linear equations

Ax = b, (1)

where x is a column vector in Rm [5]. That is, there is an infinite number of column vectors
x ∈ Rm that satisfy equation (1). However, of this infinite number of possible solutions,
we are interested in those solutions that are the sparsest. By this we mean solutions where
x has the fewest number of non-zero entries. We shall make this concept more precise in
section 2.

1.1 Why is this problem of interest?

Finding sparse solutions to systems of linear equations has many signal processing applica-
tions, among them, signal compression.
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For example, the media encoding standard JPEG [2, 8] and its successor, JPEG-2000 [7],
are both based on the notion of transform encoding. The JPEG standard uses the Discrete
Cosine Transform (DCT), and the JPEG-2000 standard uses the Discrete Wavelet Transform
(DWT). Both JPEG standards use properties of the DCT or the DWT, respectively, to
achieve compression by creating approximations that represent the original image in a sparse
way. We shall revisit this application in the second half of this project.

2 Defining the problem of finding sparse solutions to

Ax = b

Consider a full-rank matrix A ∈ Rn×m with n < m, and define the underdetermined system
of linear equations Ax = b. From the infinite number of solutions, we shall narrow down
the choice to a well-defined solution by introducing a real valued function J (x) to evaluate
the desirability of a would-be solution x ∈ Rm, with smaller values of J being preferred.
This way, we can define the general optimization problem (PJ ) as

(PJ ) : min
x
J (x) subject to Ax = b. (2)

Selecting a strictly convex function J (·) guarantees a unique solution. For example if J (x) =
||x||22, the squared Euclidean norm of x, the problem (P2) that results from this choice has
the unique minimum-norm solution x̂ given by

x̂ = A+b = AT (AAT )−1b.

We know that the squared `2 norm is a measure of energy; we are interested in measures
of sparsity. As was mentioned before, a vector x is sparse if there are few nonzero elements
in the possible entries in x. As such we shall introduce the `0 “norm”

||x||0 = #{i : xi 6= 0}.

Thus, if ||x||0 � n, then x is sparse.
Consider the problem (P0) obtained from the general prescription (2) that results from

choosing J (x) = ||x||0, viz.,

(P0) : min
x
||x||0 subject to Ax = b,

or its approximation (P ε
0),

(P ε
0) : min

x
||x||0 subject to ||Ax− b||2 < ε. (3)

Unfortunately, the discrete and discontinuous nature of the `0 norm impedes the application
of the standard convex analysis ideas that were at the core of the solution of (P2). Moreover,
it has been proven that finding a solution to (P ε

0) is NP-hard [3], p. 228. However, the
solution of (P ε

0) can still be obtained by greedy algorithms when a sufficiently sparse solution
exists. We introduce one such greedy algorithm next.
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3 Orthogonal Matching Pursuit

In the first half of this project, we are interested in implementing and validating one of the
many greedy algorithms (GAs) that attempt to solve (P0). The general idea is as follows.
Starting from x0 = 0, a greedy strategy iteratively constructs a k-term approximation xk by
maintaining a set of active columns—initially empty—and, at each stage, expanding that set
by one additional column. The column chosen at each stage maximally reduces the residual
`2 error in approximating b from the current set of active columns. After constructing an
approximation including the new column, the residual error `2 is evaluated; if it now falls
below a specified threshold, the algorithm terminates.

Orthogonal Matching Pursuit (OMP)—a GA for approximating the solution of (P0):

Task: Approximate the solution of (P0) : minx ||x||0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the threshold ε0.

Initialization: Initialize k = 0, and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj
||zjaj − rk−1||22 for all j using the

optimal choice z∗j = aTj rk−1/||aj||22.
• Update Support: Find a minimizer j0 of ε(j): ∀j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk, the minimizer of ||Ax− b||22

subject to Support{x} = Sk.
• Update Residual: Compute rk = b−Axk.

• Stopping Rule: If ||rk||2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

This algorithm is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), and this is the algorithm we have implemented and validated.
OMP solves, in essence, (P ε

0) for ε = ε0, a given positive threshold. See (3) above for details.

4 An OMP Implementation

For a given matrix A ∈ Rn×m, if the approximation delivered by OMP has k0 zeros, the
method requires O(k0mn) flops in general; this can be dramatically better than the exhaus-
tive search, which requires O(nmk0k2

0) flops.
We would like to make the following observations about the OMP algorithm described

in section 3. The step that updates the provisional solution seeks to minimize ||Ax − b||22,
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subject to Support{x} = Sk. This is equivalent to solving the least squares approximation
problem minx̃ ||A(k)x̃ − b||22 for the matrix A(k) that results from using only the k active
columns of A defined by Sk, and x̃ is the vector in Rk whose i-th entry corresponds to the
column of A that was chosen during the i-th iteration of the main loop. See figure 1.
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Figure 1: Suppose that after k = 3 iterations of the main loop, OMP has chosen, in the following
order, columns a5, a2, and a7 from matrix A. We form sub-matrix A(3) = (a5 a2 a7),
and its QR decomposition A(3) = Q(3)R(3), which we use to solve the least-squares
problem ||A(3)x̃− b||22 = 0, with x̃ ∈ R3.

For the case when A is a relatively small matrix, we can solve this problem, for example,
by factorizing A(k) = Q(k)R(k) with the QR-algorithm, and then observing that

A(k) = Q(k)R(k) = Q
(k)
1 R

(k)
1 + Q

(k)
2 R

(k)
2 = Q

(k)
1 R

(k)
1 + 0 = Q

(k)
1 R

(k)
1 , (4)

where—using Matlab notation—

Q
(k)
1 = Q(k)(:, 1:k), Q

(k)
2 = Q(k)(:, k+1:n), R

(k)
1 = R(k)(1:k, :), and R

(k)
2 = R(k)(k+1:n, :).

Then, from equation 4, we have

A(k)x̃0 = b⇔ Q
(k)
1 R

(k)
1 x̃0 = b

⇒ Q
(k)T
1 Q

(k)
1 R

(k)
1 x̃0 = Q

(k)T
1 b

⇔ R
(k)
1 x̃0 = Q

(k)T
1 b

⇔ x̃0 = (R
(k)
1 )−1Q

(k)T
1 b,

where x̃0 ∈ Rk is the solution to the equivalent minimization problem described above.
Finally, when OMP returns successfully after k0 iterations, we embed x̃0 ∈ Rk0 in 0 ∈ Rm

“naturally” to obtain the solution x0 ∈ Rm to the initial least-squares approximation problem
||Ax−b||22 subject to the final active column set Sk0 . The natural embedding refers to setting
the j-th entry of 0 ∈ Rm equal to the i-th entry in x̃0 ∈ Rk0 if during the i-th loop of the
main algorithm, OMP chose the j-th column of A.
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5 OMP Validation Protocol and Validation Results

In this section we present the validation protocol that we followed to verify the correctness
of our OMP implementation.

5.1 Theoretical results that motivate and justify the protocol

The following results provide the foundation for the validation protocol that we adopted.
This protocol can be used to validate any OMP implementation.

Given a matrix A ∈ Rn×m with n < m, we can compute its mutual coherence defined as
follows.

Definition 1. The mutual coherence of a given matrix A is the largest absolute normalized
inner product between different columns from A. Denoting the k-th column in A by ak, the
mutual coherence is given by

µ(A) = max
1≤k,j≤m, k 6=j

|aTk aj|
||ak||2 · ||aj||2

. (5)

The mutual coherence gives us a simple criterion by which we can test when a solution
to (1) is the unique sparsest solution available. In what follows, we assume that A ∈ Rn×m,
n < m, and rank(A) = n.

Lemma 1. If x solves Ax = b, and ||x||0 < 1
2
(1 + 1/µ(A)), then x is the sparsest solution.

That is, if y 6= x also solves the equation, then ||x||0 < ||y||0.

This same criterion can be used to test when OMP will find the sparsest solution.

Lemma 2. For a system of linear equations Ax = b, if a solution x exists obeying ||x||0 <
1
2
(1 + 1/µ(A)), then an OMP run with threshold parameter ε0 = 0 is guaranteed to find x

exactly.

The proofs of these lemmas can be found or are inspired by results in [1]. In light of these
lemmas, we can envision the following roadmap to validate an implementation of OMP. We
have a simple unified theoretical criterion to guarantee both solution uniqueness and OMP
convergence. The following theorem simply unifies the previous lemmas into one statement.

Theorem 3. If x is a solution to Ax = b, and ||x||0 < 1
2
(1 + µ(A)), then x is the unique

sparsest solution to Ax = b, and OMP will find it.

In light of this result, we can establish the following protocol to validate any implemen-
tation of OMP.

5.2 Protocol

Given a full-rank matrix A ∈ Rn×m, with n < m, compute µ(A), and find the largest integer
k smaller than or equal to 1

2
(1 + 1/µ(A)). That is, k = b1

2
(1 + 1/µ(A))c.
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Then, build a vector x with exactly k non-zero entries and produce a right hand side
vector b = Ax. This way, you have a known sparsest solution x to which to compare the
output of any OMP implementation.

Pass A, b, and ε0 to OMP to produce a solution vector xOMP = OMP(A,b, ε0).
If OMP terminates after k iterations (or less), and ||AxOMP −b|| < ε0, for all possible x

and ε0 > 0, then the OMP implementation would have been validated.

5.3 Results

Call κA = 1
2
(1 + 1/µ(A)), the constant dependent on A that guarantees the results of

Theorem 3 for matrix A. To test our implementation, we ran two experiments involving two
random matrices.

1. A1 ∈ R100×200, with entries in the Gaussian distribution N(0, 1), i.i.d., for which its
mutual coherence turned out to be µ(A1) = 0.3713, corresponding to k = 1 = bκA1c.

2. A2 ∈ R200×400, with entries in the Gaussian distribution N(0, 1), i.i.d., for which its
mutual coherence turned out to be µ(A2) = 0.3064, corresponding to k = 2 = bκA2c.

We first note that, with probability 1, Ai, (i = 1, 2), is a full-rank matrix [1]. Second,
we would like to mention that for full-rank matrices A of size n×m, the mutual coherence
satisfies µ(A) ≥

√
(m− n)/(n · (m− 1)), with the equality being sharp [6]. We used these

results to guide us into obtaining matrix A2 for which k = 2 = bκA2c > 1.
For each matrix Ai, (i = 1, 2), we chose 100 compatible vectors with k non-zero entries

whose positions were chosen at random, and whose entries were in the Gaussian distribution
N(0, 1), i.i.d..

Then, for each such vector x, we built a corresponding right hand side vector b = Aix.
Each of these vectors would then be the unique sparsest solution to Aix = b, and OMP
should be able to find them.

Finally, given ε0 > 0, if our implementation of OMP were correct, it should stop after k
steps (or less), and if xOMP = OMP(Ai,b, ε0), then ||b−AixOMP || < ε0.

We ran these experiments for twelve values of ε0 equal to 10, 1, 10−1, 10−2, 10−4, 10−6,
10−8, 10−10, 10−12, 10−14, 10−15, and 10−16. For each of these values of ε0 we built 100 vectors
as described above, with their respective right hand side vectors, both of which were fed to
OMP together with the tolerance ε0 being tested.

We kept track of how many iterations it took OMP to stop, and the value of the norm of
the residue ||b−AixOMP || at the end of each run. We mention that our implementation of
OMP had as stopping condition that either the residue would be less the tolerance ε0 given,
or that n iterations of the main loop would have been executed.

Figure 2 shows the summary of the results for matrix A1. It contains two graphs, the top
graph represents the average of the norm of the residue over the 100 experiments executed
for a given tolerance, versus the 12 tolerances chosen. The red line represents the identity
in this case. The second graph is the same but for the average number of iterations it took
OMP to stop vs the tolerances chosen. The red line in this case is the expected number of
iterations k = bκA1c at stop time. Figure 4 is the same as figure 2, but for matrix A2.
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One can observe in both cases that there are three modal behaviors of OMP. The right-
most points in each graph correspond to tolerances ε0 that are “too large”. For them, OMP
converges, but it does not have to do much work necessarily, since the default initial solution
x = 0 is already close to the right hand side b. The typical behavior corresponds to points
in the middle of the graph, they represent the cases when OMP converges in exactly k iter-
ations to the sparsest solution within machine precision. And, finally, the leftmost points,
they represent when OMP fails to converge because the tolerances ε0 are too close to ma-
chine precision, basically trampling OMP efforts to converge due to roundoff and truncation
errors.

In figure 3 we exemplified each of the three modal behaviors with three values of ε0 typical
of each mode. The figure contains three graphs, the top graph is for ε0 = 10, the middle
graph is for ε0 = 10−6, and the bottom graph is for ε0 = 10−16. Each of the graphs shows
the individual results for each of the 100 experiments ran for each tolerance ε0. This figure
corresponds to matrix A1. In figure 5 we have the same graphs but for matrix A2.

6 Conclusion

Our validation protocol and results confirm that our implementation of OMP is correct.
This implementation will return a solution x = OMP(A,b, ε0) to Ax = b, within machine
precision, whenever the tolerance ε0 ≥ 10−14, and provided ||x||0 ≤ κA.
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Figure 2: OMP behavior for a matrix A with µ(A) = 0.3713, which corresponds to k = 1.
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Figure 3: The three modal behaviors, dependent on ε0, observed for the matrix A used in Fig. 2.
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Figure 4: OMP behavior for a matrix A with µ(A) = 0.3064, which corresponds to k = 2.
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Figure 5: The three modal behaviors, dependent on ε0, observed for the matrix A used in Fig. 4.
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