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Abstract

The purpose of this project was to investigate fuel vapor suppression by aqueous
film and foam layers. Immediately after application, aqueous film and foam layers have
the effect of suppressing fuel evaporation, however this suppression is not constant over
time. If enough time elapses, the fuel vapor concentration above the film and foam
layers can reach levels characteristic of an uncovered fuel pool. This can allow for re-
ignition of the original fire. Experiments done by Leonard and Williams have studied
this phenomena. It is unknown how the fuel moves through the film or foam layers
and the purpose of this project was to model that movement by assuming that the
fuel dissolves and diffuses through the aqueous layer. In addition to delivering a model
that can simulate these experiments, I promised that this model would be capable of
finding an effective diffusion constant DF for the foam and film. This would be done
by minimizing the residual between the experimental and numerical results. In order
to ensure that the model was correctly simulating the experiments, the model was
extensively validated. After validation, the model was applied to test cases and film
layer data collected by Leonard. After analyzing the results of simulating Leonard’s
experiment, it appears that the dissolution and diffusion transport mechanism is not
the primary transport mechanism of fuel through the film layers.



1 Background

To combat fuel pool fires, the United States Navy employs several types of fluori-
nated fire fighting foams. Once applied to a pool fire, a portion of the liquid in the foam
drains over a short period of time, depositing a layer of film on top of the fuel pool. The
fluorine surfactant in the foam is responsible for decreasing the surface tension of the foam
solution, allowing the aqueous layer to“float” on the surface of the fuel pool. This film
suppresses further evaporation of the fuel. However, several experiments have shown that
this suppression of fuel vapors is not constant over time.

In the 1970s, Dr. Joseph Leonard et al at the Naval Research Laboratory (NRL)
in Washington, D.C. began testing the suppression ability of the then new aqueous film
forming foam (AFFF) [1]. To test AFFF, they took the film that the foam creates and
placed a specified amount on a fuel pool. Then they measured the concentration of fuel
vapors over a specified amount of time. Their results confirmed that the film created by
AFFF was capable of initially suppressing the vapors of several fuel types [1]. What they
did not expect to find was that after the initial suppression, the concentration of fuel vapors
increased with time. In some cases, fuel vapor concentrations reached levels characteristic
of when foam is absent. Recently, this phenomenon has gained interest.

Dr. Bradley Williams, also of NRL, is currently working on an experiment similar
to Dr. Leonard’s. His experiment involves placing an aqueous foam layer on the surface
of a fuel pool rather than the film layer. When measuring fuel vapor concentration levels
over a period of time, Dr. Williams has also found that the concentration of fuel vapor
increases with time after the initial suppression by the foam layer. Figure 1 is a depiction
of the application of an aqueous foam and the resulting film and foam layers.

Figure 1: Application of an aqueous foam with foam and film layer formation on a fuel
pool [2].
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The exact mechanisms of fuel transport through foam or film layers are not known.
However, there are currently two main hypotheses. The first is that the fuel vapors are able
to dissolve in the aqueous solution and then diffuse throughout the solution. The second
theory is that the fuel is able to emulsify into the aqueous solution and then is transported
to the surface due to density differences. How fuel is transported and by which of these
two mechanisms were the driving questions behind this project.

To answer this question, I modeled the experiments of Leonard and Williams by
simulating either a film or foam layer on the surface of the fuel pool. The case of a foam
layer on the surface of a film layer was not considered. To model the transport of fuel
vapors through the layers, I assumed that the transport mechanism was that of dissolution
and diffusion. This diffusion would be governed by an effective diffusion coefficient DF and
DF was found by minimizing the residual between the experimental and numerical results.
Once the value of DF capable of reproducing the experimental data was found, it would
be analyzed to determine if our transport mechanism assumption was correct.

2 The Model

The experiments of Leonard and Williams involved a cylindrical container that was
20cm in height and 2.5cm in radius. A fuel pool was placed in the bottom of the container
and then a film or foam layer was placed on the surface of the fuel pool so that the fuel
pool was completely and uniformly covered. Above the film or foam layer is a fritted glass
disk that was attached to a pipe that runs out the top of the container. Pure nitrogen
was then blown through the pipe and fritted glass disk at a constant velocity. The flow of
nitrogen then move across the film or foam layer surface, entraining any fuel vapors. The
flow would then move through an outlet at the top of the container to be analyzed. See
Figure 2 for a depiction of the experimental domain.

Since the experimental domain is cylindrical and axisymmetric, the model domain
will be the region outlined in red in Figure 2. The two domains that were modeled were
the film or foam layer and the gas domain within the red box. These two domains are
labeled Domain 1 and Domain 2 within the figure and the fuel pool was represented as
the bottom boundary condition in Domain 2. The flow rates that were used within the
experiments were chosen such that the film or foam layer was undisturbed so the film and
foam layers were assumed to be stationary in the model. Also, since the concentration of
fuel vapors in Domains 1 and 2 is small, the change in density in the gas of the container
will also be small. Thus, the density of the container will be assumed to be homogenous
and constant, which leaves us with an incompressible system. The third assumption in
the model is that the fuel vapors will be transported through the film or foam layer by
dissolution and diffusion.

In order to model these experiments, the axial and radial velocities of Domain 1
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Figure 2: A slice of the experimental domain from the top of the container to the bottom.

and the concentration of fuel vapors in Domains 1 and 2 must be found. Thus, the species
fraction equation (1) and the Navier-Stokes equation (2) will be solved. In equations (1)
and (2), Y is the mole fraction

∂Y

∂t
+∇ · (vY ) = D∇2(Y ) (1)

∂v

∂t
+ v · ∇(v) =

−1

ρ
∇(P ) + η∇2(v) (2)

or mass fraction (depending on the bottom boundary condition) of fuels vapors and v ≡
(u,w) where u is the radial velocity and w is the axial velocity [4]. Note that the gravity
term in the Navier-Stokes equation has been removed. Gravity has been removed because
there are no density perturbations in the system and gravity serves to create flow due to
density differences. Now, after applying the assumption of incompressibility (∇ · v = 0)
and applying the differential operators in axisymmetric cylindrical coordinates, equations
(1) and (2) transform into
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To solve equation (3) for the concentration (mole or mass fraction) Y , it is necessary
to know D. There will be two values for D, one value for Domain 1, DA, and another for
Domain 2, DF . The value for DA represents the diffusivity of fuel vapors in N2 and can be
estimated using kinetic theory. The second valueDF represents the diffusivity of fuel vapors
in the film or foam and this value is unknown. This value, DF , was found by comparing the
numerical model to experimental data. In order to solve equations (4) and (5) for u and w,
it is necessary to solve for pressure, P . Solving for pressure is extremely computationally
expensive and determining boundary conditions for pressure can be ambiguous. Thus,
to avoid having to solve for pressure, the stream function and vorticity transformation
were used on equations (4) and (5). The substitutions required for this transformation are
u = −1

r
∂ψ
∂z , w = 1

r
∂ψ
∂r , and Ω = ∂u

∂z −
∂w
∂r where ψ is the stream function and Ω is vorticity

[5,7]. Upon inserting these substitutions, equations (4) and (5) are transformed into the
stream function and vorticity equations. Note that in these transformed equations there is
no pressure term, P .
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)
This transformation leaves us with having to solve equations (6), (7), and (8) in

Domain 1, where u = −1
r
∂ψ
∂z , w = 1

r
∂ψ
∂r , and DA is the diffusion coefficient for fuel vapors

in pure nitrogen N2. Then in Domain 2, only equation (9) needs to be solved, where DF

is defined as the effective diffusion coefficient for fuel vapors in the film or foam layer.
Equation (9) has no convective terms because the film or foam layer is assumed to be
stationary, which leads to u = w = 0 in Domain 2.
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3 Solution Algorithms

The solutions for equation (6), (7), (8), and (9) were found using a series of finite
difference algorithms. To solve (6), (8), and (9), an upwind differencing algorithm for
convective diffusive equations presented in [6] was implemented. This algorithm calls for
backwards differencing to be applied to the convective terms and centered differencing to
be applied to the diffusive terms. This algorithm has a restraint on the timestep, 4t, that
could be used to discretize the time derivative. This restraint is

4t < 1
4D
τ + max(u)

4r + max(w)
4z

where max(u) and max(w) are defined to be the maximum radial and axial velocities in
the model domain respectively and τ ≡ min(4r2,4z2) [6]. The model was designed such
that the equations in both Domains 1 and 2 were solved using the same timestep value,
4t, but because there was a different D and 4z value in Domains 1 and 2, the timestep
had to be designed such that the upwind differencing scheme was stable in both domains.
Thus, the D and 4z values that were chosen to find 4t were the D and 4z values that
resulted in the smallest timestep. This ensured that the upwind differencing scheme was
stable in both domains.

Equation (7) involves no time derivative so it could not be solved in a manner
similar to the other equations. To solve equation (7), a successive over-relaxation, SOR,
algorithm was implemented. The SOR algorithm is an iterative solver and is similar to
the Gauss-Seidel method except that SOR uses a relaxation parameter to achieve faster
convergence. To find the optimal relaxation parameter, Chebyshev acceleration was im-
plemented in tandem with the SOR algorithm. Chebyshev acceleration recalculates the
relaxation parameter at each iteration of the SOR algorithm such that it is the optimal
relaxation parameter for that iteration. This guarantees that the SOR solver converges as
rapidly as possible. The successive over-relaxation with Chebyshev acceleration algorithm
that was used in the model was the algorithm presented in [8]. Centered differencing was
used to discretize (7) and the solution was iterated upon following the iteration formula in
[8]. Once the residual of the solution field fell beneath a prescribed tolerance, the solution
was presumed to have been found. For further information on the implementation of the
SOR with Chebyshev acceleration algorithm within this model, please see the December
2011 progress report.
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Once the solution algorithms had been chosen, it remained to couple the solvers.
The algorithm for doing this and finding the solutions for u, w, ψ, and Ω at each timestep
was presented in [6]. This algorithm called for boundary conditions on ψ to be derived
from those on u and w and for the remaining boundary conditions on u and w to be imple-
mented within the code. Boundary conditions for Ω are then determined numerically from
the u and w solution fields according to the vorticity definition Ω = ∂u

∂z −
∂w
∂r . Normally,

boundary conditions on Ω would be derived from boundary conditions on u and w, however
this algorithm calls for the boundary conditions on Ω to be found numerically. Letting the
solutions for u, w, ψ, and Ω at the nth timestep be un, wn, ψn, and Ωn, then the algorithm
for finding un+1, wn+1, ψn+1, Ωn+1, and Y n+1 is as follows.

1. Determine the boundary conditions on Ωn numerically using the un

and wn fields and Ω = ∂u
∂z −

∂w
∂r .

2. Find Ωn+1 with the upwind differencing algorithm.

3. Find ψn+1 using SOR with Chebyshev acceleration. There is an Ω term
in (7), however only the interior points of Ωn+1 are required to find ψn+1.

4. Solve for un+1 and wn+1 from ψn+1.

5. Solve for Y n+1 using un+1, wn+1, and the upwind differencing algorithm.

4 Validation

Simplified Domain

Once the solution algorithms were implemented, it remained to check that they
were done so correctly. Validation was begun on a simplified domain. This domain was an
axisymmetric cylindrical container like the experimental domain but without the pipe and
fritted glass disk. Once the simplified domain was in place, work began on validating the
species fraction solver (i.e. the routine responsible for solving equations (6) and (9)).

The first case that was tested was a pure advection case with only axial dependence.
This corresponds to the equation

∂Y

∂t
+ c

∂Y

∂z
= 0

which has the analytical solution of
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Y (z, t) =

{
0 z

c > t
1 z

c ≤ t

}
for an initial condition of Y (z, 0) = 0, a boundary condition of Y (0, t) = 1, and a uniform
axial velocity c inside the container. To implement this case of pure advection within
the code, the appropriate initial and boundary conditions were implemented along with a
small diffusion coefficient. This had the effect of making the diffusion terms small without
having to remove those terms from the code. The diffusion coefficient that was chosen
was D = 10−4 cm

2

s and the flow speed c was 4 cms . The residual between the numerical
and analytical solution fields was then taken and Figure 3 is a plot of that residual field.
Looking at Figure 3, one can see a region where the residual is fairly high. This region
is the interface between Y = 0 and Y = 1. Within the analytical solution this region is
sharp however finite differencing is unable to capture sharp interfaces. Finite differencing
will cause this sharp interface to become smooth and one can see evidence of this within
Figure 3. Because the residual goes to zero in all other regions, the species fraction solver
is working correctly for the pure advection case.

The second case that was tested was a pure diffusion case with only axial de-
pendence. This corresponds to the equation

∂Y

∂t
= D

∂2Y

∂z2

which has the analytical solution of

Y (z, t) = 1−
∞∑
n=0

4

π(2n+ 1)
e−D(

π(2n+1)
40

)2t sin
(π(2n+ 1)

40
z
)

for an initial condition of Y (z, 0) = 0 and boundary conditions of Y (0, t) = 1 and ∂Y
∂z = 0

at z = 20. The implementation of pure diffusion within the code was a much more exact
task and was accomplished by setting u = w = 0 cms . The diffusion coefficient that was

used in the analytical and numerical solutions was D = 0.25 cm
2

s . Figure 4 is a plot of the

residual between the analytical and numerical solutions for D = 0.25 cm
2

s and w = 0 cms at
time=1.5s. Looking at Figure 4, one can see that the solutions are much more in agreement
since the residual is on the order of 10−5. Again, this is due to the solution being smooth
which allows finite differencing to capture it. Because the solver found the correct solution
to the pure diffusion case, in addition to the pure advection case, one can conclude that
the species fraction works correctly.

Once the species fraction solver was validated, the vorticity solver was then tested.
Comparing equations (6) and (8), one can see that the equations are very similar except
for two terms in equation (8). These two terms require no discretization, so to test the
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Figure 3: Residual between numerical and analytical solution for pure advective flow for
D = 10−4 cm

2

s and c = 4 cms at time=1.5s.

vorticity solver, these two terms were removed. In addition, the boundary conditions in the
species fraction solver were implemented in the vorticity solver and η was set equal to D.
This had the effect of solving for the species fraction manifested as vorticity. Once this was
done, a residual between the two solutions was taken. If the vorticity solver was correctly
implemented, then the two solutions would be similar. In fact, the residual between the
two was found to be machine accuracy. Thus, the vorticity solver is correctly discretized
and has been validated.

The last solver that needed to be validated was the stream-function solver. This
solver is different in nature to the upwind differencing scheme so it could not be compared
to the species fraction solver like the vorticity solver could. In the end, the stream function
solver was validated by comparing solutions from the SOR algorithm to Matlab’s finite
element solver. A series of the boundary conditions were implemented for both numerical
solvers and then the residual was taken between the two solutions. The residual was
consistently on the order of 10−4 so the discretization and SOR algorithm were correctly
implemented. With the three solvers being validated, the experimental domain was then
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Figure 4: Residual between numerical and analytical solution for pure advective flow for
D = 10−4 cm

2

s and c = 4 cms at time=1.5s.

added. Once the solvers were coupled, further validation began.

Experimental Domain

Designing the experimental domain involved adding the pipe and fritted glass disk
to Domain 1. This also required the derivation of new boundary conditions on ψ. Table
1 is a list of the boundary conditions corresponding to the labeled boundaries in Figure 5.
Several values in Table 1 need to be discussed before continuing. The value Ysur is the mole
or mass fraction of fuel vapors in air due to the vapor pressure of the fuel. The value of α
is −c2 2.252 since the width of the fritted glass disk is 2.25cm and the value of c is the input
flow speed. The boundary condition for Y on boundary 9 is a no flux boundary condition.
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Boundary Y u w ψ (derived from)

1 Y = Ysur u = 0 w = 0 ψ = 0(w = 0)

2 ∂Y
∂r = 0 u = 0 w = 0 ψ = 0(u = 0)

3 ∂Y
∂z = 0 u = 0 w = 0 ψ = 0(w = 0)

4 ∂Y
∂z = 0 ∂u

∂z = 0 ∂w
∂z = 0 ∂2ψ

∂z2
= 0(∂u∂z = 0)

5 ∂Y
∂z = 0 u = 0 w = 0 ψ = α(w = 0)

6 ∂Y
∂r = 0 u = 0 w = 0 ψ = α(u = 0)

7 ∂Y
∂z = 0 u = 0 w = 0 ψ = α(w = 0)

8 ∂Y
∂r = 0 u = 0 w = 0 ψ = α(u = 0)

9 ρY w +Dρ∂Y∂z = 0 u = 0 w = c ψ = −c
2 r

2(w = c)

10 ∂Y
∂r = 0 u = 0 ∂w

∂r = 0 ψ = 0(u = 0)

Table 1: Table of boundary conditions for experimental Domain 1.

Physically speaking, it enforces that no fuel vapors go in or come out of the fritted glass
disk. The boundary conditions in Table 1 are those that represent an uncovered fuel pool
open to Domain 1. Once the fuel pool is covered by a film layer, the boundary condition
for Y on 1 will change to reflect Henry’s Law. Henry’s Law states that the vapor pressure
of a gas is proportional to the amount of that gas dissolved in a liquid.

The first validation test that was performed in the experimental domain was a flux
test which involved specifying a flux on the fuel pool surface. This flux boundary condition
replaced the boundary condition of Y = Ysur. What this specified flux implied was that
there was a constant amount of evaporation taking place on the surface. At steady state,
the amount of evaporation coming off of the surface would also be coming out of the outlet.
The code was run out to steady state to see if it was able to reproduce the evaporation
at the outlet. The model was able to do so, which meant that the extra features in the
domain were added correctly.

The defining test of the code was to compare it to experimental data. Williams
et al performed experiments for an uncovered n-heptane pool with a nitrogen flow rate
of 78 cm

3

min . The values for DA and Ysur were found respectively by using Chapman-Enskog
kinetic theory and Antoine parameters. Because of the relatively high flow, there was noise
in the experimental value which meant that the uncertainty range was fairly high. The
values for the experiment and the numerical model were very comparable though with the
experiment measuring a total flow of 110µgs and the numerical model predicting 130µgs .
With these test results, it was concluded that the model was working correctly and could
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Figure 5: Plot of the experimental Domain 1 with labeled boundaries. These labels corre-
spond to boundary conditions in Table 1.

accurately calculate concentrations and total flow for the uncovered fuel pool case. Before
adding the optimization routine, Domain 2 had to be coupled to Domain 1.

Physically speaking, this would result in covering the fuel pool and it changes some
of the previously listed boundary conditions. Table 2 is a list of the boundary conditions
corresponding to the labeled boundaries in Figure 6. The boundary condition of Y = Ysur
on 1 now changes to Y = Pv

Pa
YF to represent Henry’s Law. In this formulation, Pv is the

resulting vapor pressure from a pure fuel pool open to air, Pa is the atmospheric pressure,
and YF represents the fraction of fuel on the surface of the film domain. The boundary
condition representing the fuel pool is now on boundary 11, Y = Ysur, and Ysur is the
mole fraction that results from the solubility of fuel in water. This is an approximation
though because the aqueous solution has some amount of surfactant in it. Nonetheless,
this approximation will be used and its validity will be analyzed once the model is applied
to the data. The last boundary condition that needs to be discussed is that of 13. This
boundary condition enforces matching fluxes. The left hand side is the flux on the top
surface of the film layer in the film domain and the right hand side represents the flux
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Boundary Y

11 Y = Ysur

12 ∂Y
∂r = 0

13 ρFDF
∂YF
∂z = ρADA

∂YA
∂z

14 ∂Y
∂r = 0

Table 2: Table of boundary conditions for experimental Domain 2.

on the top surface of the film layer in the air domain. The subscript A denotes the air
domain and the subscript F denotes the film domain. Once coupled, boundaries 13 and 1
will be the same boundary. However, two boundary conditions are needed since it is the
demarkation of two domains. Note that no validation is needed for Domain 2 because the
species fraction solver has already validated for a pure diffusion case.

Figure 6: Plot of the experimental Domain 2 with labeled boundaries. These labels corre-
spond to boundary conditions in Table 2.

Optimization Validation

The method that was chosen to minimize the residual between the numerical and
experimental data was the secant method. The purpose of the secant method was to find
the DF value that reproduced the experimental data within some tolerance. The data
that was provided came in several different forms. For some experiments, the data came
in the mole or mass fraction at the outlet for the uncovered and covered case. Other ex-
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periments presented the data in the form of a ratio of the two cases. Thus, to create a
model that could handle both forms of data, the secant method was designed to operate
on the ratio form. In the case when the data was not presented in ratio form a ratio
was easily created by dividing the covered value by the uncovered value. The ratio format
also had the added benefit of removing some of the experimental uncertainty from the data.

DF,n+1 = DF,n − (Rexp −Rn)
( DF,n −DF,n−1

(Rexp −Rn)− (Rexp −Rn−1)

)
(10)

The secant method formulation for making the next guess at DF then took the
form of (10), where Rexp is the ratio of the experimental data. In (10), Rn and Rn−1
represent the numerical data ratios that resulted from DF,n and DF,n−1 respectively. To
form Rn, the uncovered case must be known so the model is run for the uncovered case
first. It then stores the value in memory, covers the pool, and proceeds with the covered
pool simulations. Because the secant method formulation is being used, two initial guesses
at DF are required. For a foam layer, the initial guesses were made using Chapman Enskog
kinetic theory and for a film layer, the Wilke-Chang equation for liquid-liquid diffusion is
used. Both Chapman Enskog kinetic theory and the Wilke-Chang equation for liquid-liquid
diffusion are presented in [5].

To validate the implementation of the secant method, a test case was created. The
test case concerned a 3cm high foam layer being placed on a n-heptane fuel pool. The
value of DF was initially set to DF = 0.01 cm

2

s so that the uncovered and covered steady
state concentration could be found. The ratio of these two values was set to Rexp and the

value of DF = 0.01 cm
2

s was removed from the code. Given Rexp, the model was asked to
find the DF value that would reproduce |Rexp − Rn| ≤ γ where γ is some tolerance. The

model correctly reproduced DF = 0.01 cm
2

s for the value of Rexp so the secant method was
known to be implemented correctly.

5 Results

Application to Test Data

The first case run with the fully coupled, optimization capable, model was for a n-
octane pool covered by 1cm of film. The flow rate of N2 into the container was 630 cm

3

min and
at 100s the concentration was measured to be 0.15% of the uncovered value. To find the
diffusion coefficient for n-octane in N2, DA, Chapman-Enskog kinetic theory was used. This
resulted in an estimate of DA = 0.06 cm

2

s . As a check on the validity of using this kinetic
theory, DA for n-octane in N2 was compared to experimentally determined values, which
were within 3% of DA. The concentration boundary condition that was used on boundary
11 was a mole fraction value of 0.018 and the boundary conditions used on boundary 1
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was Henry’s law, 0.018YF (PvPa = 0.018 for n-octane). Using these input parameters and

data, the model found that DF = 1.36 ∗ 10−3 cm
2

s was the diffusion coefficient responsible
for the experimental measurements. Figures 7 and 8 are contour plots of the axial and
radial velocities within the container at a time of 100s. Figures 9 and 10 are contour plots
of the concentration (mole fraction) of fuel vapors within Domains 1 and 2 at 100s.

Figure 7: Contour of the axial velocity inside Domain 1 at 100s resulting from an N2 input
flow of 630 cm

3

min .
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Figure 8: Contour of the radial velocity inside Domain 1 at 100s resulting from an N2

input flow of 630 cm
3

min .

Application to Film Data

The first case that the model was run on was a set of test data. This case was
created to show that the model was capable of modeling the experiments and finding the
DF value responsible for the data. Once the model is applied to actual experimental data,
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Figure 9: Contour of the fuel vapor concentration inside Domain 1 at 100s resulting from
DF = 1.36 ∗ 10−3 cm

2

s .

it produces very interesting results. The actual experimental data that the model was run
on was the film layer data gathered by Leonard. The model was not run on the foam layer
data gathered by Williams because the data appears to have a conversion factor error.
Thus, the model was run on the credible data that was immediately available.

One experiment that Leonard ran was for a n-octane pool covered by 2.35∗10−3cm
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Figure 10: Contour of the fuel vapor concentration inside Domain 2 at 100s resulting from
DF = 1.36 ∗ 10−3 cm

2

s .

of film. The flow rate of N2 was 630 cm
3

min and at 1800s the concentration (mole fraction) was
measured to be 15% of the uncovered value. The boundary condition used on boundary
11 was 3 ∗ 10−7. This value is the actual solubility of n-octane in water as opposed to the
value of 0.018 that was used in the test case. The boundary condition of Henry’s Law,
0.018 ∗ YF , is valid for boundary 1 since Pv

Pa
= 0.018 for n-octane and it was applied.

The first guess of the film layer diffusion coefficient was DF,1 = 1 ∗ 10−5 cm
2

s . Figure
11 is a plot of the concentration (mole fraction) of fuel vapors at the outlet versus time.
There are two features of Figure 11 that need to be noted. The first of which is that
the steady state of fuel vapors at the outlet is reached within 70s for this value of DF,1.
Changing the value of DF will only change the amount of time needed to reach steady state
and would not change the concentration of fuel vapors at steady state. The concentration
magnitude is the second feature that needs to be noted. At steady state, the concentration
of fuel vapors is on the order of 10−9, while the uncovered concentration was found to be
2.35 ∗ 10−3. Taking the ratio of these values we see that R1 = 3 ∗ 10−6.

Comparing these results to Leonard’s data, one can see that the time scale and
ratio are both several orders of magnitude away from the numerical results. Figure 12
is a further illustration of this point, with Leonard’s data and the numerical results for
DF,1 = 1 ∗ 10−5 cm

2

s plotted on the same graph. If the model was allowed to optimize over
DF , it would have “guessed” lower and lower values for DF . This would have the effect
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of increasing the amount of time to reach steady state, however, this would require values
much smaller than 10−9. A diffusion coefficient lower than this value would be consistent
of that of solid-solid diffusion so we can see that values of this order of magnitude would be
unreasonable. Changing DF would also have no effect on changing the concentration value
at steady state. With these two things in mind, it was decided to perform some analysis
on the solution to see what could be responsible for the discrepancies.

Figure 11: Plot of the fuel vapor concentration at the outlet versus time for DF = 1 ∗
10−5 cm

2

s .

Analysis of Results and Leonard’s Data

In his experiment, Leonard measured a concentration corresponding to 15% of the
uncovered case at 1800s. The concentration profile at the outlet at 1800s for the uncovered
case is Y = 2.35 ∗ 10−3. Taking 15% of that value leaves us with a measurement of
Y = 3.525 ∗ 10−4 for the covered case at 1800s. Noting that in Figures 9 and 10, the
concentration increases as height decreases, one can expect the same phenomena in this
case. Thus, in Domain 1, at the film layer surface, one would expect Y > 3.525 ∗ 10−4.
Applying Henry’s Law, this time in the opposite direction, one can see that in Domain 2
at the film layer surface Ysur >

3.525∗10−4

0.018 . Again, as height decreases, the concentration
on fuel vapors will increase, so at the surface of the fuel pool one would expect Ysol > Ysur.
This implies that Ysol, the mole fraction due to the solubility of n-octane in the aqueous
solution, will have to be larger than 3.525∗10−4

0.018 , or approximately 2%. Remember that the
original solubility that was used in this model was 3 ∗ 10−7. Thus, one can see that there
is a clear disagreement in the boundary conditions and one that could account for the

18



Figure 12: Comparison of Leonard’s experimental data and the numerical results for an
initial guess of DF = 1 ∗ 10−5 cm

2

s . Plot of the fuel vapor concentration at the outlet versus
time.

previous discrepancies between Leonard’s experimental results and the numerical results.

Figure 13: Analysis of mole fraction in Leonard’s experimental data.
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The model has been extensively validated and it is known that the model correctly
predicts the uncovered fuel pool case. The results captured in Figures 11 and 12, along
with the above analysis, suggest that the assumption of dissolution and diffusion of fuel
vapors in the film layer is not valid. This is due to the fact that a very high solubility
of n-octane in the aqueous solution is necessary in order to reproduce Leonard’s data.
At this point, one cannot rule out a time dependent boundary condition for Ysol nor a
time dependent diffusion coefficient DF . Time dependence on Ysol and/or DF could be
responsible for the large time scale observed in Leonard’s data while still allowing for a
dissolution and diffusion transport mechanism. Currently, emulsification is being looked at
as the transport mechanism because of the short comings of the dissolution and diffusion
mechanism highlighted by this model. In order to try to dispel notions of dissolve and
diffuse, experiments are being planned to measure the solubility of fuel vapors in the
aqueous solution. If the solubility is unable to reach a value of 0.02% or higher, then it will
be clear that another mechanism must be responsible for the transport of fuel through the
film layer. At the same time, plans for rerunning the foam layer experiments are underway
so that the model can be applied to the data. It will be interesting to see if a similar
discrepancy appears in the foam layer simulations. In the immediate future, the model
will be run with Ysol ≥ 0.02 to find the effective DF value that is capable of reproducing
Leonard’s results.

6 Conclusions

At the start of this project, I said that I would deliver a software package that
modeled the experiments of Leonard and Williams by assuming the dissolution and diffusion
transport mechanism. This software package was also to be capable of finding an effective
diffusion coefficient DF for a film or foam layer. The value of DF would be found by
minimizing the residual between the experimental and numerical results. Unfortunately,
the foam data that was originally promised was corrupted so the model was only able to be
run on the film layer data. Nonetheless, the model that has been created is entirely capable
of simulating a foam layer. In addition to the software package, I said that I would deliver
my input data and it has all been presented in this paper. In addition to my deliverables, I
have also presented findings that suggest that emulsification is the mechanism responsible
for transporting the fuel through the film layer.
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