
Modeling Local and Advective Diffusion of Fuel Vapors to

Understand Aqueous Foams in Fighting Fires

December 2011 Progress Report

Author:
Andrew Brandon

asbrando@math.umd.edu

Advisor:
Dr. Ramagopal Ananth

Naval Research Laboratory, Washington, D.C.
ramagopal.ananth@nrl.mil

Abstract

The purpose of this project is to model the diffusion of fuel vapors through both
aqueous film surfaces and aqueous foam surfaces. Aqueous foams are currently being
employed to combat fuel pool fires. Once an aqueous foam is applied to a fuel pool
fire, an aqueous film forms on the surface of the liquid hydrocarbon pool due to the
liquid drainage of the foam. It is the film that is responsible for the suppression of
the fuel vapors. Experiments by Leonard [1] and Williams [2] have shown that the
film’s suppression of fuel vapors is not constant over time. It has become clear that by
some process, fuel vapors are able to diffuse through the film and foam layers. This
presents a hazard because the fuel vapors above the foam layer can re-ignite the fuel
pool fire. A model is being created that simulates local and advective diffusion of
fuel vapors over time until a steady state is reached. The diffusion coefficient’s space
will be explored in an attempt to match the model’s concentration to the observed
steady state concentrations in [1] and [2]. This will allow us to calculate the diffusion
coefficient of fuel vapors in both film and foam layers. At this point in the project, the
solvers have been programmed. Several test cases are being explored using a simple
axisymmetric cylindrical container in an effort to debug the solvers. Once debugged,
the results will be compared to the analytical solutions for specialized cases. Then the
remaining features of the experimental domain from [1] and [2] will be added to the
model domain.

1 Background

To combat fuel pool fires, the United States Navy employs several types of fluori-
nated fire fighting foams. Once applied to a pool fire, a portion of the liquid in the foam
drains over a short period of time, depositing a layer of film on top of the fuel pool. The
fluorine surfactant in the foam is responsible for decreasing the surface tension of the foam
solution, allowing the aqueous layer to float on the surface of the fuel pool. This layer of
film on the surface of the fuel pool suppresses further evaporation of the fuel. However,
several experiments have shown that this suppression of fuel vapors is not constant over
time.

In the 1970s, Dr. Joseph Leonard et al at the Naval Research Laboratory (NRL)
in Washington, D.C. began testing the suppression ability of the then new aqueous film
forming foam (AFFF) [1]. To test AFFF, they took the film that the foam creates and
placed a specified amount on a fuel pool. Then they measured the concentration of fuel
vapors over a specified amount of time. Their results confirmed that the film created by
AFFF was capable of initially suppressing the vapors of several fuel types [1]. What they
did not expect to find was that after the initial suppression, the concentration of fuel vapors
increased with time. In some cases, fuel vapor concentrations reached levels characteristic
of when foam is absent. Recently, this phenomenon has gained interest.

Dr. Bradley Williams, also of NRL, is currently working on an experiment similar
to Dr. Leonard’s. His experiment involves placing an aqueous foam layer on the surface
of a fuel pool rather than the film layer only. When measuring fuel vapor concentration
levels over a period of time, Dr. Williams has also found that the concentration of fuel
vapor increases with time after the initial suppression by the foam layer.

To motivate my project, I propose an all too realistic situation. In the case of an
on-board fire involving fuel spills, an aqueous foam such as AFFF will be applied to the
surface. All visually apparent flames will be put out by applying AFFF, but there may
exist an ember or an unseen open flame in the vicinity of the foam layer. Suppose that in
some area, away from the open flame, the foam surface is compromised. If the fuel vapor
concentration above the still intact foam surface reaches a certain level, the unseen open
flame may ignite a fire above the foam surface [3], which is known as “ghosting.” The
“ghost” flames could then travel towards the open fuel pool surface resulting in re-ignition.

Currently, the Navy is involved in “burnback” experiments which test the length of
time it takes for an open flame in the vicinity of a foam covered fuel pool to induce ghosting
and re-ignition [3]. The aqueous foams that the Navy employs have a short filming time
as well as a short “burnback” time. This short “burnback” time is directly related to the
rate at which fuel vapors are diffusing through the film and foam layers [3].

In addition to not having constant vapor suppression, these fluorinated film forming
foams are environmentally unfriendly and carcinogenic. Research is currently being done in
order to find a replacement, however a satisfactory one has not yet been found. Comparison
tests are necessary between the current product and any possible replacements in order to

1

insure safety and effectiveness. In order to properly compare, the processes taking place in
the current product must be understood. Thus, it is very important to design a model that
can calculate the rate at which fuel vapors diffuse through the foam and film layers. This
will help us to understand processes such as ghosting, but also to find replacement products.

2 The Model Equations and Algorithms

The model domain for this project will be the experimental domain used in [1] and
[2]. All calculations will be done in cylindrical coordinates. It will be assumed that the
domain is axisymmetric, which will reduce the problem to a two dimensional case. The
problem will be divided into two domains of the aqueous film or aqueous foam layer and the
remainder of the container. From this point on, the film or foam domain will be denoted
domain 1 and the remainder of the container will be domain 2. (See Figure 1.) By splitting
the model domain into two, we will be able to pass the top boundary values of domain 1 as
a lower boundary condition for domain 2. The film or foam in domain 1 will be assumed
to be a continuum.

Figure 1: Experimental domain of [1] and [2] with domain 1 and domain 2.

2

In both Leonard’s and Williams’s experiments, air is pumped through a fritted glass
disk, positioned two centimeters above the film or foam surface. Air then flows out of the
top of the container and the fuel vapor content of that flow is analyzed. Because the air
flow in [1] and [2] is slow, the foam layer will be assumed stationary. This leaves us with
solving the species fraction equation (1) for both domains and the momentum equations
(2) and (3) for domain 2.

∂Y

∂t
+∇ · (vY) = D∇ · (∇(Y)) v = (u,w) (1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −1

ρ

∂P

∂r
+
µ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
(2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+
µ

ρ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
(3)

Y denotes the species fraction of fuel vapors [4]. The variable u represents the
radial velocity and the variable w represents the axial velocity [5]. The diffusion coefficient
is represented by D. In domain 2, the diffusion coefficient (D2) of fuel vapors in air is
known. In domain 1, the diffusion coefficient (D1) is not known. We will be optimizing
over D1 to find a diffusion coefficient corresponding to the steady state data from [1] and [2].
Density will be assumed constant in both domains because the mixing of fuel vapors with
air, foam, and film results in a very small change in density. This means that ∇ · (v) = 0
from the continuity equation. Thus, we can use the relation ∇ · (vY) = v∇Y + Y∇ · (v)
and simplify it to ∇ · (vY) = v∇Y by applying ∇ · (v) = 0. Thus, (1) can be rewritten in
cylindrical coordinates as

∂Y

∂t
+ u

∂Y

∂r
+ w

∂Y

∂z
= D

(
∂2Y

∂r2
+

1

r

∂Y

∂r
+
∂2Y

∂z2

)
(4)

In order to solve for u and w, the substitution u = −1
r
∂ψ
∂z and w = 1

r
∂ψ
∂r will be made

into equations 2 and 3, where ψ represents the stream function [7]. Then the relation

−Ω =
1

r

∂2ψ

∂r2
− 1

r2

∂ψ

∂r
+

1

r

∂2ψ

∂z2
(5)

will be applied, where Ω represents vorticity [7]. The substitution and (5) then leave us
with the equation

3

∂Ω

∂t
+ u

∂Ω

∂r
+ w

∂Ω

∂z
=
uΩ

r
+ η

(
1

r

∂Ω

∂r
− Ω

r2
+
∂2Ω

∂r2
+
∂2Ω

∂z2

)
(6)

Note that by making the substitution u = −1
r
∂ψ
∂z and w = 1

r
∂ψ
∂r and by applying (5),

the momentum equations (2) and (3) transform into (6) which does not involve pressure
[7]. Without making the substitutions for u and w, pressure would have to be solved for
at each time-step which would severely increase computational costs. Now, only ψ and Ω
need to be solved for at each time-step and equations (5) and (6) will be used to calculate
those variables. In order to solve (4) at each time-step, the values for u and w will need to
be calculated from the relation u = −1

r
∂ψ
∂z and w = 1

r
∂ψ
∂r . Also, in order to obtain (5) and

(6), it had to be assumed that the fluid in the container was incompressible, (∇ · (v) = 0).
Again, this is a valid assumption because the mixing of fuel vapors with air results in a
small change in density.

3 Species Fraction Algorithm

The algorithm that was used to solve for Y was an upwind differencing scheme for
advective-diffusive equations presented in [6]. This algorithm calls for backwards differ-
encing to be applied to the advective terms and centered differencing to be applied to the
diffusive terms. Thus, (4) becomes

Y n+1(j, i)− Y n(j, i)

∆t
+ un(j, i)

Y n(j, i)− Y n(j, i− 1)

∆r
+ wn(j, i)

Y n(j, i)− Y n(j − 1, i)

∆z
=

D

(
Y n(j, i+ 1)− 2Y n(j, i) + Y n(j, i− 1)

∆r2
+

1

(i− 1)∆r

Y n(j, i+ 1)− Y n(j, i− 1)

2∆r

+
Y n(j + 1, i)− 2Y n(j, i) + Y n(j − 1, i)

∆z2

)
(7)

Solving (7) for Y n+1(j, i) we see that

4

Y n+1(j, i) = Y n(j, i)−∆t

(
un(j, i)

Y n(j, i)− Y n(j, i− 1)

∆r
+ wn(j, i)

Y n(j, i)− Y n(j − 1, i)

∆z

−D 1

(i− 1)∆r

Y n(j, i+ 1)− Y n(j, i− 1)

2∆r
−DY

n(j, i+ 1)− 2Y n(j, i) + Y n(j, i− 1)

∆r2

−DY
n(j + 1, i)− 2Y n(j, i) + Y n(j − 1, i)

∆z2

)
(8)

To avoid unnecessary memory accesses and to minimize computation time, all of
the terms in front of each matrix reference were gathered. This allows (8) to be written as

Y n+1(j, i) =

(
1− ∆t

∆r
un(j, i)− ∆t

∆z
wn(j, i)− 2D∆t

∆r2
− 2D∆t

∆z2

)
Y n(j, i) +

D∆t

∆z2
Y (j + 1, i)

+

(
∆t

∆z
wn(j, i) +

D∆t

∆z2

)
Y n(j − 1, i) +

(
D∆t

∆r2
+

D∆t

2(i− 1)∆r2

)
Y n(j, i+ 1)

+

(
∆t

∆r
un(j, i) +

D∆t

∆r2
− D∆t

2(i− 1)∆r2

)
Y n(j, i− 1) (9)

Thus, (9) allows the species fraction Y to be solved for at the next time-step and
this is the equation that is used in the project code. At each time-step, all of the interior
points of the domain are iterated through and afterwards the boundary conditions are
implemented. This algorithm, is repeated until the final simulation time is reached.

4 Validation

Advective Diffusive Flow

To test the species fraction algorithm code, a case of pure oxygen being pumped into
a cylinder of pure nitrogen was implemented. Instead of using the experimental domain in
[1] and [2], a simpler domain of an axisymmetric cylindrical container was implemented.
The boundary conditions were Neumann boundary conditions of ∂Y

∂z = 0 on the top of the

container and ∂Y
∂r = 0 on the outer wall and inner axis of the container. On the bottom of

the container, a Dirichlet boundary condition of Y = 1 was implemented. This meant that
Y was tracking the O2 fraction and that the initial condition would be Y = 0 to signify
that the container was initially filled with pure N2. Because pure oxygen is diffusing into
nitrogen, D = 0.25 cm

2

sec .
In this test case the radial velocity u was set to 0 cmsec and the axial velocity w was

5

set to a constant speed c cmsec over the entire domain. This implied that the outer wall of the
cylinder was considered to have slip conditions. Several values of c were tested and Figure
2 presents the species fraction values for c = 6 cmsec at various times.

Figure 2: Species Fraction Field Solution for D = 0.25 cm
2

sec , u = 0 cmsec , w = 6 cmsec at times 0.5s
to 2.5s in intervals of 0.5s. Values of 1.0 denote pure O2 and values of 0.0 denote pure N2.

Figure 2 shows that the diffusion layer’s location is moving with time. Note that the
layer appears to be found at height ct cm for all five times t. Parallel to expectations, the
layer is appears to be moving correctly. Also parallel to expectations, the layer is growing
with time due to the diffusion of O2 into N2 and vice versa. From these two visual aspects,
it can be concluded to a high degree that the solver is working correctly.

Diffusive Flow

In order to further test the robustness of the species fraction code, two extreme cases
were implemented. The first case was D = 0.25 cm

2

sec , u = 0 cmsec , and w = 10−5 cm
sec and

it signifies a diffusion driven flow of O2 into the container. The results of that test can
be seen in Figure 3. Because the ∆r value used in the code will have some effect on
the solution, several values were tested and the corresponding species fraction field was
calculated. (Because of how the code is set up, the ∆z is calculated to be approximately
the ∆r value. Thus, as the ∆r value changes so does the ∆z value.) Figure 4 is a plot
of the different ∆r values and the respective species fraction values for r = 2 at different
times. From Figure 4, it can been seen that the solution is similar between all four ∆r

6

values. Assuming that the ∆r = 0.01cm solution is exact, Figure 5 is a plot of the error
for the ∆r = 0.08cm solution and the ∆r = 0.02cm solution. Figure 5 shows the error
drops by a factor of 10 when the ∆r value drops by a factor of 4. This reflects that the
diffusive terms, those that are the focus in this test case, are discretized by using centered
differencing. When the grid spacing is dropped by a factor of 2, one expects the error to
drop by a factor of 4 since the centered differencing is second order accurate.

Figure 3: Species Fraction Field Solution for D = 0.25 cm
2

sec , u = 0 cmsec , w = 10−5 cm
sec at times

0.5s to 2.5s in intervals of 0.5s. Values of 1.0 denote pure O2 and values of 0.0 denote pure
N2.

Advective Flow

The second test case was D = 10−5 cm2

sec , u = 0 cmsec , w = 5 cmsec . These values signify an
advective driven flow and this case will highlight how much numerical diffusion is taking
place in the model. Figure 6 is a plot of this advective driven flow for ∆r = 0.08cm.
Looking at this graph, we can see that there appears to be a significant amount of diffusion
taking place because the interface is not sharp. To investigate this further, several ∆r were
tested and these values were the same ∆r values used in the previous case. Figure 7 is a
plot of the different ∆r values and their Y (r = 2) solutions at several times. Looking at
the results for ∆r = 0.08cm it is clear that the diffusive layer interface curve is not as sharp
as it should be for D = 10−5 cm2

sec . As ∆r decreases, this interface becomes much sharper.
Ultimately, at ∆r = 0.01cm numerical diffusion becomes very small and the interface

7

Figure 4: Species Fraction Solution at r = 2 for D = 0.25 cm
2

sec , u = 0 cmsec , w = 10−5 cm
sec at

times 0.5s to 2.5s in intervals of 0.5s for multiple values of ∆r. Values of 1.0 denote pure
O2 and values of 0.0 denote pure N2.

becomes sharp. Thus, to minimize the effect of numerical diffusion in future simulations,
a value of ∆r = 0.01cm or smaller will be used. Assuming the ∆r = 0.01cm is the correct
solution, Figure 8 plots the error for the ∆r = 0.08cm solution and the ∆r = 0.02cm
solution. Looking at Figure 8, we see that when the grid spacing is decreased by a factor
of 4 the error decreases by a factor of 4 also. This agrees with the upwind differencing
scheme because the advective terms, those that are driving the solution in this test case,
are discretized according to a first order scheme. Thus, as the grid spacing decreases by a
factor of 2, the error is expected to decrease by a factor of 2 also.

5 Stream function and Vorticity Algorithm

In order to solve equations (5) and (6), an algorithm presented in [6] will be used
at each time-step. To begin, Ω is calculated from the current u and w fields. This is done
following the relation that Ω = ∂u

∂z −
∂w
∂r . This allows for the vorticity to be calculated

according to the current u and w fields. The current vorticity field maybe be used instead
of calculating Ω from u and w, but the u and w fields have updated after solving for Ω
and ψ at the previous time-step. To maintain the highest degree of accuracy and to stay
true to the algorithm in [6], the current values of u and w will be used to recalculate the

8

Figure 5: Error for solutions of Y between ∆r = 0.08cm and ∆r = 0.02cm and between
∆r = 0.08cm and ∆r = 0.01cm for D = 0.25 cm

2

sec and w = 10−5 cm
sec .

Figure 6: Species Fraction Field Solution for D = 0.25 cm
2

sec , u = 0 cmsec , w = 6 cmsec at times 0.5s
to 2.5s in intervals of 0.5s. Values of 1.0 denote pure O2 and values of 0.0 denote pure N2.

9

Figure 7: Species Fraction Solution at r = 2 for D = 0.25 cm
2

sec , u = 0 cmsec , w = 10−5 cm
sec at

times 0.5s to 2.5s in intervals of 0.5s for multiple values of ∆r. Values of 1.0 denote pure
O2 and values of 0.0 denote pure N2.

Ω instead of using the current Ω values. This ensures that the Ω values are in complete
agreeance with the current velocity values.

Once Ωn has been calculated, Ωn+1 needs to be found. To do this, (6) will be used.
Because (6) is an advective diffusive equation, the same upwind differencing algorithm used
to solve (4) will be used to solve (6). Applying the upwind differencing discretization, (6)
becomes

Ωn+1(j, i)− Ωn(j, i)

∆t
+ un(j, i)

Ωn(j, i)− Ωn(j, i− 1)

∆r
+ wn(j, i)

Ωn(j, i)− Ωn(j − 1, i)

∆z
=

Ωn(j, i)un(j, i)

(i− 1)∆r
+ η

(
1

(i− 1)∆r

Ωn(j, i+ 1)− Ωn(j, i− 1)

2∆r
− Ωn(j, i)

(i− 1)2∆r2

+
Ωn(j, i+ 1)− 2Ωn(j, i) + Ωn(j, i− 1)

∆r2
+

Ωn(j + 1, i)− 2Ωn(j, i) + Ωn(j − 1, i)

∆z2

)
(10)

Solving (10) for Ωn+1(j, i) we see that

10

Figure 8: Error for solutions of Y between ∆r = 0.08cm and ∆r = 0.02cm and between
∆r = 0.08cm and ∆r = 0.01cm for D = 0.25 cm

2

sec and w = 10−5 cm
sec .

Ωn+1(j, i) =Ωn(j, i) + ∆t

(
Ωn(j, i)un(j, i)

(i− 1)∆r
+ η

1

(i− 1)∆r

Ωn(j, i+ 1)− Ωn(j, i− 1)

2∆r

− η Ωn(j, i)

(i− 1)2∆r2
+ η

Ωn(j, i+ 1)− 2Ωn(j, i) + Ωn(j, i− 1)

∆r2

+ η
Ωn(j + 1, i)− 2Ωn(j, i) + Ωn(j − 1, i)

∆z2
− un(j, i)

Ωn(j, i)− Ωn(j, i− 1)

∆r

− wn(j, i)
Ωn(j, i)− Ωn(j − 1, i)

∆z

)
(11)

Again, to avoid unnecessary memory accesses and to minimize computation time, all of
the terms in front of each matrix reference were gathered. This allows (11) to be written
as

11

Ωn+1(j, i) =

(
1− ∆t

∆r
un(j, i)− ∆t

∆z
wn(j, i) +

∆t

∆r(i− 1)
un(j, i)− ∆tη

(i− 1)2∆r2
− 2∆tη

∆r2
− 2∆tη

∆z2

)

Ωn(j, i) +

(
∆t

∆r
un(j, i)− ∆tη

2(i− 1)∆r2
+

∆tη

∆r2

)
Ωn(j, i− 1) +

∆tη

∆z2
Ωn(j + 1, i)

+

(
∆tη

2(i− 1)∆r2
+

∆tη

∆r2

)
Ωn(j, i+ 1) +

(
∆t

∆z
wn(j, i) +

∆tη

∆z2

)
Ωn(j − 1, i)

(12)

Thus, (12) allows for Ω to be solved for at the next time-step and is the formula that
is used in the project code.

The next step of the algorithm presented in [6], is to solve for ψ at the next time-
step by using (5) and the recently calculated values of Ωn+1. To solve (5), I have chosen to
implement a Successive Over Relaxation (SOR) iterative algorithm that uses Chebyshev
Acceleration to calculate the relaxation parameter ω. Before discussing the specifics of the
SOR algorithm and Chebyshev Acceleration , let (5) be discretized. Upon discretization,
it can be shown that

−Ωn+1(j, i) =
1

(i− 1)∆r

(
ψn+1(j, i+ 1)− 2ψn+1(j, i) + ψn+1(j, i− 1)

∆r2

)

− 1

(i− 1)2∆r2

(
ψn+1(j, i+ 1)− ψn+1(j, i− 1)

2∆r

)

+
1

(i− 1)∆r

(
ψn+1(j + 1, i)− 2ψn+1(j, i) + ψn+1(j − 1, i)

∆z2

)
(13)

Moving the forcing term Ωn+1(j, i) to the right hand side and calling the formula res,
we have

res =Ωn+1(j, i) +
1

(i− 1)∆r

(
ψn+1(j, i+ 1)− 2ψn+1(j, i) + ψn+1(j, i− 1)

∆r2

)

− 1

(i− 1)2∆r2

(
ψn+1(j, i+ 1)− ψn+1(j, i− 1)

2∆r

)

+
1

(i− 1)∆r

(
ψn+1(j + 1, i)− 2ψn+1(j, i) + ψn+1(j − 1, i)

∆z2

)
(14)

12

If the correct solution field ψn+1 is known, then res = 0 by definition. However, if
the solution field for ψn+1 is not known and an incorrect solution is used, then res 6= 0.
Thus, if ψn were put into (14) for all of the values of ψn+1, res 6= 0 because ψn is not in
agreeance with the forcing term Ωn+1.

The SOR algorithm calls for ψn to put into (14) and to be updated according to
the formula

ψ(j, i) = ψ(j, i)− ωres
e

(15)

where e is the constant term in front of ψn+1(j, i) in the formula in (14) and ω is the
relaxation parameter. The formula (15) is to be iterated multiple times until the value of
the solution field’s residual falls beneath a specified tolerance threshold. The method for
measuring the residual of the solution fields is up to the programmer. For this model, the
measurement will be the summation of |res| for all of the interior points.

The SOR algorithm and its resulting formula, (15), is much faster than the Jacobi
and Gauss-Seidel iterations and is guaranteed to converge as long as a ω ∈ (0, 2). There
is no way to foresee the exact number of iterations needed to reduce the residual of the
solution field below the specified threshold. But there is a method to dynamically calculate
the best ω value which, in turn dramatically reduces the number of iterations required.
This method is Chebyshev Acceleration [8].

Chebyshev Acceleration calls for ω = 1 for the first iteration through all of the
interior points. This value of ω signifies that the first iteration is a Gauss-Seidel iteration.
The second value of ω is then set to

ω =
1

1− 0.5q2
(16)

where

q =
cos(πm) + ∆r2

∆z2
cos(πn)

1 + ∆r2

∆z2

(17)

After the first two iterations, the value for ωk, the ω value for the kth iteration, is
determined by

ωk =
1

1− 0.25q2ωk−1
(18)

13

A series of computational experiments were run on this algorithm. These exper-
iments involved monitoring ω to ensure that ω ∈ (0, 2). By ensuring ω ∈ (0, 2), it is
guaranteed that the SOR method will converge. For this system and the values of ∆r
and ∆z that were tested, ω was always larger than 1 and never larger than 1.75. After
multiple iterations, the ω value converged to approximately 1.64. Thus, we have a high
amount of confidence that the condition that ω ∈ (0, 2) is satisfied. The optimal Ω value,
1.64, could be hard coded into the program to circumvent the Chebyshev Acceleration, but
by changing ω according to the Chebyshev Acceleration faster convergence is guaranteed
when compared to simply using the optimal ω value.

6 Boundary Conditions

During the early stages of coding, an effort has been made to create test cases
that have the same initial and boundary conditions that the model of the experiments in
[1] and [2] will have. This is true of the boundary conditions that were implemented in
the testing of the species fraction model. Keeping with this effort and maintaining the
simple axisymmetric cylindrical container that was used in the species fraction tests, a set
of boundary conditions regarding u and w were devised. At the bottom of the container,
u = 0 cmsec and w = c cmsec where c is a specified inlet velocity. This signifies that the flow into
the container is purely axial. On the outside wall of the container no slip conditions are
implemented which implies that u = w = 0 cmsec . At the top of the container, there will be

an outlet flow which means ∂u
∂z = ∂w

∂z = 0. Finally, on the interior axis, symmetry must be

maintained so ∂u
∂r = ∂w

∂r = 0.
Since the problem has been changed from solving for u and w to ψ and Ω, boundary

conditions for ψ and Ω need to be calculated from the boundary conditions for u and w.
The boundary conditions that arise are as follows. At the bottom of the container Ω = 0
and ψ = 0.5c(r2 −R2) where R is the overall radius of the container (5cm). On the inner
axis of the container, ∂ψ

∂r = ∂Ω
∂r = 0. For the top of the container, ∂ψ

∂z = ∂Ω
∂z = 0. Finally,

on the outer wall of the container, ψ = 0 and ∂Ω
∂r = 0.

The boundary conditions for ψ and Ω, including those for Y , are boundary con-
ditions for inlets, axes of symmetry, outlets, and no slip walls. These boundaries will
be used to the model of the experiments in [1] and [2], which is why a large amount of
time was spent designing test cases and deriving boundary conditions for the axisymmetric
cylindrical container. By doing so, the boundary conditions required for the model of the
experiments in [1] and [2] are already derived.

7 Future Work and Revised Timeline

Staying true to my original timeline, I will debug and validate my axisymmetric
cylindrical container code during the month of December, and if necessary January. Origi-

14

nally, I hoped to have the Y , ψ, and Ω solvers programmed by this time along with having
an analytical solution for stagnation flow. During my coding, I felt that it was more pru-
dent to debug and test the Y solver code before coding the ψ and Ω solvers. By doing
this, I could have confidence that any errors encountered while debugging the axisymmet-
ric cylindrical container code could be found in the ψ and Ω solvers. Thus, in the respect
of debugging, I am ahead of schedule. However, this came at the expense of pushing the
stagnation flow solution back to a later date. I feel that this switch will save me valuable
time in the spring semester.

In order to follow through with my original plan, I will be finding the analytical
solution for stagnation flow in January. This will allow me to validate the results of the
ψ and Ω solvers. To further validate the Y solver, I will also be working on finding the
analytical solution of (4) for the case of D = 0.25 cm

2

sec , u = 0 cmsec , and w = 0 cmsec and for

the case of D = 0.0 cm
2

sec , u = 0 cmsec , and w = 5 cmsec . (This has been tested numerically and
presented earlier in this paper.)

During the month of February, I will introduce the pipe and fritted ceramic disk
from [1] and [2] into the cylindrical container. After creating these additions to the do-
main, I will test the code against the known diffusion constant for fuel vapors in air as was
planned originally. The remaining months, March and April, will be spent wrapping up
any loose ends and applying the code to the experimental datasets of [1] and [2] in order
to find the diffusion constant of fuel vapors in film and in foam. The month of May, will
be spent writing my final paper and presentation.

8 Platform and Deliverables

The model is being written in Fortran90 and compiled using the gfortran compiler.
The simulations are being run on a MacBook Pro containing a 2.4 GHz Intel Core 2 Duo
processor and 3 GB of memory. After the project is completed, a software package that is
capable of finding diffusion coefficients for a fuel type in a film or foam will be delivered.
The experimental concentration data that served as an input to the model will also be
delivered.

15

9 References

1. Leonard, J.T., and Burnett, J.C. “Suppression of Fuel Evaporation by Aqueous
Films of Fluorochemical Surfactant Solutions”. NRL Report 7247. 1974

2. Williams, B.A., Murray, T., Butterworth, C., Sheinson, R.S., Fleming, J., White-
hurst, C., and Farley, F. “Extinguishment and Burnback Tests of Fluorinated and Fluorine-
free Firefighting Foams with and without Film Formation.“ Suppression, Detection, and
Signaling Research and Applications- A Technical Working Conference (SUPDET 2011).
March 22-25, 2011. Orlando, Florida.

3. Williams, B.A, Sheinson, R.S., and Taylor, J.C. “Regimes of Fire Spread Across an
AFFF – Covered Liquid Pool”. NRL Report. 2010

4. Ananth, R, and Farley, J.P. “Suppression Dynamics of a Co-Flow Diffusion Flame
with High Expansion Aqueous Foam”. Journal of Fire Sciences. 2010

5. Bird, R.B., Stewart, W.E., and Lightfoot, E.N. Transport Phenomena. John Wiley
and Sons. 1960

6. Pozrikidis, C. Introduction to Theoretical and Computational Fluid Dynamics. Ox-
ford University Press. 1997

7. Panton, R.L. Incompressible Flow. John Wiley and Sons. 1984.

8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. Numerical Recipes
in Fortran. Cambridge University Press. 1992

16

