

Reducing Genome Assembly
Complexity with Optical Maps

● Lee Mendelowitz
Lmendelo@math.umd.edu

● Advisor: Mihai Pop
mpop@umiacs.umd.edu
Computer Science Department
Center for Bioinformatics and Computational Biology

AMSC 664
Final Presentation

5/11/2012

mailto:Lmendelo@math.umd.edu
mailto:mpop@umiacs.umd.edu

● Multidigraph with one strongly connected component.
● Reconstruction of genome is an Eulerian tour
● In-degree = Out-degree
● Nodes labeled with sequence of length K-1
● Overlaps of K-2 bases
● # of Eulerian tours combinatorial in the number of repeats

Genome Assembly with
de Bruijn Graphs

ACT

CTA

TACCTG

TGA

GACACTACTGACT
ACT
 CTA
 TAC
 ACT
 CTG
 TGA
 GAC

Genome = ACTACTGACT, K = 4

ACT CTACCTGAC

Equivalently:

Graph Simplification Operations

Kingsford, C., Schatz, M. C., & Pop, M. (2010). Assembly complexity of prokaryotic genomes
using short reads. BMC bioinformatics, 11, 21.

de Bruijn Graph
Mycoplasma genitalium (K=100)

Experimental Overview

Project Goals
● Develop the Contig-Optical Map Alignment Tool.

● Aligns contigs to an optical map based on restriction pattern with
sequence information.

● Evaluate significance of alignments through a permutation test.

● Develop the Graph Simplification Tool, with functionality to:
● Read and write graphs to/from files.
● Count the number of unique shortest paths between two nodes.
● Modify the graph by replacing a selected path with a single edge.
● Simplify the graph through path compression.

● Develop a Pipeline:
● Integrate the Contig-Optical Map Alignment Tool and Graph

Simplification Tool.
● Generates simulated optical maps.
● Evaluate the correctness of the graph simplification operations
● Write debug level logs files and summary files to disk.
● Submit jobs to Condor cluster.

● Validate pipeline on dataset of 351 prokaryotic reference genomes.

Project Schedule & Milestones

Phase I (Sept 5 – Nov 27)
● Complete code for the contig-optical map alignment tool (C++)
● Test algorithm by aligning user-generated contigs to user-generated optical map
● Begin implementation of networkx for working with assembly graphs

Phase II (Nov 27 – Feb 14)
● Finish de Bruijn graph utility functions.
● Complete code for the assembly graph simplification tool (Python)
● Test assembly graph simplification tool on simple user-generated graph.
● Implement parallel implementation of the contig-optical map alignment tool using

OpenMP

Phase III (Feb 14 – May 8)
● Integrate alignment tool and graph simplification tool into a single pipeline (Python)
● Validate performance of the contig-optical map alignment tool and the graph

simplification tool with archive of de Bruijn graphs for reference bacterial genomes.
● Compute reduction in graph complexities.

Algorithmic Recipe

1. Align contigs (graph edges) to optical map

2. Tile uniquely aligned contigs across optical map

3. Find shortest paths between aligned contig

neighbors.

4. Select unique shortest paths as gap closure

candidates.

5. Perform global alignment of gap closure candidate to

the optical map and accept/reject path.

6. Replace accepted paths in the graph with a single

edge.

7. Perform path compression.

8. Evaluate graph correctness

(A,B) (F,D)

[(B,C), (C,F)]

A

B

C

D

F

E

Contig-Optical Map Alignment Tool

Scoring Alignments

1937
100

4713
236

9742
487

9241
462

G G G A T A
3187
243

6977
366

11128
471

1245
153

3956
294

G C

A A G A T C G AC G

C C C T A T T T C TC T A G C T

1327 10013 8932
G CC T A A

1327 Contig1

Scoring Alignments

Alignment Algorithm

Prefix alignment scoreMissed restriction sites Sequence Edit Distance

Chi-Square

Assembly Graph Simplification Tool

Count Number of Shortest Paths

● Goal: Count the number of unique shortest paths from source
node to target node.
● Dijkstra's algorithm: O(E + V log(V))

● Store examined nodes with tentative distances in a priority queue.
● Store set of visited nodes.

● For each node store a set of predecessors on shortest paths from source.

Distance from A:
A: 0
B: 2
D: 1
C: 3
E: 2

Predecessors
A: []
B: [A]
D: [A]
C: [B,D]
E: [D]

Node Paths: [A,B,C], [A,D,C]
Edge Paths: [(A,B,0), (B,C,0)]
 [(A,B,0), (B,C,1)]
 [(A,B,1), (B,C,0)]
 [(A,B,1), (B,C,1)]
 [(A,D,0), (D,C,0)]

Edge denoted by (Node 1, Node 2, Edge Key)

Graph Simplification

● Replace a given path with a single edge.
● Delete any disconnected nodes.
● Perform path compression. (A → C → H)
● Assert validity of the graph

A

B

C

D

F

H

A

DH

(A,B) (F,D)

[(B,C), (C,F)]

Validate on 351 Prokaryotic Genomes

● Simulate optical maps from reference genomes.
● Enzyme = BamHI (GGATCC), K=100, Fragment Variance = 0.3 * Fragment Length

● No error
● Low error (sizing error s.d = 1%, 10% substitutions, 5% missing sites)
● High error (sizing error s.d. = 5%, 20% substitutions, 10% missing sites)

● Evaluate alignment correctness:
● Alignment within 0.1% of true contig location

● Evaluate path correctness for selected closure paths using longest common subsequence.
● True path: [(A,B,0), (B,C,1), (C,F,0), (F,D,2)]
● Selected Path: [(A,B,0), (B,C,1),(C,E,1),(E,F,0),(F,D,2)]
● Common path length from edges (A,B,0) + (F,D,2)
● Path correctness is ratio of common length to true length

● Evaluate reduction in complexity. Example: a = 3

(A,B) (F,D)

[(B,C), (C,F)]

REPEAT
I
1

I
2

I
3

O
1

O
2

O
3

Validation Data Set: 351 Genomes

Validation Data Set: 351 Genomes

Alignment Results:
(Error Free Optical Map)

● All aligned contigs have an alignment in correct position (within 0.1% of true location)

Alignment Results:
(Error Free Optical Map)

Outlier: Nocardia farcinica (NC_006361)

**
edge_40_88_0 311 0.0
/cbcb/project-scratch/lmendelo/debruijn/condor/noError/NC_006361/NC_006361.opt 438 440
 Contig Frags | Optical Frags
 220 = 220 G;G | 4246 = 4246 G;G
 12 = 12 C;G | 12 = 12 C;G
 79 = 79 | 789 = 789
edge_40_88_0 311 0.0
/cbcb/project-scratch/lmendelo/debruijn/condor/noError/NC_006361/NC_006361.opt 445 447
 Contig Frags | Optical Frags
 220 = 220 G;G | 1431 = 1431 G;G
 12 = 12 C;G | 12 = 12 C;G
 79 = 79 | 1223 = 1223
edge_40_88_0 311 0.0
/cbcb/project-scratch/lmendelo/debruijn/condor/noError/NC_006361/NC_006361.opt 1213 1215
 Contig Frags | Optical Frags
 220 = 220 G;G | 5221 = 5221 G;G
 12 = 12 C;G | 12 = 12 C;G
 79 = 79 | 2664 = 2664
edge_40_88_0 311 0.0
/cbcb/project-scratch/lmendelo/debruijn/condor/noError/NC_006361/NC_006361.opt 1447 1449
 Contig Frags | Optical Frags
 220 = 220 G;G | 702 = 702 G;G
 12 = 12 C;G | 12 = 12 C;G
 79 = 79 | 3076 = 3076

• Many contigs with “uninformative” restriction
pattern

Number of Shortest Paths
(Error Free Optical Map)

Accepted Path Closures
(Error Free Optical Map)

Improvements To Assembly
(Error Free Optical Map)

NC_000868 Pyrococcus abyssi
(Error Free Optical Map)

Original Graph Final Graph

NC_005823

 Pyrococcus
abyssi

Genome size:
4.3 Mbp

Nodes: 134
Edges: 415
N50: 55,117
Complexity: 1007

NC_005823

 Pyrococcus
abyssi

Genome size:
4.3 Mbp

Nodes: 104
Edges: 309
N50: 124,312
Complexity: 707

Incorrect: 2,373 out of
2,722,585

Results Across Error Settings

Run Times

CBCB Condor Cluster:
24 nodes
12 cores, 48 GB RAM

Mean run time ~ 4 minutes
Median run time ~ 1 minute

Conclusions &
Potential Improvements

Conclusions
● Unique shortest path heuristic works well (when a unique shortest
path exists).
● Many contigs are “unalignable” due to lack of restriction sites or
uninformative restriction patterns.
● Most of the repeat structure of the genome is contained in a small
fraction of the genome.

Potential Improvements
● Choose the most informative restriction enzyme for the genome.
● Use multiple rounds of contig alignment and graph simplification.
● Combine paired read information with optical maps.
● Use multiple optical maps.

Deliverables

● Source code for contig-optical map alignment tool
● Source code for graph simplification tool
● Source code for pipeline
● Log files & summary files for simulations
● Written report

References

Kingsford, C., Schatz, M. C., & Pop, M. (2010). Assembly complexity of prokaryotic genomes

using short reads. BMC bioinformatics, 11, 21.

Nagarajan, N., Read, T. D., & Pop, M. (2008). Scaffolding and validation of bacterial genome
assemblies using optical restriction maps. Bioinformatics (Oxford, England), 24(10), 1229-35.

Pevzner, P. a, Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences of the United States of America,
98(17), 9748-53.

Samad, a, Huff, E. F., Cai, W., & Schwartz, D. C. (1995). Optical mapping: a novel, single-molecule

approach to genomic analysis. Genome Research, 5(1), 1-4.

Schatz, M. C., Delcher, A. L., & Salzberg, S. L. (2010). Assembly of large genomes using second-

generation sequencing. Genome research, 20(9), 1165-73.

Valouev, A., Li, L., Liu, Y.-C., Schwartz, D. C., Yang, Y., Zhang, Y., & Waterman, M. S. (2006).

Alignment of optical maps. Journal of Computational Biology, 13(2), 442-62.
doi:10.1089/cmb.2006.13.442

Wetzel, J., Kingsford, C., & Pop, M. (2011). Assessing the benefits of using mate-pairs to resolve

repeats in de novo short-read prokaryotic assemblies. BMC bioinformatics, 12, 95.

Alignment Algorithm

S
00

S
01 S

11
 (uses S

00
)

S
12

(uses S
01

)

S
00

S
01

S
02

S
10

S
11

S
12

X

S
01

S
10

S
11

S
11

S
12

S
12

(uses S
00

)

S
12

S
12

Contig

Optical Map

0 1

0 1 2

