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Abstract

The goal of genome assembly is to reconstruct contiguous portions of a genome (known as
contigs) given short reads of DNA sequence obtained in a sequencing experiment. De Bruijn
graphs are constructed by finding overlaps of length £ — 2 between all substrings of length
k — 1 from reads of at least k bases, resulting in a graph where the correct reconstruction of
the genome is given by one of the many possible Eulerian tours. The assembly problem is
complicated by genomic repeats, which allow for exponentially many possible Eulerian tours,
thereby increasing the de Bruijn graph complexity. Optical maps provide an ordered listing
of restriction fragment sizes for a given enzyme across an entire chromosome, and therefore
give long range information that can be useful in resolving genomic repeats. The algorithms
presented here align contigs to an optical map and then use the constraints of these alignments
to find paths through the assembly graph that resolve genomic repeats, thereby reducing the
assembly graph complexity. The goal of this project is to implement the Contig-Optical Map
Alignment Tool and the Assembly Graph Simplification Tool and to use these tools to simplify
the idealized de Bruijn graphs on a database of 351 prokaryotic genomes.

1 Introduction

Genome assembly is the computational task of determining the total DNA sequence of an or-
ganism given reads of DNA sequence obtained from a sequencing experiment. DNA is a dou-
ble stranded helical molecule, where each strand comprises a sugar-phosphate backbone and
a sequence of nucleobases. The four nucleobases are: Adenine (A), Thymine (T), Guanine (G),
and Cytosine (C), with complementary base pairing between (Guanine, Cytosine) and (Adenine,
Thymine). For each nucleobase along the primary strand, the complementary base appears in
the same position of the complementary strand. Inside the cell, DNA molecules are condensed
into a coiled secondary structure known as a chromosome. Due to the compact structure of the
chromosome, the DNA bases are relatively inaccessible. As a result, experimentalists do not have



the ability to read an organism’s DNA sequence directly from the chromosome itself. Instead, it is
necessary to perform a DNA sequencing experiment.
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Figure 1: This figure provides the context for the algorithms to be developed in this project. A se-
quencing experiment produces short reads of DNA sequence from a set of chromosomes. Genome
assembly software uses the reads to construct an assembly graph, and from the assembly graph
outputs a set of contiguous DNA sequence known as contigs. In an optical mapping experiment,
the same chromosomes are digested with a restriction enzyme, which cuts the DNA at sites with a
specific recognition sequence, usually six base pairs in length. An optical map gives the restriction
site pattern for each chromosome, providing the mean and standard deviation for each fragment
length, as well as limited sequence information around each restriction site. An in-silico contig
restriction map can be created for each assembled contig. The tools created as part of this project
will align contigs to the optical map and search for unique paths through the assembly graph that
are consistent with the optical map, thereby extending contig length and reducing the complexity
of the assembly graph.

1.1 DNA Sequencing and Genome Assembly

In a DNA sequencing experiment, DNA is extracted from a sample and sheared into random
fragments. The DNA sequence at the end of the fragments is determined experimentally, produc-
ing a set of reads. Today’s sequencing technology is highly automated and parallelized, cheaply
producing short reads of 35 to 400 base pairs long [6]. While the reads are error prone, sequenc-
ing machines deliver high throughput, providing many reads that cover the same portion of the
genome. The task of genome assembly is an inverse problem which is often compared to the pro-



cess of assembling a jigsaw puzzle: given the DNA reads, an assembler must assemble the unique
genome from which the reads originate. In practice, an assembler will not be able to perfectly
reconstruct the entire genome, and instead will output a set of contiguous DNA sequences known
as contigs.

Currently there are two different formulations of the genome assembly problem. In one formu-
lation, known as overlap-layout-consensus (OLC), each read obtained in a sequencing experiment
is compared to every other read in search of overlaps. This produces what is known as an overlap
graph where reads are nodes and edges represent overlaps. A reconstruction of the genome is
given as a Hamiltonian path through the graph that visits each node exactly once. Identifying
Hamiltonian paths is NP-Hard, so algorithms that use OLC rely on various heuristics to produce
contigs [4].

A second approach to genome assembly is to construct a de Bruijn graph from reads [3]. For
a given read length of £ > 1, a de Bruijn graph can be constructed by creating a node for each
length (k — 1) substring of DNA bases that appears in a read. A directed edge is drawn from node
A tonode B if B follows A in a read (meaning B overlaps A by k — 2 characters). Given perfect
sequencing data such that each node in the graph is a length k£ — 1 substring from the genome
and each k — 2 overlap is represented by exactly one edge, then the correct reconstruction of the
genome is given by an Eulerian tour through the graph that uses each edge exactly once. From
the construction of the de Bruijn graph, it should be clear that the in-degree of a node is equal to
the out-degree, except for the starting and ending node corresponding to the beginning and end
of a chromosome. For the case of a circular chromosome, each node will have equal in- and out-
degrees. In addition, a perfect de Bruijn graph for a circular chromosome will consist of a single
strongly connected component.

In contrast to Hamiltonian paths, Eulerian tours are easy to identify and can be found in linear
time [3]. The de Bruijn graph formulation of genome assembly has the advantage that it avoids
the computationally expensive pairwise comparison of all reads. However, it comes with the dis-
advantage that information of the sequence of each read is lost after nodes with sequence of length
k — 1 are formed. In addition, a de Bruijn graph structure is highly sensitive to sequencing errors,
which yield length k& — 1 substrings which do not exist in the genome, resulting in extraneous
nodes and edges in the graph.

The original de Bruijn graph with nodes of length £ — 1 can be simplified through a series of
graph compression techniques which reduce the number of nodes and edges but leave the DNA
sequence spelled by each possible Eulerian tour unchanged (see [1]]). As a result of these lossless
compression techniques, edges become labeled with DNA sequence. This simplified graph has
the property that the sequence between each edge and the nodes which define it overlap by k£ — 2
bases.

Even with graph compression techniques, the number of possible Eulerian tours for a given
graph is exponential in the number of repeat nodes (i.e. nodes which must be traversed multiple
times in an Eulerian tour). The number of potential genome reconstructions ending at node ¢ of a
de Bruijn Graph G = (V, F) with node set V, and collection of directed edges F can be determined
exactly [1]. Let A be the adjacency matrix of G, and let d~ (u) and d* (u) be the in-degree and out-
degree of node u. Define r such that r, = d*(¢) + 1 for node ¢ and r,, = d*(u) for all nodes u # t.
The Laplacian matrix of G is given by L = diag(r) — A. Then the number of possible linear
genome reconstructions W corresponding to Eulerian tours through G ending at node ¢ is given
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For the case of a circular chromosome, the number of genome reconstructions is given by W (G, t) /d* (t)
since each circular genome has d (¢) linear representations that end at node t.

As an example of the application of (1)), consider the simplified de Bruijn graph with k& = 100
for the single circular chromosome of the bacterium Mycoplasma genitalium, which has the smallest
known cellular genome at 580,076 base pairs. The de Bruijn graph has 84 nodes and 120 edges
where 28 nodes are repeated twice and 4 nodes are repeated three times in each Eulerian tour.
The number of unique genome reconstructions from this de Bruijn graph for the smallest known
cellular genome is a staggering 21,897,216.

Since the number of possible genome reconstructions for the typical de Bruijn graph is so large,
it is useful to define a different metric that measures the repeat structure of the graph. For a given
repeat node v with d*(v) = d~(v) = a, the complexity of the node, C(v), is defined to be equal to
the number of targeted experiments necessary to match each incoming edge with each outgoing
edge [7]:
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The sum is from i = 2 to i = a since once these incoming edges are matched to an outgoing
edge, the last remaining incoming edge is automatically matched to the last remaining outgoing
edge. The total finishing complexity of a de Bruijn graph G = (V, E) is the sum of the finishing
complexity of the repeat nodes:
C(G) =) C(v) 3)
veV
Since the number of Eulerian paths is exponential in the number of repeat nodes, the genome
assembly task is to identify the one Eulerian tour of many possible tours that gives the correct
reconstruction of the genome. Additional experimentally obtained information must be used to
provide constraints on the allowable tours. Experimentally obtained information frequently used
for this purpose are pairs of reads, known as mate pairs, that are separated by an approximately
known distance in the genome [4]. Instead, in this project, we consider using information pro-
vided by an optical map.

1.2 Optical Mapping Technology

An optical map is produced by immobilizing a DNA molecule tagged with fluorescent marker on
a slide [5]. A restriction enzyme is washed over the slide, and the enzyme cuts the DNA at loci
with a particular 4 to 8 base pair recognition sequence known as a restriction site, producing a set
of restriction fragments whose lengths are measured. As an example, the restriction enzyme Pvull
has recognition sequence CAGCTG, so Pvull will cut the DNA molecule wherever this sequence of
bases occurs. An optical map provides an ordered list of restriction fragment sizes along the length
of the DNA molecule. Future optical mapping techniques may also be able to provide limited
DNA sequence data around the restriction sites. Experimental errors from the optical mapping
process include missing restriction sites due to partial enzyme digestion of the molecule, false



restriction sites due to random breakages of the DNA molecule, and missing small restriction
fragments. Despite these errors, optical maps provide useful long range information over the
entire length of a DNA molecule - information that can be used to determine segments of the
correct Eulerian tour through the de Bruijn graph.

2 Project Objectives

The goal of this project is to build software that uses optical maps with limited sequence infor-
mation around each restriction site to resolve repeats in an idealized de Bruijn assembly graph,
thereby extending the length of contigs and reducing the number of edges and nodes in the graph.
Two separate pieces of software will be developed. The Contig-Optical Map Alignment Tool will
align contigs to an optical map based on the ordered listing of restriction fragment lengths. The
Assembly Graph Simplification Tool will provide functionality to simplify a de Bruijn graph using
a unique shortest path heuristic. Lastly, a pipeline will be developed to integrate these tools.

These algorithms will be individually validated on user generated data sets. The pipeline
will be used to validate these tools collectively on a database of ideal de Bruijn graphs for 351
prokaryotic genomes.

3 Approach

The software produced for this project consists of two major components. The first component
finds alignments of contigs extracted from the de Bruijn graph to the optical map. The second
component will use contig alignments to simplify the de Bruijn graph.

3.1 Contig-Optical Map Alignment Tool

The Contig-Optical Map Alignment Tool finds significant alignments of contigs extracted from
a de Bruijn graph to a single optical map. Contigs can easily be extracted from the de Bruijn
graph by reading the sequence along unambiguous paths that do not pass through any repeat
node. Working with de Bruijn graphs that have been simplified through the graph compression
techniques from [1], contigs are given by the concatenated DNA sequence of neighboring nodes,
including the sequence on the edge. The inputs to this tool will be the DNA sequence for each
contig to be aligned, the optical map data, and the recognition sequence of the enzyme used to
produce the optical map. The optical map data consists of an ordered list of restriction fragments
lengths, the standard deviations of the restriction fragment lengths, and several bases of sequence
data on each side of the restriction site.

First, “in-silico” restriction sites are identified along each contig using the known recognition
sequence of the enzyme used to produce the optical map. This produces an ordered list of restric-
tion fragment lengths that would be produced if the contig were to be perfectly digested by the
same enzyme used to produce the optical map. Next, each contig is aligned to the optical map
through a dynamic programming algorithm which scores alignments based on a comparison of
aligned restriction fragment lengths, the number of missed restriction sites, and the Levenshtein
edit distance between the DNA sequence around the aligned restriction sites of the contig and op-
tical map. Lastly, the statistical significance of each alignment is evaluated through a permutation
test.



The total alignment score is given by a weighted sum of the x? score S, 2, the number of missed
restriction sites m,, and the sum of the Levenshtein edit distance at the aligned restriction sites Sy,
with constant weights C, and C,.. The best match is given by the lowest score.

S =582+ Crxmp+Cs x Sy (4)

The x? score 5,2 measures the sum of the squared difference of restriction fragment lengths,
where the length differences are measured in standard deviation units. Each true optical fragment
length can be modeled as ~ N (o;,02) where o, is the mean and o7 is the variance of the fragment
length obtained from repeated experimental measurements. The x? scoring function for the align-

ment of in-silico contig restriction fragments of lengths ¢y, ..., c,—1 to optical map fragments of
lengths oj, ..., 04, with corresponding standard deviations o}, ..., 0}, is given by:
S (6 0541)°
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The Levenshtein edit distance is the minimum distance between two character strings using a
“+1” cost for each character deletion, insertion, or substitution, and is computed using dynamic
programming in O(mn) for comparison of two stings with lengths m and n. S; represents the
total edit distance at aligned sites:

n—2
Sq = Z dijvi (6)
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where d; j; is the edit distance of the ith aligned site. Note that the sum in (6) only includes a
total of n — 1 terms since when n fragments are aligned, n — 1 restriction sites are aligned.

3.1.1 Dynamic Programming

The scoring function given by (4) admits a dynamic programming algorithm to find the best pos-
sible alignment of the entire contig to the optical map through the jth restriction fragment of the
optical map [2]. Let S;; be the score of the best alignment matching the end of the ith contig
fragment with the end of the jth optical map fragment. This score can be determined by consider-
ing extending previously scored alignments, and incorporating the appropriate edit distance and
missed restriction site penalties for each possible extension:
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where d;; is the edit distance for the alignment of the ith restriction site from the contig to the jth
restriction site from the optical map.

For a given k and [, the score given by (7) is for an alignment where optical map restriction
fragments k thru i are considered to be one restriction fragment with k — i false-positive restriction
sites, and contig restriction fragments [ thru j are considered to be one contig restriction fragment
with j — [ restriction sites missing from the optical map. This gives an O(m?n?) algorithm, where
m is the number of contig restriction fragments and n is the number of restriction fragments in the
optical map. An example of this process is illustrated in Figure 2| below.
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Figure 2: The different alignments that are scored in setting each element S;; using equation (7)
for two contig fragments (m = 2) and three optical map fragments (n = 3). Green arrows indicate
the alignment of sites. Restriction sites circled in red count as a missed site for the alignment
being scored. Sp2 represents the score of the alignment of the zeroth contig fragment to the second
optical map fragment. This alignment is not considered because this means the first fragment of
the contig would not be aligned to the optical map.

3.1.2 Additional Alignment Constraints

The search space is pruned by not scoring alignments where an aligned fragment has a poor x>
score in (7):
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Cy is a user input, which defaults to 5.

Since DNA is double stranded, it is possible that the optical map represents the locations of re-
striction sites along one strand while the contig represents the sequence from the complementary
strand. To test for this possibility, both the contig and the reverse-complement of the contig are
aligned to the optical map and the best possible alignment is selected. The reverse-complement
of the contig restriction pattern is found by reversing the order of the fragments and taking the
reverse complement of the sequence around each restriction site. In addition, to capture the pe-
riodic nature of a circular chromosome, the optical map must be doubled in length where each
of the original n fragments is duplicated after the nth fragment. This allows for alignments that
extend beyond the right edge of the original linearized optical map, which is a valid alignment for



a circular genome.

To test the significance of the best alignment, a permutation test is performed by computing
the best alignment score for the contig against a permuted version of the optical map. 500 samples
from the space of permuted optical maps is used to calculate the p-value. The p-value is given by
the fraction of permutation trials where the contig has a better scoring alignment to a permuted
optical map than the original optical map. An alignment is deemed significant if p < 0.05. Note
that the permutation test is an expensive operation, as it increases run time by a factor of 500. This
effect is mitigated by a parallel implementation of the alignment tool.

3.2 Assembly Graph Simplification Tool

The Assembly Graph Simplification Tool takes as input the de Bruijn graph, a list of significant
contig to optical map alignments as found by the Contig-Optical Map Alignment Tool, the op-
tical map data, and the recognition sequence of the enzyme used to produce the optical map.
From these inputs, the tool tries to determine the correct genomic sequence between consecutively
aligned contigs and uses this information to simplify the assembly graph.

For each pair of neighboring uniquely aligned contigs A and B, the Assembly Graph Simplifi-
cation Tool uses Dijkstra’s algorithm to find the shortest path through the de Bruijn graph starting
from the edge corresponding to contig A and ending at the edge corresponding to contig B. We
rely on this heuristic of the shortest path since, in general, finding a path of a specified length
through a graph is NP Hard [7]. In addition, since the contigs aligned to the optical map as neigh-
bors, it is sensible to believe that the path through the graph between these edges should could be
the shortest path. Of course, whether the shortest path is the correct path depends on the repeat
structure of the assembly graph.

If a unique shortest path is found between contig A and contig B, the sequence generated by
this path is aligned to the gap in the optical map between the alignments for A and B. This test
is performed using the Contig Optical Map Alignment tool. If the alignment is deemed signifi-
cant, then the shortest path is accepted as true and simplifications are made to the graph. This is
discussed in further detail in the next two sections.

3.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is an intuitive O(E + V log V') algorithm for finding the shortest path length
between a source and target node in a graph with non-negatively weighted edges. The algorithm
makes use of the basic property that if a node @ is on a shortest path from P to R, then the shortest
path from P to R includes the shortest path from P to ). The algorithm maintains a set of of nodes
that have been “visited” and a priority queue of nodes that have been “seen”. In the first iteration,
the current node is set to be the source node, and the current distance is set to 0. The shortest
distance from the source node to each successor node of the current node is tentatively computed
by adding the edge’s weight to the current distance. If this distance is shorter than the previously
calculated distance for the successor node, then the successor node is added to the priority queue
with priority equal to the updated shortest distance. At the end of the iteration, the current node
is added to the visited set, and the node with the next shortest distance is dequeued from the
priority queue and selected to be the current node. This repeats until the target node is selected
as the current node. The shortest distance from source to target is then the priority of the target
node, which is determined when it is dequeued.



Since the de Bruijn graph is a strongly connected graph, at least one shortest path always
exists between any source and any target node. However, we are interested specifically in the
cases where the shortest path is unique. A small modification to Dijkstra’s algorithm can be made
to maintain a list of predecessor nodes for each node that is added to the priority queue of “seen”
nodes. In this way, when the target is selected from the priority queue, its predecessor are known.
All shortest paths in the form of an ordered listing of nodes (node path) can be reconstructed using
the predecessor lists for each node in a shortest path, starting with the target node.

A shortest node path can be converted into a shortest edge path (i.e. an ordered listing of
edges) by taking the shortest edges between neighboring nodes in the shortest node path. Since
the de Bruijn graph is a multidigraph, there can be multiple shortest edges between any two
nodes, each labeled with different genomic sequence. Therefore, a single shortest node path can
yield many possible shortest edge paths, each giving a different genomic sequence. We are careful
to count the number of possible shortest edge paths before enumerating all possibilities, as this
can be a very expensive operation both in terms of computation and in terms of memory storage.

Since we are only interested in cases where a unique shortest path exists, we can improve effi-
ciency by exiting early from the construction of all shortest node paths from the predecessor lists
produced by the modified Dijkstra’s algorithm for those cases where there are multiple shortest
node paths. Likewise, we first count the number of possible edge paths, and only calculate the
shortest edge path for a given node path if it is unique.

3.2.2 Evaluation of Path Candidates

If a unique shortest path is found through the graph between neighboring aligned contigs, it must
be compared to the optical map fragments which fall in between the two aligned contigs. The can-
didate path will only be used to simplify the graph if it is deemed to be a significant match. The
significance of this path is evaluated by forming the contiguous DNA sequence along the path,
determining the in-silico restriction pattern, and using the Contig Optical Map Alignment Tool to
calculate its alignment score to the gap in the optical map using @). In this case, the alignment
must start with the first restriction fragment of the optical map gap and end with the last restric-
tion fragment of the optical map gap since we are trying to close the gap between neighboring
aligned contigs. The candidate path is selected for closing the gap if the score of the alignment is
significant, as determined through a permutation test.

3.2.3 Simplification of Graph

After all candidate shortest paths between neighboring aligned contigs are evaluated, those gap
closures that are deemed significant by the Contig-Optical Map Alignment Tool are selected. If
consecutive gap closures are deemed significant, then these shortest paths can be merged together
into a single path. For example, if contigs A, B, and C align consecutively to the optical map
and the shortest path between A and B and between B and C' are both consistent with the optical
map, then these shortest paths can be merged into a single path between A and C'. It should be
pointed out that this may not be the shortest path between A and C. Merging shortest paths in
this way will make it easier to simplify the graph. These merged paths are then sorted in order of
decreasing length and used to simplify the graph.

The graph is simplified by replacing a selected path, represented by a sequence of edges, with
a single edge. This edge will be labeled with the DNA sequence of the selected path. The path is



replaced by removing the edges of the path from the graph. After this step, any nodes which are
not in the main strongly connected component of the graph will be removed. This will include
nodes with degree zero after the removal of edges in the previous step. However, nodes with
non-zero degree may also be removed since it is possible that deleting edges will disconnect the
graph into multiple connected components. This will happen only if the selected path is incorrect,
as the ideal de Bruijn graph has the strongly connected property, and this property will hold after
any correct simplification to the graph.

After replacing the selected path with a single edge and cleaning up the graph, there may now
be unambiguous paths comprised of nodes of degree one, and these paths can be replaced with a
single edge. This operation is an example of path compression. Path compression is performed by
randomly selecting a node of degree one in the graph and then extending a path in the forward
and reverse direction from this node until a node with degree greater than one is encountered.
This yields a path of nodes of degree one, bounded with by a starting and ending node of degree
greater than one. This path is then replaced by a single edge, and any interior nodes of the path
are removed. This is repeated until the graph has no nodes of degree one, or until the graph is
reduced into a single node.

Together, these graph simplification operations reduce the complexity of the graph. It should
be noted that the order in which candidate paths are applied to simplify the graph does make dif-
ference. Modifications made to the graph by one accepted candidate path may invalidate changes
to be made by another accepted candidate path if these paths have an edge in common. Simpli-
tying the graph with the first candidate path will delete the edge, rendering the second candidate
path invalid. In this case, if there is another edge between the same nodes with identical sequence,
it is used to replace the missing edge. In the event that missing edges in an invalid candidate path
cannot be replaced, the candidate path is discarded. The longest candidate paths (as measured in
sequence length) are applied for graph simplification first. Path compression is only performed
after all candidate paths are applied to the graph.

4 Implementation

The Contig-Optical Map Alignment Tool has been implemented in C++, and the Graph Simpli-
fication Tool has been implemented in python. In addition, a pipeline has been implemented in
python which integrates these two tools together.

4.1 Contig-Optical Map Alignment Tool

The Contig-Optical Map Alignment Tool has been developed by updating source code from the
open-source software package SOMA (described in [2]), which is a tool for matching and plac-
ing multiple contigs along an optical map. Code development was performed using the Vim text
editor in a Linux environment. Development was performed on my home desktop computer
(Ubuntu 11.10), on my MacBook Pro (Ubuntu 11.10 in VirtualBox), and on the Center for Bioinfor-
matics and Computational Biology’s computational resources. In mid-November, in an effort to
keep my code in sync across these platforms, I created a local Git repository which is now hosted
privately for free with BitBucket .org. Gitis a distributed version control system that keeps a
history of file changes and provides branching and merging functionality. The code was compiled
using the g++ compiler, version 4.6.1.
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Development of the Contig-Optical Map Alignment tool involved several important tasks. The
tirst task was to understand the existing alignment algorithm as implemented in the SOMA source
code. While the source code itself lacked documentation, the reference [2] outlined the algorithm.

The second task was to reorganize and restructure the code to improve modularity and main-
tainability without changing the functionality of the original SOMA program. In particular this
involved organizing global variables and constant variables into a separate header. C structs were
converted into C++ classes to provide more flexibility. I also made use of the C++ Standard Tem-
plate Library (STL) wherever possible in an effort to make the code easier to maintain. With each
set of changes, I would recompile the software using g++ and re-run the test case provided with
the SOMA distribution to ensure that the results were unchanged.

The third task was to make functionality updates to the Contig-Optical Map Alignment Tool.
This included writing functions to calculate the Levenshtein edit distance between strings and to
compute the reverse complement of a DNA string. The alignment scoring function was updated
to include the edit distance of sequence around each restriction site. In addition, functions to
read input files and write output files were modified to handle sequence data. Lastly, the Contig-
Optical Map Alignment tool was parallelized using OpenMP. The alignment of each contig to the
Optical-Map is independent, and so this can be performed in parallel by different threads. Each
iteration of the permutation test for a given contig is also independent, and so this is performed in
parallel. Each of these for loops has one critical section to store the alignment result. The number
of threads is a command line argument.

During testing of the tool, it was discovered that execution time with the permutation test
was less than desirable. The GNU profiling tool gprof was used to determine which function
calls took most of the execution time. It was determined that a staggering number of calls were
made to the Levenshtein edit distance function, consuming approximately 50% of the execution
time. The computation of the alignment was reformulated to calculate the edit distance of the
sequence flanking an aligned restriction site as opposed to the edit distance of the sequence at the
beginning and end of an aligned restriction fragment. This simple change allowed the calculation
of edit distance to be made independently of the calculation specified by (7) (since d;; does not
depend on [ or k). This resulted in significantly less calls to the edit distance function. During
this phase of code optimization it was also discovered that opportunities existed to continue to
the next iteration of a loop or break out of a loop when the condition specified by (8) was not met.
Lastly, in the case of a circular chromosome, updates were made to ensure that no alignment is
started beyond the right edge of the linear representation of the circular map. These code changes
save unnecessary computation, yielding a more efficient program.

The software was implemented and tested using the Center for Bioinformatics and Computa-
tional Biology’s computing resource privet: 4 x AMD Opteron(tm) Processor 850 (2400MHz), 32
GB Ram, RHEL5 x86_64.

4.2 Assembly Graph Simplification Tool

The Assembly Graph Simplification tool is a set of functions written in Python 2.7 using the Net-
workx library version 1.5. Development was performed using the same resources as the Contig-
Optical Map Alignment Tool. Throughout development, functions were tested interactively using
the iPython shell.

The implementation of Dijkstra’s algorithm uses a modified version of Dijkstra source code
provided in Networkx. This is redistributable under the BSD license.
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The main tasks in developing the graph simplification tool were to develop methods to read
(and write) a graph from (and to) the Graphviz dot file format; to find shortest paths and simpli-
fying the graph; and to provide a additional functionality related to graph operations.

The code to import a graph from a .dot file requires both the input dot file and the FASTA
tile with the reference genome sequence. The .dot file labels each node and edge with a genomic
location and a sequence length. Since all nodes are repeats, they are labeled with multiple genomic
locations. Edges, on the other hand, have a unique genomic location. This import function extracts
the sequence corresponding to a given genomic location and adds the sequence as an attribute to
each node an edge. In addition, each edge is labeled with a weight which corresponds to how
much sequence is added to a path if the edge were to be taken. For an edge between nodes A
and B, this weight is equal to length of sequence on the edge (4, B) and any sequence on node
B. In the de Bruijn graph framework, each edge labeled with sequence overlaps the sequence on
the nodes by k£ — 2 bases. Care is taken to avoid double counting the sequence contained in such
overlaps when assigning edge weights. In addition, the import operation double checks that all
nodes are genuine genomic repeats with respect to the reference genome sequence provided in
the FASTA file.

In addition to the methods for finding shortest paths and for graph simplification which were
already described in detail in section and many utility functions were written to aid in
the validation tests on 351 prokaryotic genomes. These utilities include functions to compute the
complexity of a graph; to determine the path through the graph between two edges correspond-
ing to the true genomic sequence; to convert a path represented as a list of edges to a genomic
sequence; to convert a single shortest node path to all possible shortest edges paths; and to check
whether a given path is equivalent to the true path (in terms of genomic sequence). In addition,
code was written to check the integrity of the de Bruijn graph, by asserting that the graph consists
of one strongly connected component, that the in-degree is equal to the out-degree for each node,
and that the sequence of edges overlaps with the sequence of nodes by k£ — 2 bases. The integrity
of the graph is asserted after each simplification operation.

Lastly, code is included to calculate the correctness of a path selected for gap closure as com-
pared to the true genomic path. The path correctness is defined to be the ratio of length of the
sequence which the selected path shares in common with the true path to the length of the true
genomic sequence. These paths are represented as a list of edges, each labeled with sequence. The
length of sequence that the paths share in common is computed by finding an alignment between
edges of the selected path and the true path. Edges are only aligned together if they are labeled
with identical sequence, and the alignment which maximizes the length of sequence on aligned
edges is selected. This alignment is closely related to the longest common subsequence problem,
the difference being that edges in the path are aligned instead of the total DNA sequence gener-
ated by each path. This is done for efficiency reasons and gives a conservative estimate of path
correctness, since the length of the common sequence computed this way is less than or equal to
the length calculated by the longest common subsequence approach. As an example, the true path
and the selected path may differ by a single edge, and the sequence on these edges may differ by
a single DNA base. However, in the computation of the common sequence, none of the sequence
on these nearly identical edges is included.
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5 Databases

Source code, scripts, and validation results are being maintained in a private git repository, hosted
at BitBucket.org.

Reference genomes for the prokaryotic genomes are available from the National Center for
Biotechnology Information’s (NCBI) Genbank: http://www.ncbi.nlm.nih.gov/genbank/.
These reference genomes can be used to construct artificial optical maps to test the tools developed
as part of this project.

The input de Bruijn Graphs to used for validation are the simplified de Bruijn graphs found in
[1] and [7], available at: http://www.cbcb.umd.edu/ wetzeljo/matePairs/

6 Validation

6.1 Contig-Optical Map Alignment Tool

The Contig-Optical Map Alignment tool was tested on two user generated data sets to validate its
performance.

6.1.1 Validation Test 1

An optical map of 100 fragments was generated using a python script. The fragment lengths were
selected at random uniformly from [1.0,10.0] kbp, the standard deviations were set to 1 bp (to
simulate as little sizing error as possible), and sequence data of 1 bp preceding and following
each restriction site was generated uniformly at random from the alphabet {A,C,G,T}. 10 contigs
were extracted from this map, with probability of 0.5 in the forward orientation and probability
0.5 in the reverse orientation. The extraction locations were selected uniformly at random from
the optical map, and the number of fragments per contig was selected uniformly at random from
[5,20]. In addition, 10 contigs were randomly generated using the same parameters described
above. The permutation test was turned off. The Contig-Optical Map Alignment tool was run
with C, =5, C, = Cs = 12500 to align the 10 true contigs and 10 random contigs to the generated
optical map. These weights effectively ignore the x? score component of the scoring function
since the sequence error and restriction site error terms are weighted so highly. The algorithm
correctly aligned the 10 true contigs to the correct location in the optical map, and the best scoring
alignments for the random contigs were of poor quality, with many missed restriction sites. This
test indicates that the Contig-Optical Map Alignment tool works correctly on perfect data.

6.1.2 Validation Test 2

10 contigs were extracted from the same optical map used in in the previous test. Sizing error was
added to each contig fragment length, sampled uniformly from the range specified by +5% of the
mean fragment length given in the optical map. These contigs were aligned to the optical map in
the forward direction, ignoring the sequence information around each site.

Copies of the contigs and the optical map were created with all restriction fragments in the
reverse order. The reverse contigs were aligned to the reversed optical map.
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The alignments of the reverse contigs to the reverse map were consistent with the alignment
to the original map. This confirms that the alighment algorithm does not depend on the direction
of the alignment.

6.1.3 Validation Test 3

An optical map of 400 fragments was generated using a python script. The fragment lengths
were selected at random uniformly from [1.0,10.0] kbp, the standard deviations were selected
uniformly at random to up to 5% of the mean fragment length, with a minimum standard devi-
ation of 100 bp and a maximum of 500 bp. 30 contigs were extracted from the map, as in Test 1,
but with simulated errors described as follows. Sizing error was added to each contig fragment
length, sampled uniformly from the range specified by 5% of the mean fragment length given in
the optical map. A substitution error was made for each base in the sequence data with probability
0.1. A restriction site error is made with probability 0.1 by deleting a site in the contig or by in-
serting a false site in the contig halfway between consecutive sites. 10 contigs were also generated
randomly as described previously. The permutation test was turned on, with 500 samples taken
from the space of permuted contigs using a p-value threshold of 0.05.

The Contig-Optical Map Alignment tool was run with C, = 5, C;. = Cs = 12500. The 30 true
contigs aligned to the correct position in the map. 1 out of 10 of the random contigs aligned to
the map with significance (a false positive), with a p-value of 0.03. Of the 9 restriction sites in
this random contig, 3 were not aligned to restriction sites in the optical map. With only 6 aligned
restriction sites, the random contig had, by chance, a very good sequence score, which is why it
performed well on the permutation test. The x? score for the alignment was very poor, 67.7 for
only 5 inner fragments.

This test was repeated using the same input optical map and set of contigs, with updated costs
C, = 5 and Cs = 3, which gives more importance to the x? score. With these updated costs, the
best alignment for the previous false positive was no longer deemed significant. However, these
updated costs introduced a new false positive, with p-value 0.046. This new false positive contig
has 9 sites, 3 of which were not aligned to the optical map.

False positives can be eliminated by putting a constraint on the fraction of restriction sites that
are allowed to be missed (say 10%). This constraint can be used to prune the search space (just as
the condition on fragment length specified by (8)). This constraint on missed restriction sites will
also improve the run time of the alignment algorithm.

6.2 Assembly Graph Simplification Tool
6.2.1 Validation Test

The shortest paths algorithm and simplification routines were tested both on a small, generic user
generated graphs with positive edge weights. These graphs do not represent de Bruijn assembly
graphs. These graphs were generated by writing a Graphviz .dot file by hand. The generated
graphs included features such as self loops and multiple shortest path solutions. In addition, the
shortest path solutions were not always the shortest in terms of edge count. In each instance, the
graph simplification algorithm identified the correct shortest path between the source and target
node.
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The assembly graph shortest path and simplification routines were also tested on the de Bruijn
graph for Mycoplasma genitalium (NC_000908). Arbitrary source and target nodes were selected for
the identification of shortest paths and the simplification of the graph. The simplification of the
graph was verified by manually inspecting the attributes of the new edge, and checking that the
nodes interior to the path were removed as appropriate.

6.3 Integration Results

The pipeline which integrates the Contig-Optical Map Alignment Tool and Assembly Graph Sim-
plification Tool was run on a database of 351 prokaryotic reference genomes and simulated opti-
cal maps. Optical maps were simulated from each reference genome sequence using the BamHI
recognition sequence (GGATCC). The optical maps were generated with one additional base on
either side of the recognition sequence. The optical maps included fragment sizing error, sub-
stitution error in the additional sequence information, and missing restriction sites. Three error
settings were used:

e Error-free (perfect optical maps).
e Sizing error ~ N(0, (0.01 x [)?), Pr(base substitution) = 0.10, Pr(missing site) = 0.05.
e Sizing error ~ N (0, (0.05 x [)?), Pr(base substitution) = 0.20, Pr(missing site) = 0.10.

where [ is the restriction fragment length. Error is applied independently to each restriction frag-
ment, base of DNA sequence, and restriction site.

For each idealized de Bruijn graph with £ = 100, contigs were extracted from the edges and
written to a FASTA file. The FASTA file of contig sequences was input to the Contig-Optical Map
Alignment Tool for alignment to the simulated optical maps. A permutation test with 500 trials
was performed to evaluate the significance of the alignments, and all alignments with a p-value
less than 0.05 were selected.

The distribution of contig counts per genome and the distribution of the number of uniquely
aligned contigs under the error free setting is shown in Figure The number of contigs which
align with significance is generally much less than the total number of contigs for a genome since
most contigs are short, with no restriction sites. For a contig to be alignable, it must have two or
more restriction sites. Two restriction sites guarantees the existence of an inner restriction frag-
ment, which could potentially provide enough information to yield a unique alignment. The plot
in Figure 4 shows the number of contigs out of those with two or more restriction sites that do
not align uniquely. The clear outlier in the plot is Nocardia farcinica (NC_006361), which has 20
contigs not aligned uniquely out of 40 contigs with two or more restriction sites. These unaligned
contigs are short, with an uninformative restriction pattern. For example, the contig represented
by the edge between nodes 40 and 88 has a restriction pattern with fragments of length 220, 12,
and 79 bp. The Contig-Optical Map Alignment Tool found four possible alignments where the
inner fragment of the contig is matched to a different optical restriction fragment of length 12 bp
in each of the alignments. The extra sequence information around the restriction site is also an
exact match for all four possible alignments. This demonstrates how an uninformative restriction
pattern can lead to many equally good alignments.

Figure |5 shows the distribution of the number of contigs aligned uniquely across error set-
tings. As error increases, the mean number of contigs aligned uniquely decreases. However, the
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alignments are fairly robust to this simulated error. In all cases, whenever a contig is deemed
to align uniquely with significance, the alignment position is correct (within 0.1% of the true ge-
nomic position, as a percentage of true genome length). This provides further evidence that the
Contig-Optical Map Alignment Tool is working as expected.

Contig Count Distribution Number of Contigs Aligned

150 200
|

Frequency
Frequency
30
1

100
|

o - — o
I T T T T 1 I T T T T T T 1

0 1000 2000 3000 4000 5000 0 20 40 60 80 100 120 140
Number of Contigs MNumber of Contigs Aligned
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Figure 3: Distribution of the number of contigs per genome and the distribution of the number of
contigs which align uniquely with significance under the error-free setting.

Before running the full graph simplification on pipeline on these genomes, we investigated
the number of shortest path closures between neighboring aligned contigs to the optical maps.
Since the genomes are circular, we also check for a shortest path between the rightmost aligned
contig and the first contig. While there are many gaps that have a unique shortest path closure,
there are also some gaps that have many possible shortest path closures. We used the shortest
path utilities of the Graph Simplification Tool to count the number of unique shortest edge paths
between aligned edges without having to list each possible path. Figure[6a[shows the distribution
of shortest path closures. While many instances have a unique shortest path closure, there are
some gaps that have over 1,024 shortest path closures. From the box plot in Figure @ it is clear
there is even one gap that has 104 shortest path closures. The number of possible shortest paths
clearly depends on the graph structure, but also depends on the alignability of genome contigs.
If there are fewer aligned contigs, the gaps between aligned contigs are larger, which means that
the shortest paths will generally include more nodes, which increases the chance of encountering
a tangled portion of the graph on a shortest path. These tangled portions of the graph is what
allows for thousands of different shortest path closures.

We also investigated how often the true genomic path was among the set of shortest paths for a
given gap closure between aligned contigs, as shown in Figure [/} When there is a unique shortest
path closure, we see that it is the true genomic path path 73.0% of the time. When there are two or
less shortest path closures, the true genomic path is in this set of shortest path closures in 67.0%
of such instances. As the set of shortest path closures grows, the frequency with which the true
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Figure 4: The number of contigs not aligned uniquely vs. the number of contigs with two or more
restriction sites. Each point in this scatter plot represents one of the 351 prokaryotic genomes. A
contig is included in the not aligned uniquely count if it has two or more restriction sites and it
either goes unaligned or is aligned multiple times.
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Figure 5: Distribution of the number of contigs aligned uniquely across error settings.
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genomic path is a shortest path decreases. These percentages were calculated using alignments
to the error-free optical map over all 351 prokaryotic genomes. A large number of shortest paths
closures is indicative of a graph that has a tangled repeat structure between the aligned contigs,
which makes it more likely that a shortcut exists through the graph which is not the true genomic
path. This provides some intuition for why the correctness of the shortest path heuristic decreases
as the number of shortest paths increases. This result provides good justification for limiting
the graph simplification algorithm to those cases where a unique shortest path exists between to
consecutively aligned contigs. The shortest path heuristic is often correct in these cases, and the
heuristic fails to be correct more often when the number of shortest path closures is more than
one.
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Figure 6: Distribution of the number of shortest path closures between consecutively aligned con-
tigs.

After investigating the correctness of the shortest path heuristic, we ran the full pipeline on
the database of prokaryotic genomes under the three error settings, and simplified the graphs
using those shortest paths which were consistent with the optical map. Figure [8|shows that the
paths used for graph simplification are often significant fractions of the reference genome. This
should be expected, as the largest edges have the most informative restriction patterns and are
often involved in the paths selected for graph simplification. Figure [J] illustrates the difference
in sequence between selected shortest path and the true genomic path. The common sequence
length between these paths is calculated by aligning edges of the respective paths, as discussed
in section The difference in sequence is computed as the difference between the sequence
of the true genomic path and the selected path. Since the selected path is the shortest path, the
true genomic sequence will be at least as large as the sequence of the shortest path, and so this
difference should be non-negative. The fact that we observe only non-negative values (including
zero values) for this difference gives additional assurance that the modified Dijkstra’s algorithm
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is working correctly.

Figures[10]through [12)summarize the improvement in N50 and reduction in graph complexity
observed. N50 is defined as the largest contig size such that all contigs which are equal or greater
in length cover at least 50% of the genome. These plots show that while some genomes show
a significant improvement in N50 and reduction in complexity, other genomes remain largely
unaffected. These results coupled with the results of Figure |8| illustrate that while the shortest
path closures may include a significant portion of the genome as measured in genome sequence,
these simplifications often leave many repeat nodes unresolved, yielding a small reduction in
genome complexity.

Two layouts of assembly graphs both before and after simplification using error-free optical
maps are provided in Figure[13|and Figure

These simulations were run in parallel on the CBCB’s Condor cluster. Six threads were used
for the Contig-Optical Map Alignment Tool. Figure (15 shows the distribution of execution times
for all simulations across all three error settings.

7 Future Work

The tools and pipeline presented in this project have several possible opportunities for improve-
ment. First, the integration test on the database of prokaryotic genomes used a single restric-
tion enzyme, BamHI. While this enzyme produced an informative restriction pattern for some
genomes, it was not as informative for other genomes. An informative restriction pattern results
in more contigs which align uniquely to the optical map. With more alignments, it is more likely
that the Assembly Graph Simplification Tool will find unique shortest paths to use to simplify the
assembly graph. Therefore, one improvement would be to simulate optical maps with different
restriction enzymes and select the most informative optical map for each genome.

Another improvement would be to use multiple rounds of graph simplification. In the current
implementation, one round of contig to optical map alignment is performed, followed by one
round of graph simplification using the unique shortest path heuristic. After graph simplification,
it is possible that newly formed contigs will align to the optical map. More specifically, in the
path compression step, paths of nodes with degree one are combined into a new, single edge. This
newly formed contig may now align to the optical map. In addition, after the simplifications made
to the graph in the first round, it is possible that consecutively aligned contigs which previously
had multiple shortest paths between them now have a unique shortest path. Multiple rounds of
graph simplification could be applied until no further simplifications can be made to the graph.

Yet another potential improvement would be to combine information from paired reads with
information from optical maps to simplify the graphs. Paired reads provide local information,
while optical maps provide more global information. Together, optical maps with paired read
information may do a better job at simplifying the assembly graph than either can alone.

Finally, it may be possible to use multiple optical maps together to simplify the assembly
graph. Using multiple maps may help in situations where a single contig has multiple signifi-
cant alignments, or when there are multiple candidate paths to close a gap between neighboring
aligned contigs.
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Figure 7: Percent of instances where the true genomic path is in the set of shortest paths between
consecutively aligned contigs, as a function of the number of maximum number of closures. A
given bar includes all instances where the number of shortest path closures is less than or equal to
the label on the x-axis.
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Figure 9: The amount of sequence missing in the selected shortest paths from the true genomic
paths. This shows that the selected paths are highly accurate, since they differ from the true
genomic paths by only a couple thousand DNA bases out of a couple million bases.
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Figure 10: Fold change in N50 vs. genome sizes for simplification of assembly graphs using the
error-free optical maps.
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Figure 11: Percent reduction in complexity vs. logarithm of the original complexity using the
error-free optical maps.
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Figure 12: Box plot of fraction of complexity reduction across the three error settings.
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Figure 13: Assembly graph simplification for Pyrococcus abyssi (NC_000868) using an error free
optical map.
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Figure 14: Assembly graph simplification for Leptospira interrogans serovar Copenhageni
(NC_005823) using an error free optical map.
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Figure 15: Box plot of execution times. The mean execution time was 4 minutes, and the median
execution time was 1 minute.
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8 Project Schedule & Milestones

e Phase I (Sept 5 to Nov 27)

— Complete code for the Contig-Optical Map Alignment Tool

- Validate performance of algorithm by aligning user-generated contigs to a user-generated
optical map.

— Write utility functions to import assembly graphs in .dot format using networkx.
e Phase II (Nov 27 to Feb 14)

— Finish de Bruijn graph utility functions.
— Complete code for the Assembly Graph Simplification Tool

- Validate performance of Assembly Graph Simplification Tool on de Bruijn graph from
known reference genome

— Implement parallel implementation of the Contig-Optical Map Alignment Tool using
OpenMP

e Phase III (Feb 14 to May 1)

- Create pipeline for using Contig-Optical Map Alignment Tool and Assembly Graph
Simplification Tool together on one dataset.

— Test performance of the Contig-Optical Map Alignment Tool and Assembly Graph Sim-
plification Tool with archive of de Bruijn graphs for reference prokaryotic genomes and
artificial optical maps.

— Compute reduction in graph complexities for each reference prokaryotic genome

9 Deliverables

e Source code for the contig alignment to optical map program

e Source code for the optical map simplification program

e Archive of simplified de Bruijn graphs for 351 prokaryotic genomes
e Simulation summary text files and log files.

e Final Report detailing software implementation and validation results.

25



References

[1] Carl Kingsford, Michael C Schatz, and Mihai Pop, Assembly complexity of prokaryotic genomes
using short reads., BMC bioinformatics 11 (2010), 21.

[2] Niranjan Nagarajan, Timothy D Read, and Mihai Pop, Scaffolding and validation of bacterial
genome assemblies using optical restriction maps., Bioinformatics (Oxford, England) 24 (2008),
no. 10, 1229-35.

[3] P A Pevzner, H Tang, and M S Waterman, An Eulerian path approach to DNA fragment assembly.,
Proceedings of the National Academy of Sciences of the United States of America 98 (2001),
no. 17, 9748-53.

[4] Mihai Pop, Genome assembly reborn: recent computational challenges., Briefings in bioinformatics
10 (2009), no. 4, 354-66.

[5] A. Samad, E. F. Huff, W. Cai, and D. C. Schwartz, Optical mapping: a novel, single-molecule
approach to genomic analysis., Genome Research 5 (1995), no. 1, 1-4.

[6] Michael C Schatz, Arthur L Delcher, and Steven L Salzberg, Assembly of large genomes using
second-generation sequencing., Genome research 20 (2010), no. 9, 1165-73.

[7] Joshua Wetzel, Carl Kingsford, and Mihai Pop, Assessing the benefits of using mate-pairs to resolve
repeats in de novo short-read prokaryotic assemblies., BMC bioinformatics 12 (2011), 95.

26



	Introduction
	DNA Sequencing and Genome Assembly
	Optical Mapping Technology

	Project Objectives
	Approach
	Contig-Optical Map Alignment Tool
	Dynamic Programming
	Additional Alignment Constraints

	Assembly Graph Simplification Tool
	Dijkstra's Algorithm
	Evaluation of Path Candidates
	Simplification of Graph


	Implementation
	Contig-Optical Map Alignment Tool
	Assembly Graph Simplification Tool

	Databases
	Validation
	Contig-Optical Map Alignment Tool
	Validation Test 1
	Validation Test 2
	Validation Test 3

	Assembly Graph Simplification Tool
	Validation Test

	Integration Results

	Future Work
	Project Schedule & Milestones
	Deliverables

