
Analyzing Task Driven Learning Algorithms
AMSC 663 Project Proposal

Mike Pekala

September 22, 2011

Advisor: Prof. Doron Levy (dlevy at math.umd.edu)
UMD Dept. of Mathematics & Center for Scientific Computation and
Mathematical Modeling (CSCAMM)

Mike Pekala (UMD) AMSC663 September 22, 2011 1 / 19

Background/Introduction

Project Overview

The underlying notion of sparse coding is that, in many domains, data vectors
can be concisely represented as a sparse linear combination of basis elements
or dictionary atoms. Recent results suggest that, for many tasks, performance
improvements can be realized by explicitly learning these dictionaries directly
from the data (vs. using predefined dictionaries, such as wavelets) [5, 6].
Further results suggest that additional gains are possible by jointly optimizing
the dictionary for both the data and the task (e.g. classification, denoising) [3].

For this project, we propose to

Implement the task-driven dictionary algorithm defined in [3]

Verify its correctness through unit testing and comparison with published
performance results on standard machine learning data sets

Analyze the performance on a new datset (e.g. hyperspectral imaging,
vaccine data)

(Unless otherwise indicated, the notation/equations that follow are taken from [3])

Mike Pekala (UMD) AMSC663 September 22, 2011 2 / 19

Background/Introduction

Classical Dictionary Learning for Sparse Coding

Classical dictionary learning (e.g. [1]) does the following:

Given: training data set of signals X = [x1, . . . ,xn] in Rm×n

Goal: design a dictionary D in Rm×p (possible for p > m, i.e. an
overcomplete dictionary) by minimizing the empirical cost function

gn(D) ,
1

n

n∑
i=1

`u(xi,D)

where `u, the unsupervised loss function, is small when D is “good” at
representing xi sparsely. In [3], the authors use the elastic-net formulation:

`u(x,D) , min
α∈Rp

1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22 (1)

Mike Pekala (UMD) AMSC663 September 22, 2011 3 / 19

Background/Introduction

Classical Dictionary Learning for Sparse Coding -
Additional Details

To prevent artificially improving `u by arbitrarily scaling D, one typically
constrains the set of permissible dictionaries:

D , {D ∈ Rm×p s.t. ∀j ∈ {1, . . . , p}, ||dj ||2 ≤ 1}

Optimizing the empirical cost gn can be very expensive when the training
set is large (as is often the case in dictionary learning problems).
However, in reality, one usually wants to minimize the expected loss:

g(D) , Ex [`u(x,D)] = lim
n→∞

gn(D) a.s.

(where expectation is taken with respect to the unknown distribution of
data objects p(x)) In these cases, online, stochastic techniques have been
shown to work well [4].

Mike Pekala (UMD) AMSC663 September 22, 2011 4 / 19

Approach

Task Driven Learning - Classification

Consider the classification task:

Given: a learned dictionary D (fixed), an observation x ∈ X ⊆ Rm and a
sparse representation of the observation x ≈ α?(x,D) (e.g. determined
using equation (1))

Goal: identify the associated label y ∈ Y, where Y is a finite set of labels
(would be a subset of Rq for regression)

Assume D is fixed and α?(x,D) will be used as the features for predicting y.
The classification problem is to learn the model parameters W by solving:

min
W∈W

f(W) +
ν

2
||W||2F

where
f(W) , Ey,x [`s(y,W,α?(x,D))]

and `s is a convex loss function (e.g. logistic) adapted to the supervised
learning problem.

Mike Pekala (UMD) AMSC663 September 22, 2011 5 / 19

Approach

Task Driven Learning - Classification

Task driven learning adds the notion of a supervised task to the unsupervised
dictionary learning problem. To make a task driven classification problem,
want to jointly learn D,W:

min
D∈D,W∈W

f(D,W) +
ν

2
||W||2F (2)

where
f(D,W) , Ey,x [`s(y,W,α?(x,D))]

Example:

Binary classification: Y = {−1,+1}
Linear model: w ∈ Rp
Prediction: m = wTα?(x,D)
Logistic loss: `s = log (1 + e−ym)

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

Two loss functions

0−1 loss

logistic

min
D∈D,w∈Rp

Ey,x
[
log
(

1 + e−yw
Tα?(x,D)

)]
+
ν

2
||w||22 (3)

Mike Pekala (UMD) AMSC663 September 22, 2011 6 / 19

Approach

Solving the Problem

Stochastic gradient descent is often used to minimize functions whose
gradients are expectations. The authors of [3] show that, under suitable
conditions, equation (2) is differentiable on D ×W, and that

∇Wf(D,W) = Ey,x [∇W`s(y,w,α
?)]

∇Df(D,W) = Ey,x
[
−Dβ?α?

T
+ (x−Dα?)β?

T
]

where β? ∈ Rp is defined by the properties:

β?ΛC = 0 and β?Λ = (DT
ΛDΛ + λ2I)

−1∇αΛ
`s(y,W,α?)

and Λ are the indices of the nonzero coefficients of α?(x,D).

Mike Pekala (UMD) AMSC663 September 22, 2011 7 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x) J

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end

Obtaining i.i.d. samples may be
difficult since p(y,x) is unknown. As
an approximation, vectors (yt,xt)
obtained by cycling over a randomly
permuted training set.

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding J

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end

Use a modified LARS [2] algorithm
(or equivalent) to solve:

α? = arg min
α∈Rp

1

2
||x−Dα||22+λ1||α||1+

λ2

2
||α||22

This is a nontrivial sub-project.

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ J

5 Compute β? J

6 Update learning rate ρt

7 Update parameters

8 end

Λ are indices of non-zeros in α?

β?ΛC = 0

β?Λ = (DT
ΛDΛ + λ2I)

−1∇αΛ`s(y,W,α?)

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt J

7 Update parameters

8 end

ρt = min(ρ, t0t ρ)

There is some art in selecting learning
rates for faster convergence (possible
complexity issue).

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters J

8 end

W = ΠW [W − ρt (∇W`s(y,w,α
?)) + νW]

D = ΠD
[
D− ρt

(
−Dβ?α?T + (x−Dα?)β?T

)]

where ΠS denotes orthogonal
projection on the set S. Difficulty
depends upon the constraints
associated with S.

Mike Pekala (UMD) AMSC663 September 22, 2011 8 / 19

Approach

Learning Linear Transforms of Input Data

The authors of [3] also provide additional extensions to this framework. For
example, jointly learning a linear transform Z of the input data,

min
D∈D,W∈W,Z∈Z

f(D,W,Z) +
ν1

2
||W||2F +

ν2

2
||Z||2F

f(D,W,Z) , Ey,x [`s(y,W,α?(Zx,D)]

These extensions may optionally be considered in this project, depending on
initial progress/results.

Mike Pekala (UMD) AMSC663 September 22, 2011 9 / 19

Implementation

Project Details

Software Implementation

Platform: OSX and Linux, Matlab/Octave, gcc + any standard packages

Implementation Language: Matlab, possibly with extensions in C/C++
via mex, depending on performance/profiler results. Reserve the right to
use Python or other standard tools for data pre/post processing.

Complexity Issues: Alluded to possible issues with SGD, projection
operations. Performance of LARS also unclear at this point. Dictionary
size a possible concern.

Deliverables

Deliverables for this project include all source code and a written report
of results obtained on all data sets. The databases themselves are not a
deliverable for this project.

Mike Pekala (UMD) AMSC663 September 22, 2011 10 / 19

Implementation

Validation Datasets

LARS

For the LARS algorithm [2], the authors provide a data set which
contains 10 baseline variables (e.g. age, sex, BMI) for 442 diabetes
patients along with a quantitative measure of disease progress after one
year. We will validate our implementation of LARS by comparing results
obtained with our implementation (when λ2 = 0). For λ2 > 0, we will
validate against hand-constructed problems with known solutions.

Task-driven dictionary learning

The authors of [3] provide performance results for a classification task
using two standard machine learning datasets, MNIST and USPS
(handwriting recognition problems). We will validate our implementation
of LARS+TDDL by replicating their experimental setup.

Mike Pekala (UMD) AMSC663 September 22, 2011 11 / 19

Implementation

Analysis Datasets

The analysis portion of this project involves datasets for which there are not
known results for this particular algorithm. Final choice of analysis dataset is
TBD (will be included in proposal); potential candidates include:

Hyperspectral Imaging Data

Spectral range: 400-1000nm (visible and near-infrared)
Spectral resolution: O(10nm)
Spatial resolution: O(meters)
Image size: ∼ 1024× 1024

Vaccine Data

Mike Pekala (UMD) AMSC663 September 22, 2011 12 / 19

Implementation

Schedule and Milestones

Schedule and milestones will be updated/maintained in the project proposal
(living document).

Phase I: Algorithm development (Sept 23 - Jan 15)
Phase Ia: Implement LARS (Sept 23 ∼ Oct 24)

Milestone: LARS code available

Phase Ib: Validate LARS (Oct 24 ∼ Nov 14)

Milestone: results on diabetes dataset and hand-crafted problems

Phase Ic: Implement SGD framework (Nov 14 ∼ Dec 15)

Milestone: Initial SGD code available

Phase Id: Validate SGD framework (Dec 15 ∼ Jan 15)

Milestone: TDDL results on MNIST and USPS.

Phase II: Analysis on new data sets (Jan 15 - May 1)

Milestone: Preliminary results on selected dataset (∼ Mar 1)
Milestone: Final report and presentation (∼ May 1)

Mike Pekala (UMD) AMSC663 September 22, 2011 13 / 19

Implementation

Potential Issue: Size of Dictionary

For large data sets, may not be able to fit entire dictionary into memory

Can reduce size of data (e.g. PCA), partition into patches, etc.

Another option: memory mapping (for “lazy loading”)

Example
In OMP, the “proxy calculation” step is potentially memory-prohibitive:

pt = arg max
j=1,...,p

| 〈rt−1,dj〉 |

Instead of loading D into memory, incrementally load subsets. Not real fast
(at least as I implemented it); parallelism also reasonable here.

Mike Pekala (UMD) AMSC663 September 22, 2011 14 / 19

Implementation

Memory Mapping Example: Create MMap

% Creates a memory mapped dictionary from the training portion of

% the USPS data set.

X = load_usps ();

5
% create a big dictionary (> 8GB)

[BLOCK_SIZE , N_BLOCKS] = usps_mm_params ();

fd = fopen(’uspsdict.raw’, ’wb’);

for ii = 1: N_BLOCKS

10 if (mod(ii ,100) == 1) fprintf(1,’[info]: writing block %d (%%%.0f)\n’, ii , floor(100*ii/N_BLOCKS)); end

% choose a subset of the data set

indices = randperm(size(X,1)); indices = indices (1: BLOCK_SIZE);

15 % convert row data to columns and add some noise

Xii = X(indices ,:)’;

Xii = Xii + 0.05*randn(size(Xii));

% write the block

20 fwrite(fd , Xii , ’double ’);

end

Mike Pekala (UMD) AMSC663 September 22, 2011 15 / 19

Implementation

Memory Mapping Example: Use MMap

% run the proxy selection stage of OMP (basically a matched filter)

% against some USPS examples.

clear all; close all;

5 [BLOCK_SIZE , N_BLOCKS] = usps_mm_params ();

mm = memmapfile(’uspsdict.raw’, ’Format ’, ...

{’double ’, [16*16 , BLOCK_SIZE], ’atoms’});

X = load_usps ();

10 X = X’; % convert row data to columns

tgtAtomIdx = floor(rand(1)*size(X ,2))+1;
tgtAtom = X(:, tgtAtomIdx); % look for an atom similar to this one

15 ipMax = 0; blockIdMax = -1; atomIdMax = -1;

tic
for blockIdx = 1: N_BLOCKS % find the best matching atom

if (mod(blockIdx ,100) == 1) fprintf(1,’[info]: searching block %d (%%%.0f)\n’, blockIdx , floor(100* blockIdx/N_BLOCKS)); end

20 block = mm.Data(blockIdx). atoms; % load block into memory

[val ,atomIdx] = max(abs(block ’* tgtAtom)); % calculate proxy

if val > ipMax

ipMax = val;

blockIdMax = blockIdx;

25 atomIdMax = atomIdx;

end
end

matchAtom = mm.Data(blockIdMax).atoms(:,atomIdMax);

30 toc

% plot results

plot_atom_usps(tgtAtom); title(’Target Atom’); saveas(gcf, ’target.eps’, ’epsc’);

plot_atom_usps(matchAtom); title(’Best Match ’); saveas(gcf, ’bestmatch.eps’, ’epsc’);

Mike Pekala (UMD) AMSC663 September 22, 2011 16 / 19

Implementation

Memory Mapping Example: Example

>> mf_mmap_usps

[info]: searching block 1 (%0)

[info]: searching block 101 (%2)

...

[info]: searching block 4901 (%98)

Elapsed time is 319.995970 seconds.

Target Atom Best Match

Mike Pekala (UMD) AMSC663 September 22, 2011 17 / 19

Implementation

Bibliography I

[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: Design of
dictionaries for sparse representation. In IN: PROCEEDINGS OF
SPARS05, pages 9–12, 2005.

[2] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
Least angle regression. Annals of Statistics, 32:407–499, 2004.

[3] Julien Mairal, Francis Bach, and Jean Ponce. Task-Driven Dictionary
Learning. Rapport de recherche RR-7400, INRIA, 2010.

[4] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
dictionary learning for sparse coding. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 689–696,
New York, NY, USA, 2009. ACM.

[5] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and
Andrew Y. Ng. Self-taught learning: Transfer learning from unlabeled
data. In Proceedings of the Twenty-fourth International Conference on
Machine Learning, 2007.

Mike Pekala (UMD) AMSC663 September 22, 2011 18 / 19

Implementation

Bibliography II

[6] Ignacio Ramrez, Pablo Sprechmann, and Guillermo Sapiro. Classification
and clustering via dictionary learning with structured incoherence and
shared features. In CVPR, pages 3501–3508. IEEE, 2010.

Mike Pekala (UMD) AMSC663 September 22, 2011 19 / 19

	Background/Introduction
	Approach
	Implementation
	References

