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Background/Introduction

Project Overview

The underlying notion of sparse coding is that, in many domains, data vectors
can be concisely represented as a sparse linear combination of basis elements
or dictionary atoms. Recent results suggest that, for many tasks, performance
improvements can be realized by explicitly learning these dictionaries directly
from the data (vs. using predefined dictionaries, such as wavelets) [5, 6].
Further results suggest that additional gains are possible by jointly optimizing
the dictionary for both the data and the task (e.g. classification, denoising) [3].

For this project, we propose to

Implement the task-driven dictionary algorithm defined in [3]

Verify its correctness through unit testing and comparison with published
performance results on standard machine learning data sets

Analyze the performance on a new datset (e.g. hyperspectral imaging,
vaccine data)

(Unless otherwise indicated, the notation/equations that follow are taken from [3])
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Background/Introduction

Classical Dictionary Learning for Sparse Coding

Classical dictionary learning (e.g. [1]) does the following:

Given: training data set of signals X = [x1, . . . ,xn] in Rm×n

Goal: design a dictionary D in Rm×p (possible for p > m, i.e. an
overcomplete dictionary) by minimizing the empirical cost function

gn(D) ,
1

n

n∑
i=1

`u(xi,D)

where `u, the unsupervised loss function, is small when D is “good” at
representing xi sparsely. In [3], the authors use the elastic-net formulation:

`u(x,D) , min
α∈Rp

1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22 (1)
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Background/Introduction

Classical Dictionary Learning for Sparse Coding -
Additional Details

To prevent artificially improving `u by arbitrarily scaling D, one typically
constrains the set of permissible dictionaries:

D , {D ∈ Rm×p s.t. ∀j ∈ {1, . . . , p}, ||dj ||2 ≤ 1}

Optimizing the empirical cost gn can be very expensive when the training
set is large (as is often the case in dictionary learning problems).
However, in reality, one usually wants to minimize the expected loss:

g(D) , Ex [`u(x,D)] = lim
n→∞

gn(D) a.s.

(where expectation is taken with respect to the unknown distribution of
data objects p(x)) In these cases, online, stochastic techniques have been
shown to work well [4].
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Approach

Task Driven Learning - Classification

Consider the classification task:

Given: a learned dictionary D (fixed), an observation x ∈ X ⊆ Rm and a
sparse representation of the observation x ≈ α?(x,D) (e.g. determined
using equation (1))

Goal: identify the associated label y ∈ Y, where Y is a finite set of labels
(would be a subset of Rq for regression)

Assume D is fixed and α?(x,D) will be used as the features for predicting y.
The classification problem is to learn the model parameters W by solving:

min
W∈W

f(W) +
ν

2
||W||2F

where
f(W) , Ey,x [`s(y,W,α?(x,D))]

and `s is a convex loss function (e.g. logistic) adapted to the supervised
learning problem.
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Approach

Task Driven Learning - Classification

Task driven learning adds the notion of a supervised task to the unsupervised
dictionary learning problem. To make a task driven classification problem,
want to jointly learn D,W:

min
D∈D,W∈W

f(D,W) +
ν

2
||W||2F (2)

where
f(D,W) , Ey,x [`s(y,W,α?(x,D))]

Example:

Binary classification: Y = {−1,+1}
Linear model: w ∈ Rp
Prediction: m = wTα?(x,D)
Logistic loss: `s = log (1 + e−ym)
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Two loss functions

 

 

0−1 loss

logistic

min
D∈D,w∈Rp

Ey,x
[
log
(

1 + e−yw
Tα?(x,D)

)]
+
ν

2
||w||22 (3)
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Approach

Solving the Problem

Stochastic gradient descent is often used to minimize functions whose
gradients are expectations. The authors of [3] show that, under suitable
conditions, equation (2) is differentiable on D ×W, and that

∇Wf(D,W) = Ey,x [∇W`s(y,w,α
?)]

∇Df(D,W) = Ey,x
[
−Dβ?α?

T
+ (x−Dα?)β?

T
]

where β? ∈ Rp is defined by the properties:

β?ΛC = 0 and β?Λ = (DT
ΛDΛ + λ2I)

−1∇αΛ
`s(y,W,α?)

and Λ are the indices of the nonzero coefficients of α?(x,D).
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x) J

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end

Obtaining i.i.d. samples may be
difficult since p(y,x) is unknown. As
an approximation, vectors (yt,xt)
obtained by cycling over a randomly
permuted training set.
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding J

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters

8 end

Use a modified LARS [2] algorithm
(or equivalent) to solve:

α? = arg min
α∈Rp

1

2
||x−Dα||22+λ1||α||1+

λ2

2
||α||22

This is a nontrivial sub-project.
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ J

5 Compute β? J

6 Update learning rate ρt

7 Update parameters

8 end

Λ are indices of non-zeros in α?

β?ΛC = 0

β?Λ = (DT
ΛDΛ + λ2I)

−1∇αΛ`s(y,W,α?)
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt J

7 Update parameters

8 end

ρt = min(ρ, t0t ρ)

There is some art in selecting learning
rates for faster convergence (possible
complexity issue).
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Approach

Algorithm: SGD for task-driven dictionary learning [3]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D (initial dictionary), W ∈ W (initial
model), T (num. iterations), t0, ρ ∈ R (learning rate parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x)

3 Compute α? via sparse coding

4 Compute active set Λ

5 Compute β?

6 Update learning rate ρt

7 Update parameters J

8 end

W = ΠW [W − ρt (∇W`s(y,w,α
?)) + νW]

D = ΠD
[
D− ρt

(
−Dβ?α?T + (x−Dα?)β?T

)]

where ΠS denotes orthogonal
projection on the set S. Difficulty
depends upon the constraints
associated with S.
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Approach

Learning Linear Transforms of Input Data

The authors of [3] also provide additional extensions to this framework. For
example, jointly learning a linear transform Z of the input data,

min
D∈D,W∈W,Z∈Z

f(D,W,Z) +
ν1

2
||W||2F +

ν2

2
||Z||2F

f(D,W,Z) , Ey,x [`s(y,W,α?(Zx,D)]

These extensions may optionally be considered in this project, depending on
initial progress/results.

Mike Pekala (UMD) AMSC663 September 22, 2011 9 / 19



Implementation

Project Details

Software Implementation

Platform: OSX and Linux, Matlab/Octave, gcc + any standard packages

Implementation Language: Matlab, possibly with extensions in C/C++
via mex, depending on performance/profiler results. Reserve the right to
use Python or other standard tools for data pre/post processing.

Complexity Issues: Alluded to possible issues with SGD, projection
operations. Performance of LARS also unclear at this point. Dictionary
size a possible concern.

Deliverables

Deliverables for this project include all source code and a written report
of results obtained on all data sets. The databases themselves are not a
deliverable for this project.
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Implementation

Validation Datasets

LARS

For the LARS algorithm [2], the authors provide a data set which
contains 10 baseline variables (e.g. age, sex, BMI) for 442 diabetes
patients along with a quantitative measure of disease progress after one
year. We will validate our implementation of LARS by comparing results
obtained with our implementation (when λ2 = 0). For λ2 > 0, we will
validate against hand-constructed problems with known solutions.

Task-driven dictionary learning

The authors of [3] provide performance results for a classification task
using two standard machine learning datasets, MNIST and USPS
(handwriting recognition problems). We will validate our implementation
of LARS+TDDL by replicating their experimental setup.
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Implementation

Analysis Datasets

The analysis portion of this project involves datasets for which there are not
known results for this particular algorithm. Final choice of analysis dataset is
TBD (will be included in proposal); potential candidates include:

Hyperspectral Imaging Data

Spectral range: 400-1000nm (visible and near-infrared)
Spectral resolution: O(10nm)
Spatial resolution: O(meters)
Image size: ∼ 1024× 1024

Vaccine Data
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Implementation

Schedule and Milestones

Schedule and milestones will be updated/maintained in the project proposal
(living document).

Phase I: Algorithm development (Sept 23 - Jan 15)
Phase Ia: Implement LARS (Sept 23 ∼ Oct 24)

Milestone: LARS code available

Phase Ib: Validate LARS (Oct 24 ∼ Nov 14)

Milestone: results on diabetes dataset and hand-crafted problems

Phase Ic: Implement SGD framework (Nov 14 ∼ Dec 15)

Milestone: Initial SGD code available

Phase Id: Validate SGD framework (Dec 15 ∼ Jan 15)

Milestone: TDDL results on MNIST and USPS.

Phase II: Analysis on new data sets (Jan 15 - May 1)

Milestone: Preliminary results on selected dataset (∼ Mar 1)
Milestone: Final report and presentation (∼ May 1)
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Implementation

Potential Issue: Size of Dictionary

For large data sets, may not be able to fit entire dictionary into memory

Can reduce size of data (e.g. PCA), partition into patches, etc.

Another option: memory mapping (for “lazy loading”)

Example
In OMP, the “proxy calculation” step is potentially memory-prohibitive:

pt = arg max
j=1,...,p

| 〈rt−1,dj〉 |

Instead of loading D into memory, incrementally load subsets. Not real fast
(at least as I implemented it); parallelism also reasonable here.
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Implementation

Memory Mapping Example: Create MMap

% Creates a memory mapped dictionary from the training portion of

% the USPS data set.

X = load_usps ();

5
% create a big dictionary (> 8GB)

[BLOCK_SIZE , N_BLOCKS] = usps_mm_params ();

fd = fopen(’uspsdict.raw’, ’wb’);

for ii = 1: N_BLOCKS

10 if (mod(ii ,100) == 1) fprintf(1,’[info]: writing block %d (%%%.0f)\n’, ii , floor(100*ii/N_BLOCKS )); end

% choose a subset of the data set

indices = randperm(size(X,1)); indices = indices (1: BLOCK_SIZE );

15 % convert row data to columns and add some noise

Xii = X(indices ,:)’;

Xii = Xii + 0.05*randn(size(Xii));

% write the block

20 fwrite(fd , Xii , ’double ’);

end
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Implementation

Memory Mapping Example: Use MMap

% run the proxy selection stage of OMP (basically a matched filter)

% against some USPS examples.

clear all; close all;

5 [BLOCK_SIZE , N_BLOCKS] = usps_mm_params ();

mm = memmapfile(’uspsdict.raw’, ’Format ’, ...

{’double ’, [16*16 , BLOCK_SIZE], ’atoms’});

X = load_usps ();

10 X = X’; % convert row data to columns

tgtAtomIdx = floor(rand(1)*size(X ,2))+1;
tgtAtom = X(:, tgtAtomIdx ); % look for an atom similar to this one

15 ipMax = 0; blockIdMax = -1; atomIdMax = -1;

tic
for blockIdx = 1: N_BLOCKS % find the best matching atom

if (mod(blockIdx ,100) == 1) fprintf(1,’[info]: searching block %d (%%%.0f)\n’, blockIdx , floor(100* blockIdx/N_BLOCKS )); end

20 block = mm.Data(blockIdx ). atoms; % load block into memory

[val ,atomIdx] = max(abs(block ’* tgtAtom )); % calculate proxy

if val > ipMax

ipMax = val;

blockIdMax = blockIdx;

25 atomIdMax = atomIdx;

end
end

matchAtom = mm.Data(blockIdMax ).atoms(:,atomIdMax );

30 toc

% plot results

plot_atom_usps(tgtAtom ); title(’Target Atom’); saveas(gcf, ’target.eps’, ’epsc’);

plot_atom_usps(matchAtom ); title(’Best Match ’); saveas(gcf, ’bestmatch.eps’, ’epsc’);
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Implementation

Memory Mapping Example: Example

>> mf_mmap_usps

[info]: searching block 1 (%0)

[info]: searching block 101 (%2)

...

[info]: searching block 4901 (%98)

Elapsed time is 319.995970 seconds.

Target Atom Best Match
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Implementation
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Implementation
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