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Abstract

This document outlines the project proposal for the 2011-2012 AMSC
663/664 course series. The project is to develop Metastats 2.0, a software
package analyzing metagenomic data. We propose two major improve-
ments to the Metastats software and the underlying statistical methods.
The first extension of Metastats is a mixed-model zero-inflated Gaussian
distribution that allows Metastats to account for a common characteristic
of metagenomic data: the presence of many features with zero counts due
to under sampling of the community. The number of ’missing’ features
(zero counts) is correlated to the amount of sequencing performed, thereby
biasing abundance measurements and the differential abundance statistics
derived from them. In the second extension we describe new approaches
for data normalization that enable a more accurate assessment of differ-
ential abundance by reducing the covariance between individual features
implicitly introduced by the traditionally used ratio-based normalization.
We provide an introduction to the project and then provide an outline
for the implementation, validation, and deliverable. A timeline for major
milestones is provided.
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1 Problem Introduction

Metagenomics is the study of the genetic material recovered from an environ-
mental sample. The DNA from a particular environmental sample is amplified
through a process known as polymerase chain reaction (PCR). This process es-
sentially doubles the DNA with each cycle of the process. Final DNA material
is approximately DNAb ·2k where, DNAb is the initial DNA quantity supplied,
and k are the number of cycles [4].

This process is required for the next steps in the analysis pipeline. Following
amplification, the DNA is sequenced, a process to determine the order of the
nucleotides of a particular DNA strand. The end result are thousands of nu-
cleotide sequences in a text file. For second generation sequencing technologies,
each line in the text file consists of 30 - 400 base pairs representing a replication
of a fragment of DNA. Each of these are known as a read. These reads are
then annotated, a process of assigning the read to a particular organism based
on a biological database. The number of reads assigned to a particular organ-
ism is an approximation of the abundance of that organism in the community.
Typically the reads are first clustered according to similarity, given an arbitrary
name and these clusters are annotated by their representative sequence. These
clusters are known as OTUs.

In many studies, there is a goal to compare samples, as in to determine
whether or not the abundance of one or more organisms is correlated with some
characteristic of the sample, including health/disease status. In metagenomic
data, there are many issues trying to compare samples as there is a large vari-
ation in the number of reads output by the sequencer for unknown reasons.

As there are an arbitrary number of reads output determined by the se-
quencing instrument, and one’s ability to sample from potentially millions of
bacteria in a particular environment, we are dealing with relative abundances
(to a true population) where lower abundant bacteria are missed due to the
sampling process. We hypothesize that many bacteria are also preferentially
sampled at varying degrees. It should be noted that in many metagenomic
studies, and the datasets we will use, a certain conserved / hypervariable region
of a bacteria’s genome is specifically sought out during the amplification and
sequencing stage and used for annotation. The common region used is called
16S ribosomal DNA and refers to the ≈ 1,500 nucleotides that encode that re-
gion of the RNA. The 16S region is itself a subregion of the 30s subunit of a
prokaryotic ribosome (unit of cells that help assemble proteins).

1.1 Previous approaches

Metagenomic studies originally focused on exploratory and validation projects,
but are rapidly being applied in a clinical setting. In this setting, researchers
are interested in finding characteristics of the microbiome that correlate with
the clinical status of the corresponding sample [3]. Comparatively few computa-
tional/statistical tools have been developed that can assist in this process, rather
most developments in the metagenomics community have focused on methods
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that compare samples as a whole. Specifically, the focus has been on developing
robust methods for determining the level of similarity or difference between sam-
ples, rather than identifying the specific characteristics that distinguish different
samples from each other.

Metastats [7] was the first statistical method developed specifically to ad-
dress the questions asked in clinical studies. Metastats allows a comparison of
metagenomic samples (represented as counts of individual features such as or-
ganisms, genes, functional groups, etc.) from two treatment populations (e.g.,
healthy vs. disease) and identifies those features that statistically distinguish
the two populations.

The underlying algorithm used by Metastats was to compute a t-statistic
from the two groups for each particular feature/bacteria i: ti = X̄i1−X̄i2

(s2
i1
/n1+s2

i2
/n2).5

.

Following that initial observed t-statistic, an empiraclly obtained p-value would
be obtained by permuting the samples B times, recalculating a t-statistic for
each feature each time and taking the proportion of t-statistics greater than the

originally observed value, ie. pi =
{|tobi |≥|ti|b∈1...B}

B .
There are a few other approaches [6] that prefer a comparison between groups

of samples using other non-parametric tests (including Kruskal-Wallis), but I
will delve into those later.

2 Approach I

As mentioned before, many low abundant features are not ”found” in a partic-
ular sample, simply because of the large sample size and low total number of
reads, ie. depth of coverage.

Here we propose two major improvements to the Metastats software and
the underlying statistical methods. The first extension of Metastats is a mixed-
model zero-inflated Gaussian distribution that allows Metastats to account for
a common characteristic of metagenomic data: the presence of many features
with zero counts due to under sampling of the community. The number of ’miss-
ing’ features (zero counts) correlates with the amount of sequencing performed,
thereby biasing abundance measurements and the differential abundance statis-
tics derived from them.

The zero-inflated model is defined for the continuity-corrected log of the
count data:

yij = log2(cij + 1)

as a mixture of point mass at zero I{0}(y) and a count distribution fcount(y;µ, σ2) ∼
N(µ, σ2). Given mixture parameters πj , we have that the density of the zero-
inflated gaussian distribution for feature i, in sample j with Sj total counts and
values θij = {Sj , β0, β1, µi, σ

2
i }:

fzig(yij ; θij) = πj(Sj) · f{0}(yij) + (1− πj(Sj)) · fcount(yij ;µi, σ2
i )
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The mean is specified as, given class membership kj :

E(yij |kj) = πj · 0 + (1− πj) · (bi0 + bi1kj) .

.
Based on the observation that the number of zero-valued features on a sample

depend on its’ total number of count s, using a binomial model, we model the
mixture parameters πj(Sj),

log
πj

1− πj
= β0 + β1 · log(Sj)

To estimate the parameters we will make use of the E-M algorithm.
The input data will be a matrix of normalized count values, samples along the

columns and features (organisms) along the rows, total raw counts (ie. number
of reads for a particular sample) Sj , and class indicator kj .

2.1 Expectation-Maximization algorithm:

We can get maximum-likelihood estimates using the expectation-maximization
algorithm, where we treat mixture membership ∆ij = 1 if yij come s from the
zero point mass as latent indicator variables. Denote the full set of estimates as
θij = {β0, β1, bi0, bi1}. The log-likelihood in this extended model is then

l(θij ; yij , Sj) = (1−∆ij) log fcount(y;µi, σ
2
i )+∆ij log πij(sj)+(1−∆ij) log{1−πij(sj)}.

E-Step: Estimates responsabilities zij = Pr(∆ij = 1|θ̂ij , yij) = E(∆ij |θ̂ij , yij)
as:

ẑij =
π̂j · I{0}(yij)

π̂j · I{0}(yij) + (1− π̂j)fcount(yij ; θ̂ij)
ie. the responsibility, or proportion of counts coming from the spike-mass dis-
tribution. Notice ẑij = 0 ∀ yij > 0.

M-Step: Estimates parameters θ̂ij = {β̂0, β̂1, b̂0i, b̂1i} given current estimates
ẑij :

Current mixture parameters are estimated as: π̂j =
∑M
i=1

1
M ẑij from which

we estimate β, using least squares on the logit model as

log
π̂j

1− π̂j
= β0 + β1 log (sj)

.
Parameters for the count distribution are estimated using weighted least

squares where the weights are 1−ẑij . Note only samples with yij = 0 potentially
have weights less than 1.

For up to ten iterations, at each iteration we will calculate the negative log-
likelihood for each feature and determine if the estimates reached convergence
for a particular feature.
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2.2 P-values

Following the E-M algorithm we will calculate a t-statistic, tobi = b1i
(σ2

i
/Σ(1−zij)).5

,

permute class membership, kj , for B times and calculate a p-value for each

particular feature, pi =
{|tobi |≥|ti|b∈1...B}

B .
The ultimate goal is to get a spreadsheet of values for each particular feature

(b0i, b1i, p).
I am considering to also include a presence-absence Fisher’s test making use

of the weights.

3 Approach II

In the second extension we describe new approaches for data normalization that
enable a more accurate assessment of differential abundance by reducing the co-
variance between individual features implicitly introduced by the traditionally
used ratio-based normalization. These normalization techniques are also of in-
terest for time-series analyses or in the estimation of microbial networks.

When dealing with sequencing data, there is a need to normalize count data
due to the extreme variance in sample coverage and remove the arbitrariness of
the sampling process from the equation []. The hope is to cleary identify the
biological differences, in particular differential abundance of the particular fea-
ture, whether it be gene, 16S, or read count. Unfortunately, obscuring variation
can be induced due to sample preparation, sample site, etc. In short, there is
interesting variation and obscuring variation, normalization hopes to diminish
the effect of obscuring variation.

The usual normalization procedure for bacterial counts is dividing each count
by the sample’s total counts. This introduces false correlations between taxa
resulting from dividing the numerator (count, cij), for a specific taxa by a
denominator derived in part by the numerator, ie. yij = cij/Nj where Nj
=

∑
i cij [5]. However, the need to normalize across samples with different

sequencing yields certainly exists when analyzing metagenomic data.
In both of the following algorithms the input will be a matrix counts of size

M x N for the M features and N samples. The output will be a matrix of
normalized counts, ie. some sort of scaling of the original counts.

3.1 Cumulative Sum Normalization

In 2002, quantile normalization for micro-array data was shown to be the ideal
method for normalization [1]. The technique is a method meant to make two
distributions identical in statistical properties and remove the variation of non-
biological origin. The motivation is coupled by the fact that certain measure-
ments are sampled preferentially.

Similarly to quantile normalization, the assumption follows that the rate of
sampling a particular measurement is similar for those with similar proportions
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of identified taxa. We too show a technique for making two distributions iden-
tical in statistical properties with the additional metagenomic assumption that
there is a finite capacity in a metagenomic community. As such, the cumulative
summation of a samples’ 16s or metagenomic count should follow a similar rate
to that of other samples with similar proportions of zeros at an OTU level.

Our algorithm follows (wording is similar to [1]):

• bin samples into groups, Gm, of similar zeros proportions at the OTU
level, with a finer mesh at the higher proportions;

– given ni samples ∈ Gm all of length p, form Xm of dimension p x ni;

– sort each column of Xi to obtain Xm,sort;

– replace each column of Xm,sort with the cumulative sum of that col-
umn;

– take the means across rows of Xm,sort and assign the mean to each
element in the row to get X ′m,sort and take the inverse of the cumu-
lative norm;

– get Xm,normalized by rearranging each column of X ′m,sort to have the
same ordering of the original Xm

• scale each group’s normalized counts to the median groups.

3.2 Scaling normalization

A recent proposal for normalization of RNA-seq data is to scale counts by the
75th quantile of each samples non-zero count distribution q75 ie. yij = cij/q75j

[2]. This type of normalization is motivated by the observation that a few mea-
surements, e.g., taxa or genes, are sampled preferentially as sequencing yield
increases, and have an undue influence on normalized counts derived by the
usual normalization procedure. In that case, the 75th quantile was a chosen as
it behaved consistently across samples. In our data, we have analyzed the dis-
tribution of non-zero counts and have determined that the 95th quantile is more
appropriate 1. Nonetheless, the usual normalization procedure in metagenomic
data does assume there is a finite capacity in metagenomic communities, which
is not necessarily true in RNA-seq samples. To address this we introduce an-
other, simpler novel normalization method denoted S95, which scales counts by
dividing the sum of each samples counts up to and including the 95th quantile,
ie. for all samples xj , S95j =

∑
i cij ≤ q95j . This procedure addresses both is-

sues identified above, namely, it constraints communities with respect to a total
capacity, but does not place undue influence on features that are preferentially
sampled.

1Picture to be included later on
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3.3 Possible issues

There are several issues that one could potentially encounter. The biological
data needs to be processed and as we have very large datasets we need to
preprocess the data and remove select features.

4 Implementation

4.1 Software

Code will be developed using the R language. R is useful for the various sta-
tistical R functions and R packages available. Given time, C code that will be
wrapped to in R will be implemented. The C code would include use of the
OpenMP library (a parallel programming C library).

The bottleneck in the algorithm will be to calculate the p-values empiracly
by bootstrapping. This step is trivially parallelizable and given time steps will
be made to parellize the p-value calculations.

4.2 Hardware

Development on my Macbook Air, 1.6 core duo, 4 GB of ram.
Code will be run on UMIACS’s computer Ginkgo
8 x Quad-core AMD Opteron Processor 8365 (2300MHz) (32 cores), 256 GB
Ram, RHEL5 x86 64

5 Database

There are various biological databases that the National Institutes of Health
maintains. National Center for Biotechnology Information (NCBI) maintains
the NR - nucleotide database, one database I may use to blast raw sequences
again and annotate raw sequences. However, the majority of datasets I use
will be 16S DNA datasets, and as such I will obtain published datasets in the
second semester from Genbank / EMBL / DDBJ. To annotate 16S datasets I
will make use of the RDP - ribosomal database project classifier to annotate our
sequences. The datasets I will be using currently are unpublished and following
analysis will be placed in Genbank for the world. There are two main datasets
I will analyze using my algorithm(s). The first one is a diseased and healthy
dysentery metagenomic 16S gut datasets consisting of 1007 samples. The second
one is 139 samples of approximately 12 gnotobiotic mice that have been placed
on two separate diets in a longitudinal study.

6 Validation

The first method of validation of the code will be to ensure that when I compare
my results to a matrix of non-zero counts, my model’s results should coincide
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with the log model fit, E(yij |kj) = (bi0+bi1 ·kj). The results should be identical.
The second approach that I intend to validate the model with is to generate

data using the model. I will generate OTU level datasets with 1000 features.
Each feature will get .1% of the total sample counts. For the two groups, for each
feature, there will be a base mean and one group will have a siginificant mean
difference. That particular group will have a very low variance. Sparsity will be
randomly introduced. The resulting data will be plugged into the algorithm and
should show that πj for the first group (no large kj effect) will be approximately
1. However, for the second group, we would expect πj to be closer to zero. The
fits should show this. This is in development and we will expand on this later
on.

For the second part, normalization, the codes will be validated by running
a few trivially simplified datasets by hand and comparing the results.

7 Testing

I will generate OTU level datasets with 1000 features, 50 will be ”significant”.
One of the groups will be different from the second group for those 50 and the
model will be run on this data, as well as Metastats 1.0.

For the normalization, testing will be addressed later on.

8 Project Schedule + Milestones

• November 30th
Finish code that will preprocess data, including the normalization of a
dataset. I will implement as a function routine in R that will load a
tab-delimited file of counts, annotation, OTU, and sample names in a
convenient manner and quickly. The original Metastats has a version that
runs very slowly.

• December 15
I will have finished the E-M algorithm, I will have a script function to pass
data that was loaded in the previous step and normalized/processed and
send it to the E-M code. and present a mid-year report claiming I have
finished all of the zero-inflated Gaussian model and normalization codes
and beginning ruminations on validation and testing.

• January 15-February 15
I will continue reading and work on validation of the methods, I also
hope to compare the normalization methods on real datasets. I will also
throughout this time begin packaging the code, commenting, etc to make
it ready for submission to bioconductor (an R package).

• March 15
I will finish analyzing various datasets (those mentioned previously) and
if the schedule is not delayed, I will parallelize the code (if necessary and
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time permitting). I also will find datasets other than those, whether from
NCBI or other sources to analyze.

• May 15
I plan to deliver the final report.

9 Deliverables

The deliverables include submission of the the R code package for Bioconductor,
a final-year report, and submission of the datasets into the NCBI databases if
collaborations accept. Also, an archive of results for datasets made public and
published will be included if there are any at that time.
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