

Metastats 2.0

An improved method and software for analyzing metagenomic data

Joseph N. Paulson

jpaulson@umiacs.umd.edu

Mihai Pop

mpop@umiacs.umd.edu

Héctor Corrada Bravo

hcorrada@umiacs.umd.edu

Abstract:

Here we present major improvements to Metastats software and underlying statistical methods.

- 1) A mixed-model zero-inflated Gaussian distribution.
- 2) A novel normalization method.

Application Background

- ▶ What is metagenomics?
- ► Why is it important?
- ▶ What do I hope to do?

Environmental sample - multiple sources of DNA

Application Background

Detection of differential abundance!

Definition: A count, c_ij is the number of reads annotated as a particular taxa i for the jth sample

	S1	S2		S(N-1)	SN
T1	c(1,1)	c(1,2)	* ****	c(1,N-1)	c(1,N)
T2	c(2,1)	c(2,2)			.
T(M-1)	c(M-1,1)				
TM	c(M,1)				c(M,N)

Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

James Robert White¹, Niranjan Nagarajan², Mihai Pop³*

$$\bar{X}_{it} = \frac{1}{n_t} \sum_{j \in treatment \ t} f_{ij}$$

$$s_{it}^2 = \frac{1}{n_t - 1} \sum_{j \in treatment \ t} (f_{ij} - \bar{X}_{it})^2$$

$$t_i = \frac{\bar{X}_{i1} - \bar{X}_{i2}}{(s_{i1}^2/n_1 + s_{i2}^2/n_2)^{.5}}$$

$$p_i = \frac{\{|t_i^{ob}| \ge |t_i|b \in 1...B\}}{B}$$

Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

James Robert White¹, Niranjan Nagarajan², Mihai Pop³*

Too slow! Can't handle large datasets

More and more data coming daily!

Doesn't account for depth of coverage

Normalization induces spurious correlations

$$f_{total}(y_{ij};\theta) = \pi \cdot f_0(y_{ij}) + (1-\pi) \cdot f_1(y_{ij})$$

Approach: Zero-inflated Gaussian

- Counts are log transformed as: $y_{ij} = log_2(c_{ij} + 1)$
- Mixture of point mass, $f_{\{0\}}$, at zero and a count distribution $f_{count}(y;\mu,\sigma^2) \sim N(\mu,\sigma^2)$
- Mixture parameter π_j
- Values $\theta = \{S_j, \beta_0, \beta_1, \mu_i, \sigma_i^2\}$
- Density is:

$$f_{zig}(y_{ij}; \theta) = \pi_j(S_j) \cdot f_{\{0\}}(y_{ij}) + (1 - \pi_j(S_j)) \cdot f_{count}(y_{ij}; \mu_i, \sigma_i^2)$$

Zero-inflated Gaussian

And a mean specified as:

$$E(y_{ij}|k(j)) = \pi_j \cdot 0 + (1 - \pi_j) \cdot (b_{i0} + b_{i1} \cdot k(j))$$

• Where k_i is our class label

Mixture parameters

Zero-valued features depend on a sample's total number of counts, S_j They follow a binomial distribution.

We model the linear effect with our mixture parameter π_j

via linear regression with a transformation function:

$$log\frac{\pi_j}{1-\pi_j} = \beta_0 + \beta_1 \cdot log(S_j)$$

Log-likelihood

We can get the maximum-likelihood estimates using the Expectation-Maximization algorithm, where we treat mixture membership Δ_{ij} = 1 if y_ij comes from the zero point mass as a latent indicator variable.

Denote the full set of estimates as $heta_{ij} = \{eta_0, eta_1, b_{0i}, b_{1i}\}$

$$l(\theta_{ij}; y_{ij}, S_j) = (1 - \Delta_{ij}) \log f_{count}(y; \mu_i, \sigma_i^2) + \Delta_{ij} \log \pi_j(S_j) + (1 - \Delta_{ij}) \log(1 - \pi_j(S_j))$$

Algorithm:

- 1. Preprocess Data
- 2. Take initial guesses for the expected value of the latent indicator variables.
 - ij positions with counts > 0, the value is 0, else .5

For *i* in 1....*M*:

- 3. Expectation
- 4. Maximize
- 5. Calculate negative log-likelihoods for each feature Repeat
- 7. Permute class membership (labels)
- 8. Calculate new t-statistic, permute and calculate p-values

Expectation-Maximization

E-step:

Estimates responsibilities,

$$z_{ij} = Pr(\Delta_{ij} = 1|\hat{\theta}, y_{ij}) = E(\Delta_{ij}|\hat{\theta}, y_{ij})$$

as:
$$\hat{z}_{ij} = \frac{\hat{\pi}_j \cdot I_{\{0\}}(y_{ij})}{\hat{\pi}_j \cdot I_{\{0\}}(y_{ij}) + (1 - \hat{\pi}_j) \cdot f_{count}(y_{ij}; \hat{\theta}_{ij})}$$

Expectation-Maximization

M-step:

Estimate parameters $\hat{\theta}_{ij}=\{\hat{\beta}_0,\hat{\beta}_1,\hat{b}_{0i},\hat{b}_{1i}\}$ given current estimates of \hat{z}_{ij} .

Current mixture parameters are estimated as:

$$\hat{\pi}_j = \sum_{i=1}^M rac{1}{M} \hat{z}_{ij}$$

Parameters for the count distribution are estimated using weighted least squares where the weights are \hat{z}_{ij} .

Algorithm continued

- Permute the labels K_j . Compute $t_i^{ob}=\frac{1}{(\sigma_i^2/\Sigma(1-z_{ij}))^{.5}}$
- Divided by the newly weighted standard error.
- Calculate $p_i = \frac{\{|t_i^{ob}| \ge |t_i|b \in 1...B\}}{B}$

Plan to add a few other tests.

Algorithm 2

- Ratio Normalization:
 - What are the issues with it??

$$y_{Aj} = c_{Aj}/(c_{1j} + ... + c_{Aj} + c_{Bj} + ... c_{Mj})$$

- Spurious correlation [1]
- False negatives [2]
- False positives [2]

¹Pearson, Mathematical Contributions to the Theory of Evolution. On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs

²Bullard et. al., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinformatics, 2010

Genes are sampled preferentially as sequencing yield increases (# PCR cycles biases as well).

Unlike RNA-seq data^c, we assume finite capacity in metagenomic communities:

$$S_{95j} = \sum_i c_{ij} \leq q_{95j}$$

This procedure addresses the issues:

- constraints communities with respect to a total capacity
- No undue influence on features that are preferentially sampled.

cRNA-seq data normalization: $y_{ij} = c_{ij}/q_{75j}$

Implementation

- Software:
 - R and possibly C
 - Make use of R and various R package functions
 - Make use of open MP (time permitting)
- Numerically, the bottleneck is the bootstrapping measure (fitting the weighted least squares).
 - Thankfully that step is trivially parallelizable.
- Hardware:
 - Develop on my Macbook Air
 - 1.6 core duo
 - 4 gigs of ram
 - Run on Ginkgo
 - 8 x Quad-core AMD Opteron™ Processor 8365 (2300MHz) (32 cores)
 - 256 GB Ram
 - RHEL5 x86_64

Databases

- Diseased and healthy dysentery data
- Oral microbiome
- Two diet groups of gnotobiotic mice

 Access others with more time from Genbank database.

Validation

 Compare non-zero matrix results with another method, the log model fit, to ensure exact same results.

$$E(y_{ij}|k(j)) = (b_{i0} + b_{i1} \cdot k(j))$$

 Simulate data for known quantities (known difference, small variance) and see how model reacts.

Testing

 Ensure that preprocessing of the data is handled correctly – biologically

 Compare to Metastats, Kruskal-Wallis (nonparametric test), etc.

Project Schedule

- November 30:
 - Preprocessing data
 - Finish normalization codes
- December 15:
 - Continue reading
 - Finish Zig model
 - Midyear report
- January 15:
 - Continue reading
 - Validation of methods

- February 15:
 - Finish a comparison of normalization methods
 - Package, comment, etc.
- March 15:
 - Analyze various datasets
- April 15:
 - Parallelize
- May 15:
 - Deliver all
 - Final report

Bibliography

- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Dordrecht: Springer, 2009. Print.
- McCulloch, Charles E., S. R. Searle, and John M. Neuhaus. **Generalized, Linear, and Mixed Models.** Hoboken, NJ: Wiley, 2008. Print.
- White, James Robert, Niranjan Nagarajan, and Mihai Pop. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples." Ed. Christos A. Ouzounis. PLoS Computational Biology 5.4 (2009): E1000352. Print.
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023.
- Efron B, Tibshirani R (1993) An introduction to the bootstrap. New York: Chapman & Hall.
- Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440–9445.