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Numerical Weather Prediction (NWP):
= |nitial Value Problem of PDE

Atmospheric :> Governing = Numerical = Solve !
Phenomena Equations Discretization (Simulate)
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AGCM: Atmospheric General Circulation Model

= a computer program which simulates the flow of global atmosphere by
numerically integrating the governing fluid dynamical PDEs




Introduction: Motivation

Due to computational restrictions ...

most AGCMs adopt low-order time-integration
schemes, such as

Leap-frog with Robert-Asselin filter (1% order)
Explicit Backward Euler (aka. Matsuno; 1% order)

Often, At is taken as the largest value for which
computational instability is suppressed,

under the premise that temporal discretization errors
are negligible compared to those associated with
spatial discretization or Physical Parameterizations.



Introduction: Motivation

However ...

e Spatial resolutions become finer and finer as the
supercomputers become faster.

* |s the premise that time truncation errors are negligible
justified ?

* If not, how can we alleviate such errors ?

- Goal of the Project: Reduction of such model errors

Approaches :

Phase 1: Use a more accurate scheme with the same
computational cost

Phase 2: ldentify and parameterize the error, and reduce
it using data assimilation



Phase I:
Implementation of Lorenz N-cycle
to SPEEDY model



Phase 1: A Better integration scheme
(Lorenz N-cycle)

Lorenz (1971) proposed an incredibly smart time-integration
scheme which:

* requires only 1 function evaluation per step

* butyet ( ) it is of
- (up to) 4th-order accuracy (for nonlinear systems)
- arbitrary order of accuracy (for linear systems)

However, this scheme seems to have remained forgotten.
No applications have been made to AGCMs.

= Apply Lorenz N-cycle to an AGCM (Phase 1)



Phase 1: Approach

Implement Lorenz N-cycle to an existing AGCM

Implement 4" order Runge-Kutta (RK4) as well as
a reference

Compare the accuracy and efficiency of the newly
introduced schemes with the original scheme

Perform verification by the Jablonowski-
Williamson (2006) Dynamical-core Tests



Phase 1: Algorithms

ODE to be solved:
d
"= F(u)

dt

Lorenz N-cycle

(existing) Leap-frog with
Robert-Asselin Filter

4th order Runge-Kutta

N

_ 1 _ k __
G=0w =1w ==,

dok=1,...,N —1
G — wFF(u) + (1 — w*)G
u— u+ GAt

end do

dok=1,...,
utt = u™t 4 2ALF(u0)
u® = u® 4+ o(ut — 20’ +uh)
uwt = ul
u® — ut!
end do

h* — F(u
ut=52t(h' 4 2h% + 2h® + h*)
end do

Memory consumption:
2 X dim{model state}

Memory consumption:
2 X dim{model state}

Memory consumption:
4 X dim{model state}

F-evaluation: 1 per time step

F-evaluation: 1 per time step

F-evaluation: 4 per time step

accuracy: (N<=4)

O((NAt)N) (every N steps)
O(NAt)

(in between)

accuracy:

o(At)

daCCuracy:

o(at?)
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AGCM: SPEEDY model

A fast AGCM with simplified physical parameterizations
Developed in ICTP (ltaly) by Drs. F. Molteni and F. Kucharski
Horizontal Discretization:
Spectral Representation with Spherical Harmonics
truncated at total wavenumber 30 (T30) = 400km mesh
Vertical Discretization:
8-layers Finite Difference on o-coordinate
Temporal Discretization:
Leap-Frog scheme with Robert-Asselin Filter
(1%t order Forward Euler for the physical parameterizations)



The equations solved:

the “primitive” equation system (PDEs)
on a spherical geometry + parametrized processes

Dynamical Core

Sub-grid Parametrizations
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Stiffness Problem

* The “Primitive” Equations = Stiff system :

e Fast but insignificant modes (= gravity waves)
are superposed on the slow but
meteorologically meaningful modes (= Rossby
waves)

 Due to the CFL condition for the fast modes,
we need very small timestepping At

- Semi-implicit method (Robert, 1969)



Semi-Implicit for Leapfrog (1)
Formulation

ODE to be solved: d_u — E(u) + Ly

F
dt )
Slow modes  Fast modes
assumed Linear

Solve this discretized equation

un—l—l . un—l
A =FPw") + L1 (au™ + (1 — a)u™ 1)
! \ ' J
Explicit

Implicit



Semi-Implicit for Leapfrog (2)
How to solve

Define: Su —

substitute  u" Tt = w71 + 2Atou
to the discretized equation,

ou = FP™) + L'uw" ! 4+ 2aAtL su
sou = (I—2aALH) Y FPW™) + Liv™ )

Once you get 0u, you can integrate
the equation by

w1 = L 9A S
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Semi-implicit Lorenz N-cycle

Explicit (original) Semi-implicit
do £=0,...
do k=0,... ’
mod(k,N) w e oA
wew G+ wFfu) + (1 -wG
G+ wF(u)+(1—w)G Su—= (I —aAL)) "G + LTu)
u < u+ GAt u < u+ Atéu

end do end do



Accuracy(Consistency) & Stability

Analysis: Method

* Following Durran (1991, 1999; MWR) and Williamson
(2011; MWR), apply semi-implicit modification to the
second term of the equation:

du .
— = WU+ WWHU

dt

 Examine the modulus of Amplification factor A.
* If |A| <1, the scheme is stable.
* Range of interest:

wr At < 0.5, W At > 2

i.e., CFL condition is met for low-frequency part but is
violated for high-frequency part.



Accuracy(Consistency)

e Truncation Error:

N uExact 1

uY - ﬁ(l —20)wr(wi +wr)(NAL)? + O(At?)

u

» By taking a=1/2 (Crank-Nicolson), the scheme
becomes 2"%-order



Plots of ‘A‘-l (a=1/2: Crank-Nicolson)
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Leapfrog with
R/A filter:
Stable almost
everywhere
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Lorenz 1-cycle
(=Forward Euler):
Unstable
everywhere

Lorenz 2-cycle: Lorenz 3-cycle: Lorenz 4-cycle:
Unstable Absolutely Absolutely
everywhere Unstable for Unstable for

>1.5 >2.7



Plots of ‘A ‘ -1 (a=1: Backward Euler)
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Leapfrog+R/A filter (=Forward Euler):
Stability is good, but damping is too strong (~50%)



Stability for a=1/2: Crank-Nicolson
N=1,...,6

SFROT 09

White: stable |A|< 1

Gray: Unstable |A] >1




Stability for a=1: Backward

Aty Atwy,

EFuler

White: stable |A|< 1

Gray: Unstable |A| >1



Stability: Summary

Crank-Nicolson semi-implicit N-cycle is
unstable for N=1,2

Stability region is largest for N=4
More unstable than Leapfrog.

Backward Euler semi-implicit N-cycle is more
stable, but damping is too strong
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Code Validation: Idea

* Lorenz N-cycle:

— Lorenz 1-cycle is equivalent to Forward Euler,
which is built-in in the SPEEDY model.

— = Compare Lorenz 1-cycle with Forward Euler.
e RK4 :

— For a linear system, RK4 with 4At is equivalent to
Lorenz 4-cycle with At.

— = Remove all nonlinear terms from SPEEDY and
Compare RK4 (4At) with Lorenz 4-cycle (At).



Code Validation: Results

e Qutputs of single step integrations of Lorenz 1-
cycle and Forward Euler from the same initial
condition are compared using UNIX diff command.

— Result =2 no difference (Success)!

* Similarly, outputs of single step integration of RK4
and four-step integration of Lorenz 4-cycle from
the same initial condition are compared using
UNIX diff command.

— Result =2 no difference (Success)!
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Verification: Dynamical-Core test cases

e Standardized tests for dynamical cores of AGCM
proposed by Jablonowski and Williamson (2006) which
consists of two tests:

1. Steady-State test:

— A modelis integrated from an analytical steady-state
solution of the primitive equation

— The model is evaluated by how well it can keep the
steady-state intact.
2. Baroclinic-Wave test:

— The model is integrated with initial and boundary
conditions which is designed to produce an idealized
baroclinic wave (= extratropic cyclones and highs)



Baroclinic-wave Test: Result (Lorenz 4-cycle)

Barcolinic wave test: ncyc1_4abba Day 11

Cf N T
-




Snapshots of surface-pressure at Day 9

-

| Hi-res. reference solution |

180

: \@%%IZ e

Leapfrog (dt=20min) RK4 (dt=1min)
[
940 960 9?0 1000 10?0 9?0 960 9?0 1000 10?0
s e
q e %
)\
30.0 —& 97/ —30.0 ~LI\J“' // = <_
Leapfrog (dt=1min) N-cycle (dt=20min)
— L
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Order estimation

Lorenz 4-cycle is supposedly of 4t-order, while
Leapfrog (with R/A filter) is only of 1st-order

Confirm this by plotting L? error vs. At on a log-log
plane.

Experimental set-up: Jablonowski-Williamson
baroclinic-wave test

Measure of the error: difference in surface
pressure with respect to the reference solution
produced by RK4 with At=0.5min in L?-norm



Result : L#(Ps) at t=3days

Log(t)-Log(err), truth taken from RK4(dt=30sec)
0.1

Leapfrog + C-N

—— ' : S

Leapfrog + B-E ' Leapfrog +BE

4-cycle A+ C-N

0.01 ¢ 4-cycle B+ C-N
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_B_
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1e-05
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Result : L¢(Ps) at t=5days

Log(t)-Log(err), truth taken from RK4(dt=30sec)

Leapfrog + C-N

Leapfrog + B-E

4-cycle A+ C-N _4' Leapfrog +BE

4-cycle B+ C-N
4-cycle B+ B-E

N-cycle +BE

4-cycle AB+ C-N
0.01 ¢ 4-cycle AB+ B-E
4-cycle ABBA+ C-N

! Leapfrog +CN

rd J

4-cycle ABBA+ B-E
slope 1

N-cycle +CN

L2err(PS) [hPa]

i slope 3

——
_+_

01 4-cycleA+ BE —a—
_B_

+

slope 4 ——

0.0001 }

1e-05

1 10 100 1000
dt (sec)



Result : L(Ps) at t=10days

L2err(PS) [hPa]

10 ¢

01

0.01

0.001

0.0001

1e-05

Log(t)-Log(err), truth taken from RK4(dt=30sec)

Leapfrog +ON ==
Leapfrog + B-E —«—
4-cycle A+ C-N —%—
4-cycle A+ BE —a—
4-cycle B+ C-N
4-cycleB+ BE —o—
4-cycle AB+ C-N
4-cycle AB+ B-E —a—
4-cycle ABBA+ C-N
4-cycle ABBA+ B-E ——
slope 1

™ T T T T T T T T

- | Leapfrog +BE

N-cycle +BE

—

\ A | LI Leapfrog +CN

N-cycle +CN

slope 2 g '

slope 3 / ]

slope 4 / 1
10 100 1000

dt (sec)



Dynamical-core test
Summary of the results

* For At< 10min, the order of Lorenz 4-cycle is 3" ~ 4th

* For alarge At, A-B-B-A cycle is inferior to version A or
version B, which contradicts with Lorenz (1971)’s claim.
* Possible reasons:

— Cancellation of truncation errors of version A and B does
may hold because of the introduction of semi-implicit
method.

— Cancellation between A and B itself is not attained for the
AGCM.

— A-B-B-A cycle is more unstable for nonlinear models than
A-only or B-only.

=» To be examined
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Inclusion of Physics

* Having proved that N-cycle works without
physical parameterizations, | next tried to
include physics in the N-cycle SPEEDY model.



Problem encountered in the Last Semester:
N-cycle and RK4 blow up when run with physics on

Temperature Vorticity Divergence

vg. Temp. rkd_expl Rotational E¢dy Kinetic Energy rké_expl

S§§§Qii§§§5§

Few. B, @ Resolved:
N - It was a Stupid
Bug !

5§§§§£é§§§5§

Global avg. Temp. leapirog




Stability

e After fixing the bug, | tried to find the largest At with which the N-
cycle can integrated stably.

Bad news: the largest stable At
e for N-cycle : 15 mins, whereas
* for Leapfrog: 40mins.

Possible remedy (with some accuracy degradation) :
* the largest stable At can be made 30mins

* by using Backward Euler for the gravity-wave part (instead of the
default Crank-Nicolson)

* N-cycle can be integrated with At=15mins. for at least 100 years
(=3,504,000 steps)



Comparison of
Climatology (= long-term mean)

* |n climate application, it is important that the long-term
mean of the atmospheric state (called climatology) does
not change.

» =» Statistically compared the climatologies using Welch’s t-
test.

 Examined Climatologies:

two seasons (DJF: 12-2 and JJA: 6-8), each from 3 models:
— Leapfrog with dt=40mins (default)

— 4-cycle (Crank-Nicolson for gravity-wave) dt=15mins

— 4-cycle (Backward Euler for gravity-wave) dt=30mins



t-test for the difference of

climatologies

* Experimental design:

— Run all the models from the same initial condition (state of
rest)

— Integrate for 30 years.
— Discard the first 10 years as a spin-up.
— Use the remaining 20 years as the samples.

* Null-hypothesis:

climatologies (= sample means) are taken from the
same population.

* The probability of the differences between two
sampled climatologies being larger than the observed
difference under the null-hypothesis is computed.

* |If this probability is larger than 95%, then the null-
hypothesis is not rejected.



Results for T, Z, U and V, MSLP and OLR:
no significant difference !

e all results are uploaded on

http://www.atmos.umd.edu/~dhotta/speedy_clim2/clim.html

Example: Leapfrog + 4-cycle + 4-cycle +
Z500 CrankNicolson CrankNicolson Backward Euler

SPEEDY_leapfrog gh500 DJF-clim SPEEDY_NcycCN gh500 DJF-clim SPEEDY_NcycEul gh500 DJF-clim
geopotential height [m geapotential height [m)
A I T hitah La

climatology

T T T T T T T T T T T T T-908 -1 T T T T T T T T T T T T T T T T T T T T T T
o MWE G0E GOE 120€ 150E 180 150W 120W GOW 6OW  J0W o 0 E GE SOE 120E 150E 180 150W 120W SOW 60W  30OW 0 L E GE SE 120E 1S0E 180 150W 120W OW  6OW  J0OW o
B [ .. B [ [ [ - B [ [ e
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
gh500 DJF-clim Leapfrog-leapfrog gh500 DJF-clim Leapfrog-NcycCN gh500 DJF-clim Leapfrog-NcycEul
RED=no sig.dif. BLUE=sig.dif. RED=no sig.dif. BLUE=sig.dif. RED=no sig.dif. BLUE=sig.dif.
e geopotential height [m) geopotential height [m]) geopotential height [m)
Probablllty gon b bbb by L PR P PP N S T S I S S S -
= T ma@EERL |
BN | X" . <7 SN TS F e
- Y s 3
of null- e " : }
30N ) % % 30N
. Ly | L
] Y CONSTANT FIELD - VALUE IS 1 - o
hypothesis exereree |
8 { ka0
. i '
not being - Co e
. s T T T T T T T T T T %S %S T
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Conclusion for Phase |

* Designed semi-implicit version of N-cycle
— Analyzed stability using a toy-model
— 4-cycle is the most stable

— For semi-implicit method, Crank-Nicolson is more
accurate than Backward-Euler but is more
unstable

e Verification through Dynamical-Core test:

— 4-cycle with Crank-Nicolson exhibits order-of-
accuracy which is higher (2"9~ 3r) than filtered
Leapfrog (1%t-order)



Schedule for Phase 1:
Planned and Actual

Planned Actual

Implement RK4 and N-cycle, Nov. \

Write the mid-year report,
prepare the oral presentation,
Dec.

Switch-off physical
parameterizations, prepare flat
topography, Jan.

perform the dynamical core tests.
Feb.

Formulate semi-implicit N-cycle,
Oct.

Implement RK4 and N-cycle, Nov.

Switch-off physical
parameterizations, prepare flat
topography, Dec.

perform the dynamical core tests,
Dec.

Write the mid-year report,
prepare the oral presentation,
Dec.

Coded a bug, and fixed the bug,
Jan. (winter break)

Compare climatologies,
performed statistical test, Feb.



Phase II:
Empirical characterization of Model
Errors
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Phase 2: Approach

* Objective: Characterize the model errors due to temporal
discretizations

* Take the Truth from NCEP/NCAR reanalysis (Kalnay et al.
1996)

NCEP=National Centers for Environmental Prediction
NCAR=National Center for Atmospheric Research

e Extract model errors by applying the method of Danforth et
al. (2007) to the models with:

1. the original scheme (Leap-Frog; M)
2. Lorenz N-cycle scheme (MNCYC)

* (time permitting) Correct the model errors on-line during
the course of model integration

(= Phase 3&4)



Phase 2: Algorithm

1.

Generate initial values from the Truth
(NCEP/NCAR reanalysis)

Perform short-range forecasts using the 2
models (M, MNCY4) from the initial conditions

find the bias of the model errors for each model
Build the covariance matrix

((@(t) = @) (M (2(t) - M"F (2(t) )

Extract the dominant modes by conducting SVD



Interpolation from NCEP/NCAR grid to
SPEEDY grid

Obtained the original code (used in Danforth et.al (2007)) and
wrote a code that does exactly the same operation
Original code:
— written in MatLab script
— performs Simple linear interpolation in 3D
My code:
— wrote in NCL (NCAR Command Language)
— Basically a line-by-line translation from MatLab to NCL

Validation:

— Method:

* produce data on SPEEDY grid from NCEP/NCAR data using the original code
and my code

e compare the two outputs, one from the original, the other from my code
— Result: the two outputs agreed within single-precision rounding error
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Model Error Bias : Results
Zonal wind at 200hPa

u200 bias leapfrog
1 1 1 1 1

u200 bias ncyc1_4b
1 1 1 1 1
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Model Error Bias : Results
Temperature at 850hPa

T850 bias ncyc1_4b
1 P | 1 " | 1

T850 bias leapfrog
1 1 P | 1
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Model Error Bias : Results
Specific Humidity at 300hPa

SpcHum 300hPa bias leapfrog SpcHum 300hPa bias ncyc1_4b
1 1 1 1 1 1 1 N 1 1 1 1 1 1
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Model Error Bias : Results
Specific Humldlty at 700hPa

Schum 700hPa blas Ieapirog Schum 700hPa bias ncyc1_. 4b

90N L
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Model Error Bias : Summary

* For all variables, Leapfrog and N-cycle produce
almost identical bias pattern

* |nterpretation:

bias is dominated by the model’s deficiencies
associated with physical parameterizations

* They are consistent with Danforth et.al (2007)



Plan for Phase ||

In Danforth et.al (2007),

1.

Error samples {6x} are produced with the
original model M

Bias <6x> is computed

The model is modified by incorporating
nudging to -<6x> to yield M*

Error samples {6x*} are resampled using the
de-biased model M*

Diurnal errors are extracted from {6x*} by
performing EOF analysis and retaining the
first two dominant modes

The de-biased model M* is again modified
by incorporating nudging to negative of
diurnal biases to yield M**

Error samples {6x**} are again resampled
using M**

Perform SVD analysis to extract dominant
co-variation of model error 6x** and the
anomaly of the model states

while, in my original plan,

1. Error samples {6x} are produced with the
original model M

2. Bias <6x> is computed

3. Perform SVD analysis to extract dominant

co-variation of model error 6x** and the
anomaly of the model states

4.  Validation: Results are compared with
Danforth et.al (2007)



Plan for Phase ||

 Danforth et.al (2007) involves much more tricks than |
originally planned.

e Reproducing all the procedures in Danforth et.al (2007)
is impossible given that | have only 2-weeks left.

9

* | continue the original plan, but modify the Validation
part.

* New Validation:
— Check orthogonality between the extracted modes



Conclusion for Phase Il

* Generated samples of model error

 Computed biases for Leapfrog and Lorenz 4-cycle,
compared them with Danforth et.al (2007)

- Result:

— No significant bias improvements by using a better
temporal scheme. Perhaps dominated by physics errors

— Consistent with Danforth et.al (2007)

 TODO (in two weeks):

— SVD analysis to identify the dominant co-varying modes
between model state anomaly and model error

— Comparison with Danforth et.al (2007)



Schedule for Phase 2:
Planned and Actual

Planned

Generate initial values from
the NCEP/NCAR reanalysis,
end of Feb.

build the bias and covariance
matrix, Mar.

Code and test a program for
SVD, Apr.

Compare the model errors for
the new and the original
schemes, May.

Write the final report (paper
draft), May.

Actual

Generate initial values from the
NCEP/NCAR reanalysis, end of
Feb.

Compute the bias, Mar.

Plot the bias and compare It with
Danforth et.al, Apr. (< Now I’'m
here)

Code and test a program for SVD,
May.

Compare the model errors for the
new and the original schemes,
May.

Write the final report (paper
draft), May.



Outcome/Deliverables

Phase 1:
e Upgraded code for SPEEDY model v
- subroutines for Lorenz N-cycle and 4t order Runge-Kutta

e Test-case results for the SPEEDY model (both for the original
scheme and the new schemes) (V4

Available at https://code.google.com/p/speedy-lorenz-ncycle/

Phase 2:
* Archive of the model errors ¢/
* Bias of model errors v

e Pairs of Singular Vectors for the model state and the model error

e Code for performing SVD
—~~ To be completed in two weeks
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Swinging-pendulum problem

* Asimple nonlinear test-bed
for semi-implicit schemes.

e Fast oscillation = elastic
spring
* Slow oscillation = pendulum

e Fast mode is treated

= implicitly, slow mode
From Williams (2011) explicitly.

FIG. 7. Schematic diagram of the elastic pendulum, or swing-
ing spring, showing the equilibrium position (dotted) and a non-
equilibrium position defined by the values of 1 and 6 (solid).

* For this test, | use At=0.075
h=v, which gives

B W, owAt=0.225, w,At=2.25,

v, = —wlzow(l — cosh) — a)ﬁigh'r) +(1+ 77)”37
,» and

2
low

o 1+

—w?t. sinf — 2v v
n 6




Leapfrog with RA filter (a=0.01)
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4-cycle with semi-implicit correction
on every 4 steps (Crank-Nicolson)
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4-cycle with semi-implicit correction on every 4
steps (Backward)
=>» stable but very dissipative

4ABBA_Backward_Eul =0.075
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4-cycle with semi-implicit correction
on every time step =2 unstable

—— RK4 with At=10°
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eta

Explicit 4-cycle
=» unstable

Neycle_4ABBA_explic dt=0.075
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Summary

Consistent with the linear analysis,

* N-cycle with semi-implicit on each time step
=>» unstable
* N-cycle with semi-implicit on every N steps

=>» Crank-Nicolson: stable, but comparable accuracy
with Leapfrog

=>» Backward Euler: stable, very dissipative



Reference:

 Williams, P. D. 2011: The RAW Filter: An
Improvement to the Robert—Asselin Filter in

Semi-Implicit Integrations, Mon. Weath. Rev.,
139, 1996--2007



Runge-Kutta 4th-order scheme
with semi-implicit correction



Introduction

* | implemented semi-implicit Runge-Kutta 4th-order
scheme to SPEEDY model and found that

— for Crank-Nicolson, the model blows up, even for very
small dt (1min).

— for Backward Euler, the model is too diffusive that the
baroclinic-wave dynamical core test fails to produce the
baroclinic wave.

* Explicit Runge-Kutta 4th-order scheme with small dt
(5min) works fine for the dynamical core test.

* — examine stability using the toy-model



Method

* Following Durran (1991, 1999; MWR) and Williamson
(2011; MWR), apply semi-implicit modification to the
second term of the equation:

du | .
— = WLU + WWHU

dt

 Examine the modulus of Amplification factor A.
* If |A| <1, the scheme is stable.
* Range of interest:

wr At < 0.5, W At > 2

i.e., CFL condition is met for low-frequency part but is
violated for high-frequency part.



Algorithm:
RK4 for w , Crank-Nicolson for w,,

ht = dwru”
uy =u" + Sth!
h? = diwpul
Us = u" + %hQ
h3 = iwpuj
uh = u" + Ath?
h4 = iwLuZ
G = ¢ (h* + 2h* + 2R% + h*)

un—l—l L un
A7 =G+ {Biwgu" (1 — B)iwgu"}

Truncation Error:
un—|—1 L uE:cact 1

= Zwy (1= 28)wy — 2(8 — Dwr) AL + O (AD)

u" 2
the accuracy is only 15t order
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-> Absolutely unstable

-> Absolutely stable,but extremely dissipative

a4}

QL wyy

B=1: backward Euler

o
Y

@
|
|

Atwy

1 1 1 L 1 1 1 1 1 5 1 1 'l 1 1 1 1 1 1 1 1
0.0 02 04 0.6 08



Summary

* Runge-Kutta 4t"-order scheme with semi-
implicit time is
— only of first order (with respect to fast modes)
— absolutely unstable if Crank-Nicolson is used

— absolutely stable if Backward Euler is used, but
the numerical damping is too strong (more than
halving on every time step)

e all of the above are consistent with what |
found for the SPEEDY model.



Conclusion

e Runge-Kutta 4th-order scheme with semi-implicit
time-stepping for gravity waves is impossible
(either unstable or too dissipative)

 The accuracy becomes only of 1%t order.

* Since the motivation for implementing Runge-
Kutta 4t-order scheme is to produce a reference
solution, | will not try to resolve this issue, and
use the explicit scheme with small dt.



Stability analysis of Forward Euler
“split physics” for Leapfrog, Lorenz
4-cycle and RK4



Toy model:
linear advection-diffusion equation

e Undiscretized equation:

du
dt

— wwu — Bu

* The first term of the RHS simulates the
dynamics of AGCM, and the second the
physics.



Discretization: Leapfrog(dyn) + Euler(phys)

Discretized equation:
un—l—l L un—l

= jwu” — Bu" !
2At b
The amplification factor A satisfies the following equation:
A% —1
— wA —
2At b

= A =iwAt £ /1 — (WAL)2 — 2ALS
(+) and (-) correspond, respectively, to physical and
computational modes.

The scheme is stable if the maximum of the moduli of them is
less than 1.



Discretization: Leapfrog for both dyn & phys

Discretized equation:
un—l—l . un—l

N = i(w +i8)u"
The amplification factor A satisfies the following equation:
A% —1 , ,
AL i(w+i8)A

= A=i(w+iB)At £ /1 — (w+ iB)2At2
(+) and (-) correspond, respectively, to physical and
computational modes.

The scheme is stable if the maximum of the moduli of them is
less than 1.



Discretization: Lorenz 4-cycle (dyn) + Euler(phys)

* Discretized equation:
u TN = u* — NBAtu®,

N
1
where o™ =u" (Z E(inAt)k>

k=0

 Amplification factor (per time step):

N 1/N
A = { (Z %(inAt)k> - BNAt}

k=0



Discretization: Lorenz 4-cycle for both dyn & phys

* Discretized equation:

"N =" <Z %(iN(w + iﬁ)At)k)

k=0
 Amplification factor (per time step):

N 1/N
A= (Z kl!(inAt)k)

k=0



Discretization: RK4(dyn) + Euler(phys)

* Discretized equation:

u" T = u* — BAtU",

Al
where u* = u" ( E(iwAtﬁ)
k=0

 Amplification factor :

A= (Z %(iwAt)k> — BAt

k=0



Discretization: RK4 for both dyn&phys

* Discretized equation:

u Tt = " (Z %(z(w — ’iﬁ)At)k)

k=0

 Amplification factor (per time step):

A = Z zwAt



Leapfrog for both dyn & phys:

Leapfrog:
“split physics” stabilizes the otherwise
absolutely unstable scheme

absolutely unstable Stable within the triangle

Leapfrog (dyn) + Euler (phys):

max(|A_phys| |A_comp|) for Leapfrog (for dynamics and physics) max(|A_phys||A_comp]) for Leapfrog + Euler (split physics)

1

stable

2

12

05



Lorenz 4-cyle:
“split physics” destabilizes the scheme

Lorenz 4-cycle for dyn & phys: L4-cycle (dyn) + Euler (phys):
absolutely unstable Stable within the triangle
|A| for 4-cycle (dynamics and physics) |A| for 4-cycle + Euler (split physics)

stable




RK4:
again, “split physics” destabilizes the scheme

absolutely unstable Stable within the triangle
|A| for RK4 (dynamics and physics) |A| for RK4 + Euler (split physics)

unstable

-1 -05 0 05 1

WAL - WAL



Summary

* For leapfrog, doing “split physics” works very
well (stabilizes the scheme)

 However, for Lorenz 4-cycle (and equivalently,
for RK4), “split physics” acts to destabilized
the scheme.

* The latter is consistent with what | found by
doing “split physics” with SPEEDY model.



The Bug (1)

Leapfrog (default) N-cycle (with bug)
PROGRAM agcm PROGRAM agcm
CALL iniall () CALL iniall ()

IDAY=0; CALL FORDATE()
CALL STE PONE() I 15t step by Euler Forward

DO ! loop over a month DO ! loop over a month
DO ! loop over a day DO ! loop over a day
CALL FORDATE() CALL FORDATE()
CALL STLOOP() | integrate for a day CALL STLOOP() | integrate for a day
END DO END DO

END DO END DO




The Bug (2)

N-cycle (fixed)

N-cycle (with bug)

PROGRAM agcm
CALL iniall ()
IDAY=0; CALL FORDATE()

DO ! loop over a month
DO ! loop over a day
CALL FORDATE()
CALL STLOOP() | integrate for a day
END DO
END DO

PROGRAM agcm
CALL iniall ()

DO ! loop over a month
DO ! loop over a day
CALL FORDATE()
CALL STLOOP() | integrate for a day
END DO
END DO




