
Reduction of Temporal Discretization Error in an

Atmospheric General Circulation Model

Mid-year Progress Report

December 14, 2012

Daisuke Hotta
hotta (at) umd.edu

Advisor: Prof. Eugenia Kalnay
Department of Atmospheric and Oceanic Science

ekalnay (at) atmos.umd.edu

Abstract

An atmospheric general circulation model (AGCM) is a computer
program which numerically integrates the system of partial differential
equations which describes the physical laws governing the flow of the
Earth’s atmosphere. Integration of AGCM is a central part of weather
predictions and climate projections. Currently, due to restrictions on
computational costs, most AGCMs adopt relatively low-order tempo-
ral discretizations, under the premise that errors arising from temporal
discretizations are negligible compared to those associated with spa-
tial discretizations or physical parametrizations. However, recent study
shows that temporal discretizations is likely to be a significant source
of model errors. The goal of this project is to reduce the temporal
discretization error. Two different approaches will be examined: the
first approach is to test a new time integration scheme, called Lorenz
N -cycle scheme, which requires the same computational costs as the
conventional scheme but yet can yield forecasts of higher-order accu-
racy. The second approach is to empirically estimate and correct model
errors using the methodology presented by Danforth et al. (2007).

1

1 Introduction

Current weather forecasts and climate projections are based on numerical
integration of the fluid dynamical partial differential equations which gov-
ern the evolution of the global atmosphere. The models which discretize
those governing equations of the global atmospheric motion are called At-
mospheric General Circulation Models, or AGCMs. Currently, most
AGCMs, even the state-of-the-art, most comprehensive models, adopt rather
simple, low-order temporal discretization schemes, including the second or-
der leapfrog scheme (which falls into first order when used in conjunction
with temporal filters such as Robert-Asselin filter (Asselin, 1972) for stabi-
lization), or the first order Matsuno scheme (Matsuno, 1966). The rationale
behind the use of such low-order schemes in AGCMs is that, the model
errors are dominated by the components arising from spatial discretization
or from physical parametrizations and thus, in order to strike the best bal-
ance between computational efficiency (both in terms of speed and memory
consumption) and accuracy, temporal discretizations should be made eco-
nomical.

However, given the trend of increased spatial resolutions fueled by in-
crease of computing powers, and the accelerating betterment of physical
parametrizations, it might be natural to cast doubt on the validity of the
assumption that errors due to temporal discretizations are less significant,
and to consider refinements to temporal integration schemes. In fact, recent
research shows that outputs of AGCMs show sensitive dependence on time
stepping. For example, Teixeira et al. (2007) has shown that NOGAPS, the
US Navy Operational Global Atmospheric Prediction System, exhibits con-
siderably different model climates when integrated with different time steps,
indicating that temporal discretization errors can account for a substantial
component of the total model errors. In this project, we will consider two
possible remedies to the issue presented above. The approaches of the two
remedies are outlined in the next section.

2 Approaches

The first approach is to use a temporal discretization scheme which is com-
putationally as economical as the conventional schemes but yet can be sub-
stantially more accurate. The efficient and accurate scheme, called the
Lorenz N -cycle scheme, will be implemented to an existing AGCM, called
SPEEDY (Simplified Parametrizations, primitivE Equation DYnamics)

2

model, which adopts the leapfrog scheme with Robert-Asselin filter as its
temporal discretization. As a reference, the tried-and-truth Runge-Kutta
scheme of 4th-order will be implemented as well. The performance of the
Lorenz N -cycle in terms of computational efficiency and accuracy will be
compared to the original scheme (leapfrog) and the 4th-order Runge-Kutta
scheme. The implementation, validation and verification of this approach
will comprise the Phase I of this project.

The second approach is to estimate the model error and then reduce it
by subtracting the estimated error during the course of model integration.
For this purpose, we will reproduce the empirical error correction methods
introduced by Danforth et al. (2007) who used model error bias statistics and
the singular value decomposition (SVD) technique on the covariance matrix
between model state and model error to estimate, respectively, the state-
independent and the state-dependent component of the model error in the
SPEEDY model. The methods will be applied both to the original SPEEDY
model and to the newly implemented Lorenz N -cycle. The implementation,
validation and verification of a subset of this approach will comprise the
Phase II of this project.

3 Phase I: Methods

3.1 Lorenz N-cycle

In 1971 Edward Norton Lorenz devised an incredibly smart time-integration
scheme for a system of first-order ordinary differential equations (ODEs)
which achieves high-order accuracy and minimal memory consumption at
the same time (Lorenz, 1971). Consider a problem of numerically integrating
the system of ODEs:

du

dt
= F (u) (1)

where u = (u1(t), . . . , uM (t)) is an M -dimensional vector function of t and
F (u) = (F1(u1, . . . , uM), . . . , FM (u1, . . . , uM)) is a function from RM → RM .
Lorenz (1971) derived two “isomeric” versions for the above problem whose
algorithms are shown schematically as pseudo-codes below:

3

N -cycle A

w0 = 1, (2)

wk = N
N−k (k = 1, . . . , N − 1)(3)

do k = 0, . . .

w ← wmod(k,N) (4)

G← wF (u) + (1− w)G (5)

u← u+G∆t (6)

end do

N -cycle B

w0 = 1, (7)

wk = N
k (k = 1, . . . , N − 1) (8)

do k = 0, . . .

w ← wmod(k,N) (9)

G← wF (u) + (1− w)G (10)

u← u+G∆t (11)

end do

(Here we used the elegant notation introduced in Purser and Leslie (1997)
rather than that in the original paper by Lorenz.)

Mathematical idea behind the above algorithms is simple: to “reuse”
the previously computed tendencies (F (uk−j), j = 1, 2, . . . , k − 1, where
uk−j denotes the value of u at the (k − j)-th step of each cycle) by forming
a weighted average of them to produce a tendency which yields the highest
order of accuracy after the completion of N -th step, under the constraint
that each intermediate step retains at least first order accuracy. In this sense,
the Lorenz N -cycle can be regarded as a special type of Runge-Kutta family.
In fact, it can be shown that for linear systems, the Lorenz 2-cycles, both
version A and B, are equivalent to the Heun scheme with time step 2∆t and
the Lorenz 4-cycles, both version A and B, are equivalent to the classical 4-
step 4th-order Runge-Kutta scheme (described in the next subsection) with
time step 4∆t.

The two versions differ only in the choice of the “weight” coefficients wk.
Lorenz (1971) showed that, for a case where F is linear with respect to u, for
any positive integer N , the both versions yield numerical solution of N -th
order every N time steps, although in the intermediate steps, the accuracy is
only of first order. If F is nonlinear, the accuracy of N -cycle reduces to 2nd
order for N ≥ 3. However, for N = 3 and for N = 4, the N -th order term
in the truncation error of the versions A and B can be shown to be of same
magnitude with opposite signs. Thus, for N = 3 and for N = 4, N -th order
accuracy can be attained by running both A and B cycles simultaneously
and averaging the predictions, at the expense of doubling the computational
cost both in speed and memory consumption.

In order to avoid doubling of computational costs, Lorenz (1971) pro-
posed to use the versions A and B in a suitably designed alternating se-
quence, based on the intuition that the errors the both versions should tend
to cancel each other. In fact, he showed that, for N = 3, true 3rd order
accuracy can be retained even for a nonlinear case by alternating versions A

4

and B. Likewise, full 4th order accuracy can be achieved for N = 4 by form-
ing a 4N(= 16)-cycle of A,B,B,A. In this project, we will implement this
4N(= 16)-cycle version and call it by the Lorenz N -cycle for convenience.

Advantages of Lorenz N-cycle

The principal advantage of Lorenz N -cycle beside the high-order accuracy is
its computational efficiency, both in terms of speed and memory consump-
tion. As is clear from the pseudo-code listed above, the scheme requires
only one evaluation of F (u) per time step which, in most cases, is the most
computationally demanding part of the algorithm. Also, the scheme con-
sumes only 2M words of memory. Thus, the Lorenz N -cycle has the same
computational cost as the widely-used leapfrog scheme. Compared to the
4th-order Runge-Kutta scheme which is very accurate but is impractically
too expensive for the purpose of AGCMs, the Lorenz N -cycle consumes less
than half memory and can run 4 times faster.

Another great advantage of the Lorenz N -cycle is the absence of compu-
tational modes: the Lorenz N -cycle, being a two time-level method (i.e., the
state at time t alone completely determines the state at time t+ ∆t) rather
than a three time-level method like leapfrog scheme, does not suffer from
the presence of computational mode. This feature proves to be particularly
useful for nonlinear systems for which computational modes tend to grow
causing divergence of numerical solution from the physical solution.

Being two-time level scheme also facilitates the initialization process for
which, in the case of three or more time-level schemes, a special treatment
of the very first step(s) are required.

Despite these practical merits, the Lorenz N -cycle scheme has remained
“forgotten”. Although there are some oceanic models which uses this method
as its temporal discretization, and Purser and Leslie (1997) developed and
tested a scheme which they devised inspired by the Lorenz N -cycle scheme,
no direct application has been made to AGCMs.

5

3.2 4th-order Runge-Kutta scheme

As a reference, we will also implement the tried-and-tested classical 4th-
order Runge-Kutta scheme. In a pseudo-code, its algorithm is:

do k = 0, . . . ,

h1 ← F (u), v ← u+ ∆t
2 h1 (12)

h2 ← F (v), v ← u+ ∆t
2 h2 (13)

h3 ← F (v), v ← u+ ∆th3 (14)

h4 ← F (v) (15)

u ← u+ ∆t
6 (h1 + 2h2 + 2h3 + h4) (16)

end do

As we can clearly see, this algorithm requires 4 evaluations of F per time
step. The above algorithm consumes 6M words of memory (M words for
each of u, v, h1, h2, h3 and h4), but the memory consumption can be reduced
to 4M words by adopting the following operation rearrangements, for which
we have only to store u, v, h, p:

do k = 0, . . . ,

h← F (u), p← h, v ← u+ ∆t
2 h (17)

h← F (v), p← p+ 2h, v ← u+ ∆t
2 h (18)

h← F (v), p← p+ 2h, v ← u+ ∆th (19)

h← F (v), p← p+ h (20)

u ← u+ ∆t
6 p (21)

end do

The accuracy, memory consumption and the number of F -evaluations
per time step (∼ CPU cost) of each schemes are summarized in the following
table:

scheme leapfrog with N -cycle 4th-order
R/A filter (N ≤ 4) Runge-Kutta

accuracy O(∆t) O((N∆t)N) O(∆t4)
memory consumption 2M 2M 4M
of F -evaluation(s) 1 1 4

3.3 Semi-implicit method

3.3.1 Introduction

The equations solved by the AGCMs are stiff: the external inertia-gravity
waves, which are contained in the solution of these equations but of little

6

meteorological interest, exhibit very fast phase speed (approximately ∼ 1000
m/s), whereas, other waves such as internal inertia-gravity waves or Rossby
waves, which are relevant to the actual weather phenomena exhibit an order-
of-magnitude smaller phase speed. In order to resolve this stiffness problem,
most AGCMs adopt a so-called semi-implicit scheme which treats terms
responsible for external gravity waves implicitly and other terms explicitly.
However, no semi-implicit modification has been given in previous studies
to the Lorenz N -cycle. In this subsection, we propose a simple semi-implicit
modification to the Lorenz N -cycle and analyze its accuracy and stability.
Similar analysis is also performed to a semi-implicit version of 4th-order
Runge-Kutta scheme.

3.3.2 Semi-implicit leapfrog

To clarify the concept of semi-implicit method, we first outline the formula-
tion of the semi-implicit version of the leapfrog scheme which is adopted by
the SPEEDY model.

Consider integrating the following equation:

du

dt
= FE(u) + LIu (22)

where FE : RM → RM is a nonlinear function and LI is a M ×M matrix.
It is assumed that the term LIu is responsible for the fast external inertia-
gravity waves. The semi-implicit modification to the leapfrog scheme
takes the form:

un+1 − un−1

2∆t
= FE(un) + LI

(
αun+1 + (1− α)un−1

)
(23)

where 0 ≤ α ≤ 1 is a “centering factor”. α = 1/2 corresponds to the
centered Crank-Nicolson scheme, α = 1 the backward Euler, and α = 0
explicit Euler.

To solve Eq.(23) for un+1, let us first denote

δu =
un+1 − un−1

2∆t
(24)

and express un+1 on the right hand side as un+1 = un−1 + 2∆tδu. Then, we
have,

δu = FE(un) + LIun−1 + 2α∆tLIδu (25)

⇔ δu = (I − 2α∆tLI)−1(FE(un) + LIun−1) (26)

7

Once δu is obtained, the integration can be completed by

un+1 = un−1 + 2∆tδu (27)

Namely, to solve Eq.(23) for un+1, we first evaluate the nonlinear tendency
FE(un) at the central step, and then evaluate and add the linear tendency
LIun−1 at the older step. We then multiply it by the inverse matrix (I −
2α∆tLI)−1 and finally integrate the equation by Eq.(27). Note that the
matrix inversion for (I − 2α∆tLI)−1 needs to be carried out only once for
the whole integrations because the matrix is constant and thus can be stored
and reused.

3.3.3 Semi-implicit Lorenz N-cycle

A straightforward semi-implicit modification to the Lorenz N -cycle is to
apply tendency-modification similar to Eq.(26) on each step of the N -cycle:

w0 = 1, (28)

wk = N
k (k = 1, . . . , N − 1), (29)

do k = 0, . . .

w ← wmod(k,N) (30)

G← wFE(u) + (1− w)G (31)

δu = (I − α∆tLI)−1(G+ LIu) (32)

u← u+ ∆tδu (33)

end do

Later in this subsection, we show that, by taking α = 1/2, this scheme
becomes of second order and has a reasonable stability characteristics.

8

3.3.4 Semi-implicit 4th-order Runge-Kutta

A näıve formulation of semi-implicit 4th-order Runge-Kutta scheme is the
following:

do k = 0, . . . ,

h1 ← FE(u), v ← u+ ∆t
2 h1 (34)

h2 ← FE(v), v ← u+ ∆t
2 h2 (35)

h3 ← FE(v), v ← u+ ∆th3 (36)

h4 ← FE(v) (37)

δu = (I − α∆tLI)−1 · 1

6
(h1 + 2h2 + 2h3 + h4) (38)

u ← u+ ∆tδu (39)

end do

One can also formulate a semi-implicit 4th-order Runge-Kutta scheme based
on the memory-efficient version (Eq.(17-21)) in an exactly same way. Un-
fortunately, a linear analysis reveals that this scheme is only of first order
regardless of the choice of α.

3.3.5 Accuracy and Stability analysis

Following Durran (1991), we examine the stability of the above semi-implicit
schemes by applying them to the following linear equation:

du

dt
= FE(u) + LIu (40)

with

FE(u) = iωLu, L
I = iωH . (41)

We can find the truncation errors of these schemes by carrying out the
algorithms. The truncation errors of the semi-implicit Lorenz N -cycle and
the 4th-order Runge-Kutta are, respectively,

uN − uExact

u0
=

1

2N
(1− 2α)ωH(ωH + ωL)(N∆t)2 +O(∆t3) (42)

u1 − uExact

u0
=

1

2
ωH ((1− 2α)ωH − 2(α− 1)ωL) ∆t2 +O

(
∆t3

)
(43)

9

For the Lorenz N -cycle, the semi-implicit scheme can be of second order
by taking α = 1/2. On the other hand, Runge-Kutta scheme can never be
of second order: it is only of first order.

Stability of these schemes for each ωL and ωH can be visualized by
plotting the modulus of corresponding amplification factor |A| as a function
of (ωL, ωH). The scheme is unstable in the region on (ωL, ωH)-plane where
|A| − 1 is positive.

Figure 1 shows the contour plots of |A|− 1 for the semi-implicit leapfrog
scheme (with Robert-Asselin filter), the semi-implicit Lorenz 3-cycle, semi-
implicit Lorenz 4-cycle and semi-implicit 4th-order Runge-Kutta. The zero
contours which divide stable and unstable regions are drawn in thick black
lines. Semi-implicit leapfrog is stable if ωL < ωH , a condition which is
always met for practical purposes. The stability region for Lorenz 3-cycle is
very narrow and notably, it is unconditionally unstable (i.e. regardless of the
value of ωL) for ωH > 1.5. This means that Lorenz 3-cycle cannot be used
for a practical AGCM. Lorenz 4-cycle exhibits a reasonably large stability
region, albeit much smaller than that for the leapfrog. Interestingly, the
semi-implicit version of 4th-order Runge-Kutta is unconditionally unstable.

As Lorenz 4-cycle was found to be more stable than 3-cycle, in the im-
plementation and verification, we did not try 3-cycle.

Also, as the 4th-order Runge-Kutta was found to be unstable, and the
purpose of implementing Runge-Kutta is only to use it as a reference, I chose
to run the explicit Runge-Kutta with a very small time-step (1 minutes in
contrast to the default 40 minutes).

3.4 The SPEEDY model

In this project, the Lorenz N -cycle scheme and the Runge-Kutta 4th-order
scheme will be implemented to an existing AGCM known as the SPEEDY
model (Molteni, 2003). It is a primitive equation model with 8 vertical layers
in σ-coordinate whose horizontal discretization is spectral representation
with respect to spherical harmonics triangularly truncated at total wave
number of 30 (T30). As its temporal discretization, leapfrog scheme is used
for the dynamics but for the physical parametrizations, 1st order Forward
Euler scheme with time step of 2∆t is used. The Robert-Asselin filter is also

10

Figure 1: Stability of semi-implicit schemes. Plotted are |A| − 1 for (from
left to right) leapfrog, 3-cycle, 4-cycle and Runge-Kutta scheme. The zero
contours are drown with thick black line. The contour intervals are, from
left to right, 0.005, 0.2, 0.2 and 0.05. Note that the vertical thick black lines
along the ordinate are part of zero contours although they may appear to
be distinct broken lines.

applied. Namely, in a pseudo-code, the algorithm is:

do k = 1, . . .

u+1 ← u−1 + 2∆t(FDyn(u0) + FPhys(u
−1)) (44)

u0 ← u0 + α(u+1 − 2u0 + u−1) (45)

t ← t+ ∆t (46)

u−1 ← u0, u0 ← u+1 (47)

end do

Semi-implicit treatment of the fastest external gravity waves is also applied
which enables stable integration with a large value of ∆t by circumventing
the CFL condition associated with external gravity waves. The default time
step for the SPEEDY model is ∆t = 40min.

Details of the prognostic variables (u) and the equations solved by the
model, including complete specification of the forcing FDyn(u) and an out-
line of the forcing FPhys(u) are described in the Appendix 1.

Simplified physical process and coarse resolution enable the SPEEDY
model to be integrated very fast. Despite such simplification, this model
is able to produce realistic simulations of a wide range of the atmospheric
phenomena, including mid-latitude synoptic features and climatology.

11

The SPEEDY model is written in Fortran 77 and can be run on virtually
any machine which supports Fortran 77 compiler. A Linux server hosted by
the AOSC department will be used in this project.

3.5 Code Validation

For the validation of the N -cycle code, we will exploit the mathematical fact
that Lorenz 1-cycle is equivalent to Forward Euler scheme. Since Forward
Euler scheme is already included in the SPEEDY model, we can validate our
N -cycle code by comparing the outputs of Lorenz 1-cycle and the built-in
Forward Euler scheme initiated from the same initial condition. Since these
schemes are unstable, we will integrate them only for single time step.

For the 4th-order Runge-Kutta code, we exploit the fact that, for a linear
equation, single step integration of Runge-Kutta with time step of 4∆t is
equivalent to 4-step integration of Lorenz 4-cycle with the time step of ∆t.
Therefore, the Runge-Kutta code can be validated by first eliminating all
nonlinear terms from SPEEDY model and then, comparing single step inte-
gration of Runge-Kutta code with time step of 4∆t with 4-step integration
of Lorenz 4-cycle with the time step of ∆t.

The results of code validation are described in Section 4.2.

3.6 Verification: Dynamical Core test

Verification of the implementation will be conducted by carrying out the
bench mark for AGCMs called “Jablonowski-Williamson dynamical core
test”(Jablonowski and Williamson, 2006). The test consists of two test
cases. The first one is the “steady-state test case” in which the model is run
from an analytic steady-state initial condition. The validity of the model is
judged based on to what extent the model can maintain the steady state.

In the second test case, called the “baroclinic wave test case”, the steady-
state initial condition is perturbed so that the model, if run from this initial
condition, will yield baroclinic wave. Baroclinic waves are the unstable waves
which drive extra-tropic synoptic weather disturbances. Hence, successful
simulation of baroclinic waves is of crucial importance for AGCMs. Un-
fortunately, however, no analytic solution is known for the baroclinic wave
test case. In lieu of this, Jablonowski and Williamson (2006) provides a
reference solution which is generated from four distinct high-resolution (ap-
proximately corresponds to 50km-mesh) AGCMs. The uncertainty estimate
of the reference solution is also provided which are evaluated as the differ-
ences among those high-resolution models. The data of reference solution

12

along with its uncertainty estimate is publicly available from the University
of Michigan website:

http://esse.engin.umich.edu/groups/admg/ASP_Colloquium.php

http://www-personal.umich.edu/~cjablono/dycore_test_suite.html

In order to conduct the above test cases, we will first switch-off physical
parametrizations from the SPEEDY model. This can be done by simply
commenting-out a call to the driver subroutine of the physics package. Sec-
ond, the orography (mountains) will be made flat. Since the orography is
implemented as an external input to the SPEEDY model, removal of orog-
raphy can be done simply by making a new orography file containing zeros
for all grids on the Earth.

The Jablonowski-Williamson dynamical core tests also requires that Rayleigh
drag, which is imposed at the model top in many models including SPEEDY
to suppress spurious reflection of vertically propagating waves, be switched
off. Thus, we will also switch off Rayleigh drag in the SPEEDY model,
which can be done simply by setting the coefficient to zero.

The results of baroclinic test case obtained for the the newly-implemented
Lorenz N -cycle and 4th-order Runge-Kutta scheme, along with the original
leapfrog scheme, will be compared to the provided reference solution. If the
newly-integrated schemes are closer or equally close to the reference solution,
we conclude that the implementation has been made successfully.

The set-ups of the experiments are summarized in the following table:

ExpID Scheme Initial Condition Reference Data
STDY LF Leapfrog

Analytic steady-state Initial condition itself.STDY NCYC N -cycle
STDY RK4 Runge-Kutta 4
BRCL LF Leapfrog

Steady-state superposed
with a disturbance

Reference Solution.BRCL NCYC N -cycle
BRCL RK4 Runge-Kutta 4

The results of the dynamical-core tests are described in Section 4.3.

3.7 Verification: Model Climate

The verification described in the previous section only evaluates the validity
of the newly-implemented schemes in a specific configuration. Notably, the
verification procedure does not evaluate the performance of the schemes in
conjunction with physical parametrizations.

13

In order to evaluate the full performance of the newly-implemented
schemes, we will produce and plot model climatology and compare them
with the official plots by the developers published at the following web site:

http://users.ictp.it/~kucharsk/speedy8_clim.html

Due to the problem described in Section 4.4, the results for the verifica-
tion with model climate are not available yet.

4 Phase I: Implementation and Results

4.1 Implementation

Although the SPEEDY model is implemented in Fortran77, an old, “petri-
fied” language, thanks to the modular design of the codes, the implemen-
tation of the subroutines for Lorenz N -cycle and Runge-Kutta scheme was
possible in a quite straightforward and clean way.

The environment necessary to reproduce the results in this report, in-
cluding the code, initial and boundary data, can be retrieved from the fol-
lowing Google Code site:

https://code.google.com/p/speedy-lorenz-ncycle/

The code for subroutines which we implemented ourselves are in
SPEEDY/model/update2 directory. The environment for the code valida-
tion is in SPEEDY/model/validation directory. The data and code for the
verification (Dynamical Core Tests) are in SPEEDY/model/dyncore test.

4.2 Results of Code Validation

This subsection describes the result of code validation described in Sec-
tion 3.5, The result was successful both for the Lorenz N -cycle and for
the 4th-order Runge-Kutta scheme: the outputs exactly agreed, which was
confirmed by comparing the binary outputs by using the UNIX’s diff(1)

command.

4.3 Results of the Dynamical Core tests

This subsection describes the results of the dynamical core tests whose pro-
cedures are described in Section 3.6.

14

4.3.1 Steady-state test

Jablonowski and Williamson (2006) proposes two metrics of model perfor-
mance for the steady-state test. The first metric, l2(u(t) − ū(t)) evaluates
the symmetry-deviations from the zonal average of zonal winds at a given
instant:

l2(u(t)− ū(t)) =[
1

4π

∫ 1

0

∫ π/2

−π/2

∫ 2π

0
{u(λ, ϕ, σ, t)− ū(ϕ, σ, t)}2 cosϕdλdϕdσ

]1/2

(48)

where the overbar (̄) denote the zonal average.
The second metric, l2(ū(t)− ū(t = 0)), measures the degradation of the

zonal average of the zonal wind with respect to the analytic solution:

l2(ū(t)− ū(t = 0)) =[
1

2

∫ 1

0

∫ π/2

−π/2
{ū(ϕ, σ, t)− ū(ϕ, σ, t = 0)}2 cosϕdϕdσ

]1/2

(49)

For the SPEEDY model, the first metric l2(u(t) − ū(t)) was found to
be zero up to rounding precision, for all of the leapfrog, Lorenz 4-cycle and
explicit Runge-Kutta. This means that the SPEEDY model can maintain
the all the non-zero wavenumber components of the analytic initial condi-
tion. The validity of the wavenumber-zero component is evaluated with the
second metric.

Figure 2 shows the second metric l2(ū(t)− ū(t = 0)) of the leapfrog (with
∆t = 20min.), Lorenz 4-cycle (with ∆t = 20min.), Lorenz 4-cycle (with
∆t = 1min.), and 4th-order Runge-Kutta (with ∆t = 1min.). All schemes
have virtually identical performance which is far from being “steady”. This
is because the analytic steady-state solution turns out not to be a steady
state for the SPEEDY model. The SPEEDY model, having only 8 vertical
layers, imposes very strong horizontal diffusion at the model’s top layer
which corresponds to lower stratosphere in order enhance numerical stability.
This violates the “free atmosphere” assumption which is assumed in the
design of the dynamical core test, which makes “analytic steady state” not
a steady state.

Figure 3 shows the meridional cross sections of zonal mean zonal wind
(ū(ϕ, σ, t)) at t = 0 and t = 30 days for the leapfrog with time step ∆t = 20
min. We can observe that the strong mid-latitude westerlies are significantly
decreased and they diffuse into the tropics at the model top (σ = 0.08) due

15

Figure 2: The metric l2(ū(t) − ū(t = 0)) of leapfrog (with ∆t = 20min.),
Lorenz 4-cycle (with ∆t = 20min.), Lorenz 4-cycle (with ∆t = 1min.), and
4th-order Runge-Kutta (with ∆t = 1min.).

to the stronger horizontal diffusion. We can also observe that, in the tropo-
sphere, especially below σ ∼ 0.5, the zonal wind is pretty much preserved.
This pattern of change in zonal wind is shared in all other schemes as well.

4.3.2 Baroclinic wave test

It was found that the SPEEDY with default leapfrog scheme blows up for
the baroclinic wave test configuration if the default time step of ∆t = 40
min. is used. For this reason, we used ∆t = 20 min. for the leapfrog and
Lorenz 4-cycle throughout this test.

All of the tested schemes, leapfrog with ∆t = 20min. and ∆t = 1min.,
Lorenz 4-cycle with ∆t = 20min. and ∆t = 1min. and Runge-Kutta scheme
with ∆t = 1 min., successfully reproduced a plausible development of baro-
clinic wave trains followed by realistic weather pattern.

In order to grasp the qualitative features of different schemes, we show
in Figure 4, the snapshots of surface pressure at the 9th day for the dif-
ferent schemes. The figure also shows the reference solution provided by
Jablonowski and Williamson (2006) which is produced from a high-resolution
version of NCAR CAM (an community AGCM developed at the National
Center for Atmospheric Research). In the reference solution (top panel), a

16

Figure 3: meridional cross sections of zonal mean zonal wind (ū(ϕ, σ, t)) at
(left)t = 0 and (right)t = 30 days for the leapfrog with time step ∆t = 20
min. Contour intervals are 3 m/s.

deep low with a minimum of about 940hPa develops to the east, as well as
a weaker low to its west. The leapfrog with ∆t = 20 min. (upper-left panel)
fails to reproduce this deep low, showing a minimum of about 970hPa. The
leapfrog with smaller time step of ∆t = 1 min. (lower-left panel) is more suc-
cessful in reproducing the deep low, showing a minimum of about 960hPa.
Runge-Kutta with small time step ∆t = 1 min. (upper-right panel) and
Lorenz 4-cycle with the larger time step ∆t = 20 min, are also successful in
reproducing the low.

Lorenz 4-cycle is clearly the most advantageous in that it alone success-
fully reproduces the deep low with the larger time step.

In order to quantitatively compare the accuracy of the leapfrog and
Lorenz 4-cycle, we computed the RMS errors in surface pressure of them
regarding Runge-Kutta with ∆t = 1min. as the truth, which is shown in
Figure 5. For both ∆t = 20min. (left) and ∆t = 1min. (right), Lorenz
4-cycle is consistently more accurate than the leapfrog, and the difference is
quite dramatic for the smaller time step (∆t = 1min.). These results clearly
confirm the superiority of Lorenz 4-cycle over the leapfrog.

4.4 Phase I: Unexpected Problem

Although we succeeded in clearly showing that Lorenz N -cycle is more accu-
rate for the dynamical core test, we encountered a problem that we did not

17

Figure 4: Snapshots of surface pressure (in hPa) at the 9th day. (Top)
Reference solution provided by Jablonowski and Williamson (2006), (Upper
Left) leapfrog with ∆t = 20min., (Upper Right) Runge Kutta with ∆t =
1min., (Lower Left) leapfrog with ∆t = 1min., (Lower Right) Lorenz 4-cycle
with ∆t = 20min.

18

Figure 5: RMSE of surface pressure with respect to Runge-Kutta with ∆t =
1min. (left) Leapfrog and Lorenz 4-cycle with ∆t = 20min. (right) as in the
left, but for ∆t = 1min.

expect: Lorenz N -cycle blows up if physical parametrizations are included in
the model. This blow-up occurs to Runge Kutta and Forward Euler scheme
as well.

Figure 6 shows the time-height hovmüller plot of global averages of (left)
temperature, (center) rotational kinetic energy and (right) divergent ki-
netic energy, for (top) Runge-Kutta, (middle) Lorenz 4-cycle, and (bottom)
leapfrog. Unlike in the case of leapfrog where temperature does not change
significantly from the prescribed initial profile, in the cases of Runge-Kutta
or Lorenz 4-cycle, the temperature at the lower troposphere continues to
grow linearly until it reaches impossibly high 320K.

In order to carry out the original plan for Phase II which is describe
in the next section, the SPEEDY model with Lorenz N -cycle needs to run
stably with physical parametrizations switched on. We plan to work on
this issue until the end of the December 2012. If we succeed to fix this
problem and Lorenz N -cycle becomes able to run stably with the physical
parametrizations switched on, then we will continue Phase II as originally
planned. If we do not succeed, then we will modify Phase II as described in
Section 6.

19

Figure 6: Time-height hovmüller plot of global averages of (left) tempera-
ture, (center) rotational kinetic energy and (right) divergent kinetic energy,
for (top) Runge-Kutta, (middle) Lorenz 4-cycle, and (bottom) leapfrog.

20

5 Phase II: original plan

In Phase II of this project, the training stage of Danforth et al. (2007) will
be reproduced, both for the original SPEEDY model with leapfrog scheme
and for the SPEEDY model with the newly implemented schemes. The
second stage of Danforth et al. (2007), the estimation-correction stage, will
be addressed in Phase III of this project provided that time permits. For
the outline of Phase III, see the Appendix 2.

5.1 Algorithm

The first step of the training stage of Danforth et al. (2007) is to generate
many samples of model errors. First, a 6-hour forecast is performed by run-
ning the SPEEDY model with the original leapfrog scheme, denoted MLF

6h (x)
here after, from the initial condition taken from the National Centers for En-
vironmental Prediction (NCEP)/National Center for Atmospheric Research
(NCAR) reanalysis (Kalnay and Coauthors, 1996), which will be denoted
xtrue(t) here after. The discrepancy between the forecast MLF

6h (xtrue(t))
and the corresponding atmospheric state from NCEP/NCAR reanalysis
xtrue(t+ 6hours), namely

δx(t) = MLF
6h (xtrue(t))− xtrue(t+ 6hours),

is regarded as the model error. The 6-hour forecasts are repeated many
times using different initial conditions to collect many samples of model
errors δx(t).

The next step in the training stage is to extract state-independent com-
ponent, or the bias, of the model error. The bias is estimated as the mean of
the sampled model errors 〈δx〉, where the angle brackets denotes averaging
over all samples.

The third step is to build the covariance matrix between the model state
and the model error:

C =
〈

(xtrue(t)− 〈xtrue〉) (δx(t)− 〈δx〉)T
〉
.

In prior to building the covariance matrix, the mean will be removed, both
for the model state and the model error.

Finally, to extract the dominant modes of the co-variation of the two
quantities, singular value decomposition (SVD) will be performed on the
matrix C:

C = UΣV T

21

where U and V are square orthogonal matrices and Σ is a diagonal matrix.
The right singular vector vi can be interpreted as the shape of model er-
ror which is most likely to be assumed if the anomaly of the model state
(xtrue(t)−〈xtrue〉) is in the direction of the corresponding left singular vector
ui. Thus, pairs of left and right singular vectors provide valuable information
about the characteristics of the model error. In the estimation-correction
stage of Danforth et al. (2007), which, time permitted, will be addressed in
Phase III of this project, the singular vectors and the singular values will
be used to build a regression model with which we can estimate the most
likely state-dependent component of model error given the current state of
the model.

In this project, the above procedures will be repeated for the SPEEDY
model with the original leapfrog scheme (MLF), the Lorenz N -cycle scheme
(MNcyc) and that with the 4th-order Runge-Kutta scheme (MRK4).

The algorithm can be summarized as the following:

for models M in MLF ,MNcyc,MRK4,do

do i = 1, 2, . . .

- perform forecast xfcst(ti + 6hours) = M6h(xtrue(ti))

- compute the error δx(ti) = xfcst(ti + 6hours)− xtrue(ti + 6hours)

end do

- compute the bias 〈δx〉 = 1
#i

∑
i δx(ti)

- compute the climatology 〈xtrue〉 = 1
#i

∑
i x

true(ti)

- compute the covariance matrix

C = 1
#i−1

∑
i (xtrue(ti)− 〈xtrue〉) (δx(ti)− 〈δx〉)T

perform SVD for C: C = UΣV T

end do

The NCEP/NCAR reanalysis data which will be used as truth are pub-
licly available from NCEP or Earth System Research Laboratory (ESRL) of
National Oceanic and Atmospheric Administration (NOAA) at:

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

http://www.nomad3.ncep.noaa.gov/ncep_data/

22

5.2 Implementation and Platform

Programs to be implemented in Phase II are the following:

1. a program to compute the bias

2. a program to compute the covariance matrix C

3. a program to perform SVD on C

These programs will be implemented in Fortran 90 on a Linux server hosted
on the network of the AOSC department.

5.3 Validation

For the SVD code, validation will be conducted by first preparing a small-
dimensional dummy data for the covariance and then performing the SVD
on this dummy data both by running the implemented code and by running
a Matlab’s package routine. The implementation is judged successful if the
two results agrees.

The entire implementation will be judged successful if the bias and sin-
gular vectors obtained for MLF agrees with those published in Danforth
et al. (2007).

5.4 Verification

In the verification of Phase I, the accuracy of Lorenz N -cycle will be tested
only for the dynamical core of the AGCM. In the verification process of
Phase II, its accuracy as a comprehensive AGCM including physical parametriza-
tions will be tested by comparing the amplitude of model error extracted as
the bias and covariance with those for the original model. If the amplitudes
are smaller for the Lorenz N -cycle than for the original leapfrog scheme, it
means that the model with Lorenz N -cycle is more accurate.

6 Phase II: possible modification

As described in Section 4.4, the original plan for Phase II described in the
previous section requires that SPEEDY with Lorenz N -cycle runs with phys-
ical parametrizations. If we could not resolve the problem described in Sec-
tion 4.4 by the end of December 2012, then we will make the following
modifications to the Phase II:

23

1. SPEEDY model is run without physics

2. Instead of using NCEP/NCAR reanalysis as the truth, nature run of
SPEEDY model with Runge-Kutta integrated with small time step (1
min.) will be regarded as the truth

3. For the validation, we will ask Dr. Danforth to provide his original
code used in Danforth et al. (2007) and duplicate Phase II using his
code.

7 Deliverables

Deliverables of Phase I are:

1. subroutines for Lorenz N -cycle and 4th-order Runge-Kutta of the
SPEEDY model (c.f. Sections 3.1, 3.2 and 4.1) (delivered)

2. results of Jablonowski-Williamson dynamical core test cases for the
SPEEDY model, both with the original leapfrog scheme and the newly
implemented schemes. (c.f. Section 4.3) (delivered)

3. plots of model climatology for the SPEEDY model, both with the
original leapfrog scheme and the newly implemented schemes. (not
delivered)

Deliverables of Phase II are:

1. an archive of the model errors

2. model error bias

3. pairs of singular vectors for the model state and the model error along
with the corresponding singular values

4. code for performing SVD.

Deliberables also includes

1. two presentations, mid-year and final

2. two reports, mid-year and final

3. and the project proposal.

24

8 Revised Schedule and Milestones

The revised schedule for the project is as follows:

• Phase I

– Implement Lorenz N -cycle and 4th-order Runge-Kutta scheme
to the SPEEDY model: September through end of November.
(done)

– Write the mid-year report, prepare the oral presentation: December
(done)

– Switch-off physical parametrizations and prepare flat orography:
January (done)

– Perform the dynamical core tests: early February (done)

– (new) try to resolve physics problem: until the end of December

• Phase II

– Generate initial values from the NCEP/NCAR reanalysis (or
from SPEEDY with Runge-Kutta run without physics): end of
February

– Build the bias and covariance matrix: March

– Code and test a program for SVD: April

– Compare the model errors for MLF with those published in Dan-
forth et al. (2007): early May

– Compare the model errors for MLF and MNcyc,MRK4: mid-May

– Write the final report and prepare for the oral presentation.

The corresponding milestones are:

• Phase I

– The SPEEDY model with Lorenz N -cycle and 4th-order Runge-
Kutta scheme both runs: end of November (done)

– Complete validation of Lorenz N -cycle and 4th-order Runge-
Kutta scheme: February (done)

• Phase II

– Complete computation of error bias and covariance: March

25

– Complete validation of the SVD program: April

– Complete validation of the entire procedure: early May

– Complete verification: mid-May

9 Summary of the Achievements of the First Semester

Here is the summary of the achievements so far:

• Analyzed the accuracy and stability of semi-implicit formulation of
Lorenz N -cycle and Runge-Kutta

• Implemented Lorenz N -cycle and Runge-Kutta to the SPEEDY model

• Successfully performed code validation

• Performed verification with the Dynamical Core tests and confirmed
the superiority of Lorenz N -cycle over the leapfrog

• Encountered unexpected problem: SPEEDY with physics parametriza-
tions blows up if the temporal scheme is Lorenz N -cycle, Runge-Kutta,
or Forward Euler (i.e. anything other than leapfrog)

References

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev,
100, 487–490.

Danforth, M., C, E. Kalnay, and T. Miyoshi, 2007: Estimating and correct-
ing global weather model error. Mon. Wea. Rev, 135, 281–299.

Durran, D. R., 1991: Mon. Wea. Rev, 119, 702–720.

Jablonowski, C. and D. L. Williamson, 2006: A baroclinic instability test
case for atmospheric model dynamical cores. Q. J. R. Meterol. Soc, 132,
2943–2975.

Kalnay, E. and Coauthors, 1996: The ncep/ncar 40-year reanalysis project.
Bull. Amer. Meteor. Soc, 77, 437–471.

Lorenz, N., E., 1971: An n-cycle time-differencing scheme for step-wise nu-
merical integration. Mon. Wea. Rev, 119, 1612–1623.

26

Matsuno, T., 1966: Numerical integrations of the primitive equations by a
similated backward difference method. J. Meterol. Soc. Japan, 44, 76–84.

Molteni, F., 2003: Atmospheric simulations using a gcm with simplified
physical parametrizations. i: Model climatology and variability in multi-
decadal experiment. Climate Dyn., 20, 175–191.

Purser, J., R. and L. M. Leslie, 1997: High-order generalized lorenz n-cycle
schemes for semi-lagrangian models employing second derivatives in time.
Mon. Wea. Rev, 125, 1261–1276.

Teixeira, J., C. A. Reynolds, and K. Judd, 2007: Time step sensitivity of
nonlinear atmospheric models: Numerical convergence, truncation error
growth, and ensemble design. J. Atmos. Sci, 64, 175–189.

27

Appendix 1: Detailed Description of the SPEEDY
model

A1.1 The equations

The SPEEDY model is based on the nonlinear primitive equations for moist
atmosphere on a vertical σ-coordinate with spherical geometry. Its prog-
nostic variables are horizontal vorticity ζ, horizontal divergence D, temper-
ature T , specific humidity q and the natural logarithm of surface pressure
π ≡ ln ps. These equations are vertically discretized by a finite differencing
and then horizontally discretized by Galerkin spectral method with respect
to spherical harmonics. Namely, horizontal structure of any variable on
a given vertical level is represented expansion coefficients of spherical har-
monics, and horizontal differentiations are performed with respect to such
coefficients. Thus, the actual prognostic variables in the computer code (ex-
pressed as u in the pseudo-codes in Section 3) are therefore the expansion
coefficients of the above 5 prognostic variables on specified vertical levels.

The set of prognostic equations can be written explicitly as follows:

∂ζ

∂t
=

1

a(1− µ2)

∂FV
∂λ

− 1

a

∂FU
∂µ

− Kν

(
∇4
σ −

22

a2

)
ζ +

dζ

dt

∣∣∣∣
Phys

(A.1)

∂D

∂t
=

1

a(1− µ2)

∂FU
∂λ

+
1

a

∂FV
∂µ

−∇2
σ(Φ +RT̄π + KE)−Kν

(
∇4
σ −

22

a2

)
D (A.2)

∂T

∂t
= − 1

a(1− µ2)

∂UT ′

∂λ
− 1

a

∂V T ′

∂µ
+ T ′D

−σ̇ ∂T
∂σ

+ κT

(
∂π

∂t
+ vH · ∇σπ +

σ̇

σ

)
−Kh

(
∇4
σ −

22

a2

)
T +

dT

dt

∣∣∣∣
Phys

(A.3)

∂q

∂t
= −vH · ∇σq − σ̇

∂q

∂σ
+
dq

dt

∣∣∣∣
Phys

(A.4)

∂π

∂t
= −vH · ∇σπ −

∂σ̇

∂σ
−D (A.5)

28

where

θ ≡ T (p/p0)−κ (A.6)

κ ≡ R/Cp (A.7)

Φ ≡ gz (A.8)

= Φ|σ=1 −
∫ σ

1

RT

σ
dσ (A.9)

π ≡ ln pS (A.10)

σ̇ ≡ dσ

dt
(A.11)

µ ≡ sinϕ (A.12)

U ≡ u cosϕ (A.13)

V ≡ v cosϕ (A.14)

ζ ≡ 1

a(1− µ2)

∂V

∂λ
− 1

a

∂U

∂µ
(A.15)

D ≡ 1

a(1− µ2)

∂U

∂λ
+

1

a

V

µ
(A.16)

FU ≡ (ζ + f)V − σ̇ ∂U
∂σ
− RT ′

a

∂π

∂λ
(A.17)

FV ≡ −(ζ + f)U − σ̇ ∂V
∂σ
− RT ′

a
(1− µ2)

∂π

∂µ
(A.18)

KE ≡ U2 + V 2

2(1− µ2)
(A.19)

vH · ∇ ≡ u

a cosϕ

(
∂

∂λ

)
σ

+
v

a

(
∂

∂ϕ

)
σ

=
U

a(1− µ2)

(
∂

∂λ

)
σ

+
V

a

(
∂

∂µ

)
σ

(A.20)

∇2
σ ≡ 1

a2(1− µ2)

∂2

∂λ2
+

1

a2

∂

∂µ

[
(1− µ2)

∂

∂µ

]
. (A.21)

Here, θ in Eq.(A.6) denotes potential temperature, Φ in (A.8) denotes geopo-
tential height, ϕ and λ denote, respectively, latitude and longitude, a denotes
the radius of the Earth, and KE in (A.19) denotes the kinetic energy per
unit mass.

In some terms, temperature is divided into the horizontal global mean
and the deviation therefrom:

T ≡ T̄ (σ) + T ′ (A.22)

29

Vertical wind speed in the σ coordinate σ̇ can be diagnosed as

σ̇ = −σ∂π
∂t
−
∫ σ

0
Ddσ −

∫ σ

0
vH · ∇σπdσ, (A.23)

A Crank-Nicolson-type semi-implicit scheme is applied to filter-out external
gravity waves with fast phase speed, whereby enabling an efficient long time-
stepping in the integration.

A1.2 ”Dynamics” and “Physics”

In the literature of meteorology, the tendencies of prognostic equations are
conventionally divided in to “dynamics” part and “physics” part. The
physics part, denoted by FPhys(u) in the pseudo-code in Section 3.3, is com-

prised of the terms of the form
d(·)
dt

∣∣∣∣
Phys

in Eq. (A.1)-(A.5). The dynamics

part, denoted by FDyn(u) in the pseudo-code in Section 3.3, corresponds to
all the terms in the right hand side of Eq. (A.1)-(A.5) except the physics
part defined.

In the SPEEDY model, the physics tendencies FPhys(u) includes contri-
butions from:

• Convection (cumulonimbus)

• Large-scale condensation and Clouds

• Shortwave and Longwave radiation

• Surface fluxes of momentum and energy

• and Vertical diffusion (planetary boundary layer (PBL)).

The details for these parametrizations can be found in the model description
by the developers which is available at

http://users.ictp.it/~kucharsk/speedy-net.html

A1.3 Boundary conditions

Boundary conditions used in the SPEEDY model are:

• Orography, expressed as the geopotential height at the surface (Φ|σ=1)

• land-sea mask

30

• sea surface temperature (SST)

• sea ice fraction

• soil temperature

• snow depth

• bare-surface albedo

• vegetation coverage

The first two and the last two remain constant during the integration.
The remaining fields are given to the model as prescribed climatologies and
vary with seasonal march. These boundary conditions are input to the model
from external files.

A1.4 Control of Boundary Conditions in the Validation

For the validation of Phase I described in Section 3.4, physics tendencies
must be turned off and the orography must be made flat. This subsection
describes how these can be controlled.

Among the boundary conditions listed in the previous section, the orog-
raphy Φ|σ=1 alone directly affects the dynamics part: it affects the diver-
gence tendency through Eq. (A.2) and (A.9). All the other boundary con-
ditions enter the prognostic equations (A.1)–(A.5) only through the physics
tendencies. Therefore, effects of boundary conditions other than the orogra-
phy onto the dynamical core automatically vanishes by switching the physics
off.

In the SPEEDY model, physics tendencies
d(·)
dt

∣∣∣∣
Phys

are computed and

added to the total tendencies in the subroutine called PHYPAR(). Therefore,
switching-off of physical parametrizations can be done simply by commenting-
out calls to this subroutine.

31

Appendix 2: Phase III

A2.1 Approach

In Phase III, we will reproduce the estimation-correction stage of Danforth
et al. (2007). On each time step of the integration of the model MLF , the
model error statistics obtained in Phase II will be used to estimate the model
error. The model error will be reduced by subtracting the estimated error
from the predicted model state. The procedure will be repeated for the
models with the newly implemented schemes (MNcyc and MRK4) as well.

A2.2 Algorithm

The detailed algorithm for Phase III is as follows:
During the integration of MLF (or MNcyc, MRK4), on each time step t = t0:

1. We estimate the state-dependent component of model error by regress-
ing the current model state x(t0) onto the model error in the space
spanned by the singular vectors. Namely, the anomaly of the current
model state x(t0)− 〈xtrue〉 is expressed as a linear combination of left
singular vectors ui. The coefficients ai(t0) can be computed by simply
taking projection of x(t0)−〈xtrue〉 onto ui because of the orthonormal-
ity of ui. Having obtained ui for sufficiently many modes, we can now
“reconstruct” the model error by performing regression in the space
spanned by singular vectors:

ai(t0) =
(
x(t0)− 〈xtrue〉

)
· ui

δxdep(t0) =
∑
i

σiai(t0)vi

∵ 〈ai(t),bi(t)〉〈ai(t)2〉 = σi from the property of SVD

The total estimated model error for 6-hour forecast is then expressed
as the sum of state-independent component (i.e. the bias) and the
state-dependent component δxdep(t0) obtained above:

δxtot(t0) = 〈δx(t)〉+ δxdep(t0)

2. The single step forecast is then corrected by subtracting the model
error which is scaled to fit the time stepping of the model (2∆t for the

32

leapfrog, and ∆t) for Runge-Kutta or Lorenz N -cycle):

MLF (x(t0)) ← MLF (x(t0))− 2∆t

6hours
δxtot(t0)

or MNcyc(x(t0)) ← MNcyc(x(t0))− ∆t

6hours
δxtot(t0),

MRK4(x(t0)) ← MRK4(x(t0))− ∆t

6hours
δxtot(t0).

A2.3 Implementation

The subroutines to perform error estimation and correction will be embed-
ded to the SPEEDY model. Since the SPEEDY model is coded in Fortran
77, the subroutines will also be coded in Fortran 77.

A2.4 Validation

Again, validation of the implementation will be conducted by comparing the
results for MLF with those published in Danforth et al. (2007).

A2.5 Deliverables

The delivarables of this phase will be the subroutines of the SPEEDY model
which performs model error estimation and correction.

33

