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Abstract

We consider a family of constrained `p minimizations: min
x∈Rn

{||x||`p
∣∣ Ax = Ax∗} to

recover x∗ with knowledge of only A, Ax∗ and ||x∗||`0 . Such family of problems has been
extensively studied in the Compressed Sensing Community and are used to recover sparse
signals. We then go through the reasoning on why p = 1 is the most suitable choice. Due to
the possible ill-posedness of the constrained `1 minimization, we introduce the Tikhonov

Regularization to arrive at an unconstrained version, min
x∈Rn

{||x||`1 +
λ

2
||Ax∗ − Ax||2`2}.

Through this regularized version, we construct the approximation based on a given scale λ.
We also show that the two problems are equivalent when λ→∞. Using the idea of multi-
scale approximation, we adopt the method of Hierarchical Decomposition from Image
Processing to reconstruct sparse signals on layers of dyadic scales. We proceed to show that
this Hierarchical Decomposition approach alleviate the dependence on the regularization
parameter λ and can be used to de-noise corrupted signals. We are also able to show
that the difference between the approximation from the Hierarchical Reconstruction, call
it xHRSS and x∗ is in the Null(A); and various numerical examples support the fact that
this approach offer a better approximation to the original x∗.

1 Background: A Constrained Minimal `1-norm Problem
The ingenious Nyquist-Shannon Sampling Theorem addresses the question about the possibil-
ity to recover any signal using finite number of sampling (measurements); however, according
to the theorem, the number of sampling to take is two times the highest frequency in a signal.
The pursuit of improvement on reducing the sampling rates have been non-stop since 1949;
and significant progress has been made especially regarding the sparse signal recovery. In fact,
hundreds of papers in the Compressed Sensing community have been published to reduce the
sampling rates to a significant level. The theory regarding sparse signal recovery has been
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proven and perfected in a series of papers starting in mid 2004. See [4, 9, 13, 10, 7, 6, 5] for
complete details.

Let us consider a target signal x∗ ∈ Rn, with sparsity l, which simply means l non-zero
entries in x∗. let m represent the number of linear non-adaptive1 measurements one wants to
take: Let ai ∈ Rn be a basis vector. Measurements are made by taking the usual Euclidean in-
ner product between ai and x, that is 〈ai,x〉`2 . Let A be the concatenation of the m (randomly

picked) basis vectors ai ∈ Rn, for i = 1, . . . ,m; then A =


aT1
aT2
· · ·
aTm

 ∈ Rm×n. Two possible

scenarios exist for choosing the matrix A: it is either prescribed by a collection of basis vectors
from a specific transformation or constructed with certain properties, namely the Restricted
Isometry Properties (or other equivalent properties). The problem which we mentioned is ba-
sically asking that with the knowledge of only Ax∗ and m � n, can x∗ be recovered? And
if so, how? The answer in general is no. However when l is small, equivalently saying that
x∗ is sparse, then full recovery is highly possible according to the compressive sensing princi-
ple. Moreover the sparse signal x∗ can be likely recovered through the following constrained
minimal `p-norm problem:

min
x∈Rn
{||x||`p

∣∣ Ax = Ax∗} (1)

The question remains: what would be an appropriate p for the purpose of recovering a sparse
signal? As stated in [13], the sparsity of a vector x is usually defined as (for some 0 < p < 2):

||x||`p ≡ (
∑
i

∣∣xi∣∣p) 1
p (2)

(We will also consider the border line cases p = 0 and p = 2). And according to [11, 12], `p
norm with 0 ≤ p ≤ 1 are intuitive ways to preserve sparsity in the mathematical setting. Let us
first consider an extreme case when p = 0, when the `0-norm simply measures the number of
non-zero elements in a vector x, directly imposing sparsity. Letting p = 0 in (1), we obtain:

min
x∈Rn
{||x||`0

∣∣ Ax = Ax∗} (3)

The minimizer x`0 will the same as x∗ if we take m = l + 1 measurements2. However, it is
shown in [22] that (3) is NP hard and requires techniques from combinatorial optimization.
Hence it is numerically appropriate to consider a convex (1) by using either the `1 or `2-norm3.
With a convex (1), we are able to use linear programming to find the minimizer. From now on,
we will denote the measurement results Ax∗ as b and turn to the following Constrained Least
Square Problem:

min
x∈Rn
{||x||`2

∣∣ Ax = b} (4)

It is also called a constrained minimum norm problem. An analytic solution exists and is x`2 =
AT (AAT )−1b, since A is a fat matrix, AAT has an inverse when A has linearly independent
rows.4 Apparently Ax`2 = AAT (AAT )−1b = b. Let x be another solution of the linear

1Means of measurements does not depend on x.
2Bresler; Wakin et al
3We do not consider 0 < p < 1, since such `p-norm is not convex.
4Otherwise (AAT )−1 is replaced by its pseudo-inverse (also known as the Moore-Penrose inverse) and is

computed using SVD.
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system, that is Ax = b. Then we claim that x − x`2 is perpendicular to x`2 . To justify our
claim, observe the following:

〈x− x`2 ,x`2〉`2 = 〈x− x`2 , A
T (AAT )−1b〉`2 = 〈A(x− x`2), (AA

T )−1b〉`2
= 〈0, (AAT )−1b〉`2 = 0

Hence by the Pythagoras’ Theorem in Rn:

||x||2`2 = ||x− x`2 + x`2||2`2 = ||x− x`2 ||2`2 + ||x`2||2`2 ≥ ||x`2||
2
`2

Therefore ||x||`2 ≥ ||x`2 ||`2 , with equality realized only when x = x`2 . x`2 is indeed the
optimizer. Unfortunately, in most cases, x`2 is not going to be sparse, despite the fact that
x`2 is relatively easy to compute. Let us explain why x`2 is dense in the two dimensional
setting: the solution set of Ax = b would consist of a straight line, and the level sets B(r) =
{x ∈ Rn

∣∣ ||x||`2 ≤ r} are circles of radius r centered at the origin. The constrained least
square problem is asking that out of all the possible points on the said line Ax = b, which
one would be on the level set B(r) with the smallest r. As it is shown below, most of the time,
the intersection happens in the interior of a quadrant, thus making x`2 not sparse. However if
the `1-norm is used, since the level sets D(r) = {x ∈ Rn

∣∣ ||x||`1 ≤ r} are diamonds, The
intersection can happen at one of the axis, thus making the minimizer sparse.
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Figure 1: Comparison between the two minimizers

With x`2 not satisfying the sparsity requirement, we would like to consider the `1-norm
instead. In fact, the `1 technique is widely used to induce sparsity on solutions. Hence we have:

min
x∈Rn
{||x||`1

∣∣ Ax = b} (5)

Under certain conditions, the solution x`1 from (5) recovers the original signal x∗ and actually
coincides with x`0 from (3). The authors in [4] proved such equivalence with the matrix A
being a Fourier Transform matrix. They later generalized the proof to any matrix A with the
Restricted Isometry Property in [7, 6, 5]. Then separately the author in [13, 10] showed that
when A has the CS1-CS3 properties, x∗ can be recovered from solving (5). Moreover, all of
the papers require that the recovery can be achieved only when m = C ∗ l ∗ log(n)� n.
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Remark 1.1. Specifically the `1 problem may not have a unique solution. Let us begin our
argument by considering a family of more general problems:

min
x∈Rn
{J(x)

∣∣ Ax = b} (6)

Where J(·) is a continuous and convex energy functional defined on Rn. Let J(·) also be
coercive, that is, J(x) ≥ a||x||`2 for some a > 0. By convex analysis, the solution set of
(6) is nonempty and convex. And if J(·) is strictly or strongly convex, the solution set con-
tains only one point (unique solution, such as x`2 from (4)). However J(x) = ||x||`1 is not
strictly convex, the solution of (5) might not be unique. In order to have a unique minimizer,
the linear measurement matrix A has to have the Null Space Property stated in [19], that is
(for the case p = 1) for any index set I ⊂ {1, 2, . . . , n} with card(I) ≤ l = ||x∗||`0 and

max
x∈Null(A),x 6=0

∑
i∈I

∣∣xi∣∣
||x||`1

< 1/2.

1.1 Tikhonov Regularization
Not all of the measurement matrices A have the Null Space Property, thus the minimizer of
(5) is not guaranteed to be unique. In order to tackle such ill-posedness, we add Tikhonov
Regularization to (5) and bring the constraint into the minimization as a penalty term. Such
regularization, which was proposed and developed in [28, 29], is specially designed to tackle
ill-posed problems,

min
x∈Rn
{||x||`1 +

λ

2
||b− Ax||2`2} (7)

||x||`1 + λ
2
||b − Ax||2`2 is a convex functional defined on Rn and it is non-negative ∀x ∈ Rn,

hence the minimizer exists and is unique. This regularized version produces a minimizer in a
1
λ

-neighborhood of the minimizer of (5), see [18] regarding an equation of x`1 and x`1,λ. We
will give a rigorous proof in sec 1.2 to show that x`1,λ → x`1 when λ → ∞. Intuitively, when
λ is small, we are basically minimizing ||x||`1 , which might lead to x`1,λ = 0; when λ is large,
we are putting more emphasis on the `2 part, thus forcing x`1,λ to get closer to the affine space
H = {x ∈ Rn

∣∣ Ax = b}, hence getting closer to x`1 . An optimality condition on x`1,λ being
a solution of (7) is that x`1,λ satisfies the following,

sgn(x)− λAT r(x) = 0 (8)

Where r(x) = b−Ax, and the sgn(a) =

{
1, a > 0
−1, a < 0

; the vector version, sgn(·), is defined

component wise for vectors. However, sgn(a) is not defined at a = 0. Such delicacy makes
(8) hard to solve directly; furthermore, the solution set of (8) is contained in the solution set
of (7) due to non-differentiability property of sgn(·) at 0. Since x`1,λ solves (7), then x`1,λ and
r(x`1,λ) satisfy (8), and hence

〈x`1,λ, AT r(x`1,λ)〉`2 = 〈x`1,λ,
1

λ
sgn(x`1,λ)〉`2 =

1

λ
||x`1,λ||`1

Meanwhile, since AT r(x`1,λ) = 1
λ

sgn(x`1,λ), ||AT r(x`1,λ)||`∞ = 1
λ

. Assuming λ ≥ 1
||ATb||`∞

,
We show the following theorem,

Theorem 1.2 (Validation Principles).

〈x`1,λ, AT r(x`1,λ)〉`2 = ||x`1,λ||`1 ||AT r(x`1,λ)||`∞ (9)

||AT r(x`1,λ)||`∞ =
1

λ
(10)
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The authors in [26, 27] show that the above principles still hold true for other normed
vector spaces like (U , V ) pair instead of (`1, `2). And we will use (9) and (10) to verify the
implementation of various `1 solvers in sec 3.

Remark 1.3. By Hölder’s inequality, 〈x, AT r(x)〉`2 ≤ ||x||`1 ||AT r(x)||`∞ . Equality is always
realized whenever x = x`1,λ. Therefore we call this pair (x`1,λ, r(x`1,λ)) an extremal pair.

1.2 Relationship between the Constrained and Unconstrained Minimiza-
tions

We consider the relationship between the solution x`1 of (5) and the solution x`1,λ of (7). Then
x`1,λ satisfies (8), let r(x`1,λ) = b− Ax`1,λ, we have

AT r(x`1,λ) =
1

λ
sgn(x`1,λ)

r(x`1,λ) =
(AAT )−1

λ
Asgn(x`1,λ)

And we have

||r(x`1,λ)||`p ≤
n

1
p

λ
||(AAT )−1||`p ||A||`p for 1 ≤ p <∞

||r(x`1,λ)||`∞ ≤ 1

λ
||(AAT )−1||`∞||A||`∞

We also have

||r(x`1,λ)||`p ≥
(supp(x`1,λ))

1
p

λ||AT ||`p
for 1 ≤ p <∞

||r(x`1,λ)||`∞ ≥ 1

λ||AT ||`∞
We just proved the following lemma

Lemma 1.4. The residual r(x`1,λ) = b− Ax`1,λ of (7) satisfies the following bound:

(supp(x`1,λ))
1
p

λ
||AT ||−1`p ≤ ||r(x`1,λ)||`p ≤ n

1
p

λ
||(AAT )−1||`p ||A||`p for 1 ≤ p <∞(11)

1

λ
||AT ||−1`∞ ≤ ||r(x`1,λ)||`∞ ≤ 1

λ
||(AAT )−1||`∞||A||`∞ (12)

Then we can look at ||x`1||`1 − ||x`1,λ||`1 . First, since x`1,λ solves (7),

||x`1,λ||`1 +
λ

2
||Ax`1,λ − b||2`2 ≤ ||x`1||`1 +

λ

2
||Ax`1 − b||2`2 = ||x`1||`1

Thus

||x`1||`1 − ||x`1,λ||`1 ≥
λ

2
||r(x`1,λ)||2`2 ≥

λ

2

supp(x`1,λ)

λ2
||AT ||−2`2 =

supp(x`1,λ)

2λ
||A||−2`2

Second, pick an ∆x be such that A(x`1,λ + ∆x) = b, then from the (5), we know

||x`1||`1 ≤ ||x`1,λ + ∆x||`1 ≤ ||x`1,λ||`1 + ||∆x||`1
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Hence ||x||`1 − ||x∗||`1 ≤ ||∆x||`1; since ∆x = b− Ax`1,λ = r(x`1,λ), then

||∆x||`1 = ||r(x`1,λ)||`1 ≤
n

λ
||(AAT )−1||`1||A||`1

Therefore
||x`1||`1 − ||x`1,λ||`1 ≤

n

λ
||(AAT )−1||`1||A||`1

We conclude the following lemma

Lemma 1.5. The difference between the ||x`1||`1 and ||x`1,λ||`1 is:

supp(x`1,λ)

2λ
||A||−2`2 ≤ ||x`1||`1 − ||x`1,λ||`1 ≤

n

λ
||(AAT )−1||`1||A||`1 (13)

With the two lemmas established, we are able to present the following theorem

Theorem 1.6. Given that A has the Null Space Property, then x`1,λ → x`1 as λ→∞.

Proof. By lemma 1.4, we know that ||r(x`1,λ)||`∞ → 0 as λ → ∞, hence x`1,λ ∈ H. And by
lemma 1.5, we know x`1,λ and x`1 have the same `1-norm. sinceA has the Null Space Property,
(5) has unique minimizer, then the two must be the same.

2 Hierarchical Reconstruction
Following similar arguments by the authors in [26], we present the following motivation for the
Hierarchical Reconstruction algorithm: We want to recover the support of x∗ through a series
of iterative minimization by extracting useful signal from the previous “residual”.

2.1 Motivation
Let xλ and rλ be an extremal pair such that they solve (7), that is:

[xλ, rλ] = arg min
Ax+r=b

{||x||`1 +
λ

2
||r||2`2} (14)

The pair [xλ, rλ] also decompose b into two parts: the recovered sparse signal xλ and resid-
ual rλ under a given scale λ. However, the residual term rλ still contains useful information
(possible other basis vectors within the support of x∗) when viewed under a refined scale, say
2λ:

[x2λ, r2λ] = arg min
Ax+r=rλ

{||x||`1 + λ||r||2`2} (15)

Since b = A(xλ + x2λ) + r2λ ≈ A(xλ + x2λ), we obtain a better two-scale approximation to
b; signal below scale 1

2λ
remains unresolved in r2λ. This process of (14) and (15) can continue.

Beginning with an initial scale λ0, and initial residual r0 = b,

[x1, r1] = arg min
Ax+r=r0

{||x||`1 +
λ0
2
||r||2`2}

we continue in this iterative manner for the decomposition of the dyadic refinement step of
(15),

[xj+1, rj+1] = arg min
Ax+r=rj

{||x||`1 +
λj
2
||r||2`2}, j = 1, 2, . . . (16)

6



generating, after k such steps, the following Hierarchical Decomposition of b:

b = Ax1 + r1

= Ax1 + Ax2 + r2

= . . . . . .

= Ax1 + Ax2 + . . .+ Axk + rk. (17)

We arrive at a new multi-scale decomposition, b ≈ Ax1 + Ax2 + . . . + Axk, with a residual
rk. And such iterative approach gives rise to our algorithm:

Algorithm 1 Hierarchical Reconstruction of Sparse Signals

Require: A and b, pick a λ0 > 1
||ATb||`∞

Initialize: xHRSS = 0, r0 = b, and j = 1
while j ≤ J or other convergence criteria not satisfied do

xj := arg min
x∈Rn

{||x||`1 +
λj−1

2
||Ax− rj−1||2`2}

rj = rj−1 − Axj
xHRSS = xHRSS + xj
λj+1 = 2λj;
j = j + 1;

end while
Ensure: xHRSS =

∑J
j=0 xj;

As the final stopping J increases, we construct the signal xHRSS with increasing support.
Since only l = ||x∗||`0 is known, not the actually support of x∗, this iterative process might
recover something else rather then the original signal x∗; however the difference, xHRSS − x∗,
is going to be in Null(A). We still need to find a way to stop the algorithm. Meanwhile such
a dyadic approach is not necessary, one can use λj = 3λj−1, and run the algorithm, and the
analysis will still go through similarly.

2.2 Convergence Analysis of the Hierarchical Reconstruction Approach
We consider the minimizer, xk, at the kth step (1 ≤ k ≤ J−1), it satisfies the signum equation,
namely, sgn(xk) + λkA

T (Axk − rk−1) = 0. And sincerk = rk−1 − Axk, we can have

AT rk =
1

λk
sgn(xk) (18)

Combined with the signum equation at the (k + 1)th step, we derive the following

ATAxk+1 =
1

λk
sgn(xk)−

1

λk+1

sgn(xk+1) (19)

Since λk+1 = 2λk, ||ATAxk+1||∞ ≤ 3
2λk

. As λk → ∞, ||ATAxk+1||∞ → 0. And AT has
linearly independent rows, Axk+1 → 0. As λk is sufficiently large, we are roughly adding
more and more correction from Null(A). Meanwhile b = AxHRSS + rJ combined together
with (18), we show that

ATAxHRSS = ATb− 1

λJ
sgn(xJ) (20)
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If there is no noise in the measurements, then b = Ax∗, hence

ATA(xHRSS − x∗) = − 1

λJ
sgn(xJ) (21)

As J →∞, 1
λJ
→ 0, and ||ATA(xHRSS −x∗)||`∞ → 0, then xHRSS −x∗ will be eventually in

Null(A). In order to avoid recovery of a different minimizer, we will stop the algorithm using
criteria based on relative update and small residual. However most of the time, there is noise in
the measurement, that is, b = Ax∗ + ε, then (20) becomes

ATA(xHRSS − x∗) = AT ε− 1

λJ
sgn(xJ) (22)

In order to de-noise, we will pick a λJ suth that 1
λJ

sgn(xJ) is comparable to AT ε in `2-norm;
when ε is a white noise, that is, ε ∼ N(0, I), and together a priori information of the bounds
on ε, i.e. ||AT ε||`2 ≤ tolε. We will pick λJ > 1

tolε
. And if ε is correlated, that is ε ∼ N(0, R)

where R is a correlation matrix (non-diagonal). Then we will just work on similar problem

normalized by R
1
2 , that is, min

x∈Rn
{||R

1
2x||`1 +

λ

2
||R

1
2 (b − Ax)||2`2}. Let us also consider the

solution, x`1,λ, of (7) with λ = λJ , and then sgn(x`1,λ) +λJA
T (Ax`1,λ−b) = 0, together with

(20), we get

ATA(xHRSS − x`1,λ) =
1

λJ
(sgn(x`1,λ)− sgn(xJ)) (23)

If the xJ recovered from the J th minimization process contains mostly zero and λJ is large,
then xHRSS − x`1,λ ∈ Null(A).

3 Implementation
We choose the Gradient Projection for Sparse Reconstruction method and A Fixed-Point Con-
tinuation method as built-in single scale solvers for (7). We have picked these two methods out
for their robustness and efficiency over IST [8, 16], l1 ls package [21], `1-magic toolbox[3],
and homotopy method [15].

3.1 Gradient Projection for Sparse Reconstruction
The Gradient Projection for Sparse Reconstruction algorithm is proposed in [17] solve the
following:

min
x∈Rn
{τ ||x||`1 +

1

2
||b− Ax||2`2} (24)

Compared to (7), (24) puts the regularization on the `1 term instead. Since τ > 0 and λ > 0,

apparently τ = 1
λ

for finding the same minimizer. Let (a)+ =

{
a, a ≥ 0
0, otherwise , and let

u = (x)+, v = (−x)+. With u and v substituted back into (24), eqrefeq:anotherl1 can be
transformed into a linear problem. First let

z =

[
u
v

]
, y = ATb, c = τ12n +

[
−y
y

]
, B =

[
ATA −ATA
−ATA ATA

]
then,

min
z∈R2n

{F (z) ≡ cTz +
1

2
zTBz

∣∣ z ≥ 0} (25)
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Two algorithms are presented, both use gradient projection techniques to find the minimizer of
(24). They both pick the descent direction d(k) as (with α(k) > 0),

d(k) = (z(k) − α(k)∇F (z(k)))+ − z(k) (26)

and both update the next iterate z(k+1) as (with ν(k)),

z(k+1) = z(k) + ν(k)d(k) (27)

The two approaches differ by choosing different α(k) and λ(k). Let us consider the basic ap-
proach,

Algorithm 2 GPSR Basic

Require: A, b, τ , and z(0), pick β ∈ (0, 1) and µ ∈ (0, 1/2)
Initialize: k = 0;
while A stopping criteria is not satisfied do

Compute α0 = arg min
α∈R1

{F (z(k) − αG(k))}

Let α(k) be the first in the sequence: α0, βα0, β2α0, . . . , such that
F ((z(k) − α(k)∇F (z(k)))+) ≤ F (z(k))− µ∇F (z(k))T (z(k) − (z(k) − α(k)∇F (z(k)))+)

Set z(k+1) = (z(k) − α(k)∇F (z(k)))+
Update k = k + 1

end while
Ensure: z(K)(τ) := arg min

z∈R2n

{F (z) ≡ c∗z + 1
2
z∗Bz

∣∣ z ≥ 0};

The basic approach chooses α(k) from a variable line search such thatF ((z(k)−α(k)∇F (z(k)))+)
is minimal. An initial guess z(0) = 1

2n
12n is chosen because ||z(0)||`1 = 1. Since F (·) is

quadratic, there is formula for calculating α0, namely α0 = (G(k))T∇F (z(k))

(G(k))TBG(k) ; and α0 is restricted
that that α0 ∈ [αmin, αmax]. β is a back-tracking parameter so that the step size for the gradient
descent would be optimal. µ is used that that F (·) is decreased sufficiently from the ”Armijo
rule along the projection arc” by [2, p. 226] and G(k) is a projected gradient, defined component
wise:

G
(k)
i =

{
(∇F (z(k)))i, if z

(k)
i > 0 or (∇F (z(k)))i < 0

0, otherwise
(28)

Thus (G(k))T∇F (z(k)) = (G(k))TG(k). The second approach is based on Barzilai and Broweign’s
paper [1] and BCQP approach from [25] to avoid the decaying convergence rate property of
some steepest descent methods. Each time an update is calculated as d(k) = −H−1k ∇F (z(k)),
where Hk is the Hessian of F (z(k)). Hk is approximated by a multiple of the identity Hk ≈
ρ(k)I , where ρ(k) is chosen as:

∇F (z(k))−∇F (z(k−1)) ≈ ρ(k)
(
z(k) − z(k−1)

)
Then α(k) = (ρ(k))−1 and is restricted to the interval [αmin, αmax]; and let ν(k) ∈ [0, 1] be the
exact minimizer of F (z(k) + νd(k)),

The same initial guess z(0) as it is used in algorithm 2 is chosen. As it is stated in [17],
several schemes for picking suitable stopping criteria are considered,

• The approximation z is close to a solution z∗.
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Algorithm 3 GPSR Barzilai Browein

Require: A, b, τ , z(0), αmin, αmax, and pick α(0) ∈ [αmin, αmax]
Initialize: k = 0;
while A stopping criteria is not satisfied do

Compute d(k) = (z(k) − α(k)∇F (z(k)))+ − z(k)

Compute ω(k) = (d(k))TBd(k)

if ω(k) = 0 then
Set α(k+1) = αmax and ν(k) = 1

else
Compute α(k) = mid(αmin,

||d(k)||2`2
ω(k) , αmax) and ν(k) = mid(0, −(d

(k))T∇F (z(k))

(d(k))TBd(k) , 1)

end if
set z(k+1) = z(k) + ν(k)d(k)

Update k = k + 1
end while

Ensure: z(K) := arg min
z∈R2n

{F (z) ≡ cTz + 1
2
zTBz

∣∣ z ≥ 0};

• The function value F (z) is close to F (z∗).

• The non-zero components of the approximation z are close to the non-zero components
of z∗.

Suggested in [17], the following stopping criterion are implemented,

• ||z − (z − ᾱ∇F (z))+||2 ≤ tolP, where ᾱ is a positive constant, and tolP is a small
parameter. Note that when z is optimal, the left hand side is zero.

• ||min(z,∇F (z))||2 ≤ tolP, the min(·) is taken component wise. It is motivated by
perturbation results from linear complementarity problems (LCP). LCP results show that
there is a constant CLCP such that dist(z,S) ≤ CCLP ||min(z,∇F (z))||2, where S is a
solution set of (25). When ||min(z,∇F (z))||2 ≤ tolP, z is forced to be within a certain
distance of the solution set S.

•
∣∣1
2
||b − Ax||2`2 + τ ||x||`1 + 1

2
sT s + bT s

∣∣ ≤ tolP, where s is a minimizer of the dual
problem of (24),

max
s
{−1

2
sT s− bT s

∣∣ − τ1n ≤ AT s ≤ τ1n} (29)

Therefore on each iterate we resemble x = u− v and compute s = τ Ax−b
||AT (Ax−b)||`∞

, and
substitute the pair back into the left hand side of the inequality and to check to see if the
left hand side is less than tolP.

• |Ck|/|Ik| ≤ tolP, where Ik = {i
∣∣ z(k)i 6= 0} and Ck = {i

∣∣ i ∈ Ik ⊕ Ik−1}5. Such ratio
takes into account that changes in the non-zero entries in the approximation z are going
to be small when z is close to z∗.

5⊕ stands for the exclusive union of two sets
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Remark 3.1. Although GPSR algorithms have increased the system size from n to 2n, the
matrix-vector multiplication can still be done at the O(n). We can simply the matrix-vector
multiplication by:

Bz =

[
ATA(u− v)
−ATA(u− v)

]
, cTz = τ1Tn (u + v)− yT (u− v), zTBz = ||A(u− v)||2

Hence,

F (z) = τ1Tn (u + v)− yT (u− v) +
1

2
||A(u− v)||2, ∇F (z) =

[
τ1n − y + ATA(u− v)
τ1n + y − ATA(u− v)

]
1Tn (u + v) can be done using the MATLAB

TM
built-in summation function for vectors. We do

not compute the matrix-matrix product ATA directly; instead we will do A(u − v) first then
AT (·).

Theorem 1 in [17] states that the sequence of {z(k)} generated by the GPSR algorithms either
terminate at a solution of (25) or converge to a solution of (25) at an R-linear rate.

3.2 Fixed-Point Continuation Method
The authors in [20] develops the Fixed-Point Continuation algorithm to solve a signum equa-
tion associated with the following minimization problem,

min
x∈Rn
{||x||1 +

λ

2
||b− Ax||2D} (30)

Where ||x||D :=
√
xTDx with D being a Symmetric Positive Definite matrix (|| · ||D is a

scaled `2 norm). In this project, we will take D = I . And they also define f : Rn → R and
g : Rn → Rn as,

f(x) :=
1

2
||b− Ax||2`2

g(x) := ∇f(x) = AT (Ax− b)

And sξ and h, both from Rn to Rn, are defined as (for any η > 0),

h(x) := x− ηg(x) (31)
sξ(x) := sgn(x)�max{|x| − ξ, 0} (32)

where ξ = η
λ

and � is a component wise multiplication for vectors. Let us consider T (x) =
1
λ

sgn(x) +AT (Ax−b). T is shown to be a maximal monotone operator in [24]. T can be split
linearly into two parts, i.e. T = T1 +T2. A parameter η > 0 is picked that I+ηT1 is invertible.
Then 0 ∈ T (x`1,λ) ↔ x`1,λ = (I + ηT1)

−1(I − ηT2)x`1,λ. For this project, T2(x) = g(x) and
T1(x) = 1

λ
sgn(x). Then (I + ηT1)

−1 = sξ. It gives rise to the following fixed point equation,

x(k+1) = sξ ◦ h(x(k)) (33)

Remark 3.2. As it is shown in [20], if x`1,λ solves (7), then 0 ∈ sgn(x`1,λ) + λg(x`1,λ) and
vice versa. And if xsgn,λ is a fixed point of (33), then xsgn,λ ∈ sgn(xsgn,λ) + λg(xsgn,λ) and vice
versa. Therefore x`1,λ = xsgn,λ.
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Let %max be the maximum eigenvalue of the Hessian of f(x), namely H(x) = ATA. As
it is shown in [20], η is picked in (0, 2

%max
)6 in order to have convergence results. Meanwhile,

we know that for small λ, the minimizer x`1,λ is close to 0, making the program faster to find
solution at such λ. Hence for a sequence of λ1 < λ2 < . . . < λJ = λ, a sequence of minimizers
x`1,λj , for 1 ≤ j ≤ J , is generated using the minimizer from λj−1 as an initial guess. Assuming
that this solution path x1 → x2 → . . .xJ is continuous, and A has the Null Space Property,
then the final xJ is easier to find then just use the final λ at the beginning. Under this setting,
[20] proposes the following algorithm:

Algorithm 4 Fixed Point Continuation Method

Require: A, b, λ, pick x(0), set λ̄ = λ
Select: 0 < λ1 < λ2 < · · · < λL = ū
for λ∗ = λ1, λ2, · · · , λL do

while A convergence test is not satisfied do
Select η and set ξ = η

λ∗

x(k+1) = sξ ◦ h(x(k))
end while

end for

With 2 extra tolerances, xTol and gTol, the following convergence tests is used,

||x(k+1) − x(k)||`2
max(||x(k)||`2 , 1)

< xtol and µi||g(x(k))||`∞ − 1 < gtol (34)

(34) uses the idea of small relative update; and when xFPC is closed to x`1,λ, then xFPC should
satisfy (8), which leads to the second half of the stopping criterion. Although FPC is straight-
forward to implement, the algorithm depends on a suitable choice of η, an appropriate sequence
of λi’s and a proper initial guess x(0). All of these requirement make the parameter toning more
delicate when applied to other problems rather than Compressed Sensing.

3.3 The De-biasing Step Vs. Hierarchical Reconstruction
After a minimizer is obtained either through one of the two GPSR algorithms or the FPC
algorithm, call it xmin, we will perform a de-biasing step when necessary, that is, to minimize
the residual ||b − Ax||`2 . The general procedure goes like: we first find the zero entries of
xmin, (an entry of xmin is considered zero if its absolute value is either below 10−12 or a preset
tolerance given by the user), and keep the zero entries of xmin unchanged while performing CG
steps on ||b−Ax||2`2 so that either ||b−Ax||`2 < tolD ∗ ||b−Axmin||`2 or all the possible CG
iterations are exhausted. De-biasing might not give satisfactory results, since xmin recovered
from one of the single scale solvers might not have the same support as the original x∗. The
aforementioned CG process might not be able to find a minimizer so that ||b − Ax||`2 <
tolD ∗ ||b−Axmin||`2 . The whole de-biasing is based up on the idea that the single scale solver
would recover most of support of x∗ (supp(xmin) ⊂ supp(x∗)), so that ||b − Axmin||`2 could
be toned down by only changing the non-zero entries of xmin. Compared to normal de-biasing
steps, the Hierarchical Reconstruction algorithm offers a similar approach (decreasing residual
in `2-norm), while keeping the xk in `1-norm small at each iterate. What remains open is
whether xHRSS , the sum of all J iterates, is also comparably small in the `1 norm.

6η ∈ [ 1
%max

, 2
%max

) for faster convergence.
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3.4 Implementation Platform and Memory Allocation

Codes will be written in MATLAB
TM

for GPSR Basic, GPSR Barzilai Borwein, FPC, and the
whole HRoSS algorithm. When time permits, parallel codes will be written in C. The version of
the MATLAB

TM
running on my personal computer is: 7.12.0.635(R2011a). It is installed on a

copy of the Windows7TM Home Premium operating system (64 bit). Validations and testing of
GPSR Basic, GPSR Barzilai Borwein and FPC will be run on my personal computer with AMD
PhenomTMN950 Quad-Core processor (clocked at 2.10 GHZ) and 4.00 GB (DDR3) memory.
If the test problems are big enough, clusters at the CSCAMM will be used. Ax and ATx can be
defined as function calls instead of direct matrix-vector multiplication in order to save memory
allocation.

4 Selection of Databases
Databases are not needed for this stage of testing yet.

5 Validation Principles
If x`1,λ is a solution of (7), then x`1,λ and r(x`1,λ) form an extremal pair by theorem 1.2. They
satisfy (9) and (10) by theorem 1.2. As it is suggested in [3] and [21], we are to validate the
codes using m = 1024, n = 4096. The original signal x∗ has 160 non-zero entries, and these
entries are randomly filled with ±1’s, with locations are also unknown. Meanwhile the matrix
A is generated first by filling the entries aij with independent samples of a standard Gaussian
distribution and then orthonormalizing the rows (so thatAwould satisfy the Restricted Isometry
Property). Therefore the solution x`1 from (5) would be the same as x∗ (and as well as x`0).
We will take an λ = 1.5

||ATb||`∞
, and the measurement vector b is corrupted with noise, hence

b = Ax∗+ ζ , where ζ is a white Gaussian noise of a variance σ2. σ various from 0, 10−2, 10−1

upto 1.

5.1 Validation Results
In order to validate the codes, we investigate the following quantities,

diff1 = 〈x, AT r(x)〉`2 − ||x||`1||AT r(x)||`∞
diff2 = ||AT r(x)||`∞
J(x) = τ ||x||`1 +

1

2
||r(x)||2`2

r(x) = b− Ax

We hope to show that diff1 and diff2 are decreasing when we decrease the the tolerance tolP for
the GPSR algorithms and xTol and gTol for the FPC algorithm (regardless of the noise level);
meanwhile for the HRSS algorithm, we want to show that the residual r(xHRSS) is going down
like O( 1

λ
). We also show the convergence rate of x`1,λ → x`1 should behave like O( 1

λ
).
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tolP diff1 diff2 Num. of Iter. J(x)
10−4 −2.4644e− 003 2.0224e− 005 27 6.7937
10−5 −2.2962e− 004 1.8994e− 006 33 6.793661
10−6 −2.1692e− 005 1.8028e− 007 39 6.7937
10−7 −2.0270e− 006 1.6894e− 008 45 6.7937

Table 1: Result with σ = 0 for GPSR Basic

tolP diff1 diff2 Num. of Iter. J(x)
10−4 −2.3277e− 003 1.9723e− 005 31 6.7937
10−5 −2.0638e− 004 1.8571e− 006 37 6.793661
10−6 −2.5418e− 005 2.1726e− 007 43 6.7937
10−7 −2.2379e− 006 2.0232e− 008 49 6.7937

Table 2: Result with σ = 0 for GPSR Barzilai Borwein

xTol gTol diff1 diff2 Num. of Iter. J(x)
10−4 10−2 −3.4831e− 002 3.4609e− 004 50 9.9499e− 001
10−5 10−3 −3.5118e− 003 3.3977e− 005 79 9.9311e− 001
10−6 10−4 −3.7327e− 004 3.5609e− 006 107 9.9298e− 001
10−7 10−5 −4.0284e− 005 3.8085e− 007 134 9.9297e− 001

Table 3: Result with σ = 0 for FPC

tolP diff1 diff2 Num. of Iter. J(x)
10−4 −2.0793e− 003 2.2583e− 005 28 6.8717e+ 000
10−5 −1.9433e− 004 1.6418e− 006 35 6.871703e+ 000
10−6 −2.1573e− 005 1.8249e− 007 41 6.871703e+ 000
10−7 −2.3920e− 006 2.0249e− 008 47 6.871703e+ 000

Table 4: Result with σ = 10−2 for GPSR Basic

tolP diff1 diff2 Num. of Iter. J(x)
10−4 −1.8890e− 003 2.0618e− 005 32 6.871703e+ 000
10−5 −2.1573e− 004 2.3396e− 006 38 6.871703e+ 000
10−6 −2.4711e− 005 2.6693e− 007 44 6.871703e+ 000
10−7 −2.3235e− 006 1.9801e− 008 51 6.871703e+ 000

Table 5: Result with σ = 10−2 for GPSR Barzilai Borwein

xTol gTol diff1 diff2 Num. of Iter. J(x)
10−4 10−2 −3.4324e− 002 3.3979e− 004 53 9.9717e− 001
10−5 10−3 −3.3737e− 003 3.2354e− 005 81 9.9835e− 001
10−6 10−4 −3.4371e− 004 3.2333e− 006 109 9.9823e− 001
10−7 10−5 −4.1654e− 005 3.8828e− 007 134 9.9822e− 001

Table 6: Result with σ = 10−2 for FPC

6 Testing

6.1 Compressed Sensing Cases
In the case of Compressed Sensing testing, we can have some pre-processing information about
the parameters as suggested in [20] for the FPC algorithm. Let δ = m

n
and γ = l

m
. Then we14



tolP diff1 diff2 Num. of Iter. J(x)
10−4 −2.5181e− 003 1.3017e− 005 65 1.1393e+ 001
10−5 −2.4369e− 004 1.2570e− 006 93 1.1393e+ 001
10−6 −2.6812e− 005 1.3817e− 007 121 1.1393e+ 001
10−7 −2.6666e− 006 1.3707e− 008 151 1.1393e+ 001

Table 7: Result with σ = 10−1 for GPSR Basic

tolP diff1 diff2 Num. of Iter. J(x)
10−4 −1.6146e− 003 1.3495e− 005 92 1.1393e+ 001
10−5 −1.3726e− 004 1.1382e− 006 136 1.1393e+ 001
10−6 −1.5475e− 005 1.2528e− 007 180 1.1393e+ 001
10−7 −1.7440e− 006 1.3996e− 008 224 1.1393e+ 001

Table 8: Result with σ = 10−1 for GPSR Barzilai Borwein

xTol gTol diff1 diff2 Num. of Iter. J(x)
10−4 10−2 −6.5959e− 002 4.4425e− 004 74 9.9878e− 001
10−5 10−3 −6.9510e− 003 4.5291e− 005 165 9.9982e− 001
10−6 10−4 −6.9640e− 004 4.4395e− 006 276 9.9978e− 001
10−7 10−5 −7.2050e− 005 4.5526e− 007 387 9.9977e− 001

Table 9: Result with σ = 10−1 for FPC

Num of λ Iter. ||r(xHRSS)||`2 ratio
1 6.2953e+ 000
2 5.3806e+ 000 1.1700e+ 000
3 3.1649e+ 000 1.7001e+ 000
4 1.6012e+ 000 1.9766e+ 000
5 8.2591e− 001 1.9387e+ 000

Table 10: Result with σ = 0 for HRSS

Num of λ Iter. ||r(xHRSS)||`2 ratio
1 6.3351e+ 000
2 5.4130e+ 000 1.1704e+ 000
3 3.2022e+ 000 1.9535e+ 000
4 1.6393e+ 000 1.8641e+ 000
5 8.7938e− 001 1.7647e+ 000

Table 11: Result with σ = 10−2 for HRSS

can pick η = min(1 + 1.665(1− δ), 1.999), x(0) = ηATb, λ1 = θ||x(0)||∞ (where 0 < θ < 1 is
a user-defined constant), set λi = min(λ1ω

i−1, λ̄) (where ω > 1 and L is the first integer i such
that λL ≥ λ̄)7. As it was done in [20], we will take xtol = 10−4 and gtol = 10−2. We will also
try the algorithm with A being a DCT transform matrix.

7[20] also suggests θ = 0.99 and ω = 4 or θ = 0.9 and ω = 2
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Num of λ Iter. ||r(xHRSS)||`2 ratio
1 7.3770e+ 000
2 6.4127e+ 000 1.1504e+ 000
3 4.2269e+ 000 1.5171e+ 000
4 2.4559e+ 000 1.7211e+ 000
5 1.3333e+ 000 1.8420e+ 000

Table 12: Result with σ = 10−2 for HRSS

λ
∣∣||x`1||`1 − ||x`1,λ||`1∣∣ ratio

2.0869e+ 000 1.5700e+ 002
4.1738e+ 000 1.3911e+ 002 1.1286e+ 000
8.3476e+ 000 8.3440e+ 001 1.6672e+ 000
1.6695e+ 001 4.1722e+ 001 1.9999e+ 000
3.3390e+ 001 2.0861e+ 001 2.0000e+ 000

Table 13: Convergence of x`1,λ → x`1 with GPSR Basic

6.1.1 Compressed Sensing Test Results

The setting for Compressed Sensing are the same as in sec 5. And the Hierarchical Reconstruc-
tion code would do only 4 steps of λ-loop.
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Figure 2: True Signal, Minimum Norm Soln., One Scale Approx.

Stopping at the same λ as the other one scale solvers, HRSS is able to recover the signal
better, the error is roughly 0.25 of those from the single scale solvers. However, since the
solutions recovered from the single scale solver contain enough support of x∗, the de-biasing
step is able to recover exactly the original signal. We will look into possible refinement of the
HRSS algorithm in order to compensate the difficulties of eliminating points near 0. Moreover
for the DCT transformation case, HRSS would do slightly better than the single scale solvers,
and the de-biasing step would not produce better result, since the recovered solutions are not
within the support of x∗.
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0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

HRSS with GPSR
B
 (m = 1024, lambda = 2.51e+000, MSE = 1.43e−002)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

HRSS with GPSR
BB

 (m = 1024, lambda = 2.51e+000, MSE = 1.43e−002)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

HRSS with FPC (m = 1024, lambda = 2.51e+000, MSE = 1.42e−002)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

GPSR Basic Debiased (MSE = 3.43e−002)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

GPSR Barzilai Borwein Debiased (MSE = 3.42e−002)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

FPC Method Debiased (MSE = 1.60e−002)

Figure 5: HRSS Approx. and Debaised Soln’s with DCT

6.2 The Reconstruction Process of HRSS
Let us also look at what HRSS would generate after each iterate:

17



0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l
Approxi. at  1−th iterate., noice = 0.0e+000

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  2−th iterate., noice = 0.0e+000

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  3−th iterate., noice = 0.0e+000

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  4−th iterate., noice = 0.0e+000

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  1−th iterate., noice = 1.0e−002

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  2−th iterate., noice = 1.0e−002

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  3−th iterate., noice = 1.0e−002

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

n, position of the pikes

x B
, t

he
 a

pp
ro

xi
. s

ig
na

l

Approxi. at  4−th iterate., noice = 1.0e−002

Figure 6: HRSS Approx. with 2 Different Noise Levels

As seen from these plots, the HRSS code gradually recover the approximations with more
and more support, and push those points towards ±1. At σ = 0.01, the noise has not made
significant impact on the approximation. We want to look at the effect of the total number of λ
refinements on the noise,
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Figure 7: HRSS Approx. with 2 Different Noise Levels

The curve would level off after certain J’s, especially when the noise level is large, around
O(0.1), then we should stop the algorithm after 2 steps. We hope to develop automatic check
on stopping J based on the noise level in future research.

7 Project Phases and Time lines
We will follow the following time lines for my project:

1. 08/29/2012 to 10/05/2012, Project Background Research, Project Proposal Presentation
and Report.

2. 10/06/2012 to 11/21/2012, Implementation of the GPSR algorithm and validation by
theorem 1.2.

3. 11/22/2012 to 12/20/2012, Implementation of the FPC algorithm and preparation for
mid-year presentation and report.
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4. 12/21/2012 to 01/22/2013, Validation of the FPC algorithm by theorem 1.2 and Con-
vergence Rate study of GPSR.

5. 01/23/2013 to 02/22/2013, Implementation of the whole HRSS algorithm.

6. 02/23/2013 to 03/16/2013, Validation of the HRSS algorithm by theorem 1.2.

7. 03/17/2013 to 05/14/2013, Final Testing phase, more theories developed and prepara-
tion for end-of-year presentation and report.

8 Milestones
Here are major milestones about the project:

1. Presentation given on 10/02/2012 and Project Proposal due on 10/05/2012.

2. Implementation of the GPSR algorithm finished and debugged on 11/05/2012, validation
finished on 11/21/2012.

3. Preparation given on 12/11/2012, report due on 12/14/2012, FPC implementation progress
started.

4. Implementation of FPC done by 12/21/2012, debugged and validated by 01/22/2013.

5. Implementation of HRSS done by 02/22/2013, Near-Completion Presentation done on
03/07/2013.

6. HRSS validated by 03/22/2013, theoretical results obtained by 04/22/2013.

7. More test results obtained by 04/30/2013, End-of-year presentation done on 05/07/2013.

8. Final Projection Documentation and HRSS package due by 05/14/2013.

9 Deliverables
MATLAB

TM
codes of HRSS, presentation slides (proposal presentation, mid-year presentation,

near-completion, end-of-year presentation), the complete project document, test databases (if
any), and test results (both in text file and/or figures) will be delivered at the end of this year
long sequence.
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