

AMSC 663/664 Final Report

Memory Efficient Signal
Reconstruction from
Phaseless Coefficients
of a Linear Mapping
Naveed Haghani
nhaghan1@math.umd.edu

Project Advisor:
Dr. Radu Balan
rvbalan@cscamm.umd.edu
Professor of Applied Mathematics, University of Maryland
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling
Norbert Wiener Center

1

Table of Contents
Table of Figures ... 2

Introduction .. 3

Background ... 3

Problem Setup .. 3

Transformation ... 5

Algorithm .. 6

Initialization... 6

Iteration .. 7

Memory Efficient Implementation ... 8

Implementation .. 10

Data Creation .. 10

Principal Eigenvalue (Initialization) ... 10

Conjugate Gradient (Iteration) ... 11

Coding ... 12

Parameters .. 13

Post-processing ... 14

Validation .. 16

Method ... 16

Results ... 16

Testing ... 19

Preliminary Testing ... 19

Power Method and Conjugate Gradient Tolerances .. 20

Memory Load .. 23

Program Runtime .. 25

Database Testing ... 26

Algorithm Analysis .. 28

Parameters .. 28

Computational Complexity ... 34

Timeline .. 37

Deliverables ... 38

References .. 38

2

Table of Figures
Figure 1 ... 4

Figure 2 ... 8

Figure 3 ... 12

Figure 4 ... 17

Figure 5 ... 17

Figure 6 ... 18

Figure 7 ... 18

Figure 8 ... 18

Figure 9 ... 18

Figure 10 ... 19

Figure 11 ... 19

Figure 12 ... 20

Figure 13 ... 21

Figure 14 ... 21

Figure 15 ... 22

Figure 16 ... 22

Figure 17 ... 23

Figure 18 ... 24

Figure 19 ... 25

Figure 20 ... 26

Figure 21 ... 27

Figure 22 ... 28

Figure 23 ... 29

Figure 24 ... 29

Figure 25 ... 30

Figure 26 ... 31

Figure 27 ... 32

Figure 28 ... 32

Figure 29 ... 32

Figure 30 ... 33

Figure 31 ... 34

Figure 32 ... 35

file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028498
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028501
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028502
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028503
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028504
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028505
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028506
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028509
file:///C:/Users/Naveed%20Haghani/Documents/Schoolwork/663%20Project/Documents/Papers/Final_draft.docx%23_Toc388028514

3

Introduction

Background
A recurring problem in signal processing involves signal reconstruction using only the magnitudes of the

coefficients of a linear transformation. This problem has applications in the fields of speech processing

and x-ray crystallography. In speech processing, it is common to work with a speech signal’s

spectrogram. Working with the spectrogram provides the ability to perform various audio

manipulations. The challenge then becomes to retrieve a processed signal’s discrete-time signal, as the

spectrogram does explicitly carry any phase information with regards to the signal. In x-ray

crystallography, the diffraction pattern of an x-ray beam will deliver the magnitudes of a transformed

signal of electron density levels. Obtaining the desired electron density information requires the

phaseless retrieval of the original signal.

The project depicted in this paper implements and tests an iterative, recursive least squares algorithm

described in Balan[5] to perform phaseless reconstruction from the magnitudes of the coefficients of a

linear transformation. Testing is done on synthetically generated input data created using random

number generation. A random input vector is generated and passed through a transformation

algorithm. The transformed signal is then passed to the iterative, recursive least squares algorithm to

reconstruct the original signal. Following that, post-processing is done on the results.

The implementation is programmed in MATLAB. The implementation will be designed to prioritize

memory efficiency. Memory efficiency, in this regard, applies primarily to the storage of the resulting

linear system involved in reconstruction. The linear system will be on the order of .

Avoiding the costly storage of this system and deriving its contents when needed will be the primary

focus during implementation of the algorithm. Following the algorithm’s completion, the program’s

performance is studied with regards to time efficiency, accuracy, and scalability with problem size.

Problem Setup

Given an n-dimensional complex signal, , that has been passed through a redundant linear

transformation, (), the objective is to reconstruct from the element by element squared modulus

of the transformed signal. The transformed signal will be labeled as follows:

 ()

[

]

 (1)

The transformed signal lies in the dimensional complex space, where . here represents

the level of redundancy in the transformation ().

4

The element by element squared modulus of is represented by :

[

| |

| |

| |]

 (2)

 has been transformed into the real space to produce . Since it lies in the real space, does not carry

any phase information of the original signal, fitting the criterion for phaseless reconstruction.

The resulting vector will be passed into the iterative, recursive least square algorithm, but not before

adding a variable amount of Gaussian noise. The resulting input to the algorithm is labeled and is

defined by:

 (3)

Where is random noise drawn from a standard normal distribution and is the desired standard

deviation. is the vector of transformation magnitudes with simulated noise. The iterative, recursive

least squares algorithm will use the input to produce an approximation of , labeled ̂. The entire

process works as follows:

Transformation

Element by Element

Modulus

Additive Noise

Iterative, recursive

least squares

algorithm

𝑥 𝜖 𝑛

𝛼 𝜖 𝑚

𝑦 𝜖 𝑚

𝑐 𝜖 𝑚

�̂� 𝜖 𝑛

Figure 1

5

After ̂ is obtained, the estimation is passed to post-processing to study certain output trends with

regards to varying signal to noise ratios in .

Transformation
The transformation used in the implementation is a weighted discrete Fourier transform. In the

transformation, each element of is first multiplied by a complex weight, . Then the discrete Fourier

transform is taken on the resulting vector. This is repeated times, each time with an independent set

of weights.

{

[

()

()

]

[

]

}

 (4)

The resulting transformation output is a composite of each of the transformations, making lie

in the complex dimensional space.

[

]

 (5)

The transformation, (), can also be defined in terms of unique frame vectors of length

labeled . In such case, the transformation would be the composite of the scalar product of

the input singal, , with each of the frame vectors:

 () [

⟨ ⟩

⟨ ⟩

⟨ ⟩

] (6)

Where the scalar product of two complex vectors, and , of length is defined as:

⟨ ⟩ ∑ ̅

(7)

For the case of the weighted discrete Fourier transform, the frame vector formulation for ()

would be:

6

{

√

[

()

()

()

]

}

 (

) ()() √

(8)

After is obtained from the weighted discrete Fourier transform, is obtained by taking the modulus

squared of each element of . Finally, Gaussian noise is added to to produce , the input to the

iterative, recursive least squares algorithm.

Algorithm
The reconstructive algorithm to be implemented has been introduced and described in Balan[5]. It

consists of two primary processes, the initialization and the iterative solver. The algorithm serves as a

least squares solver that is designed to minimize ‖ ̂‖ , where ̂ is the value in equation (2)

obtained from inputting the current estimation, ̂, into the preprocessing transformation.

Initialization
Initialization starts with finding the principal eigenvalue, , and its associated eigenvector, , of a

matrix defined by:

 ∑

 (9)

Where , defined earlier, is the kth frame vector of ().

Before the principal eigenpair is retrieved, the following modification is performed on :

 (10)
 ‖ ‖

This modification ensures that is positive definite, subsequently ensuring that the power method for

finding the principal eigenvector will converge.

Once this eigenpair is discovered the first estimation, ̂(), can be initialized as [5]:

 ̂() √
()

∑ |⟨ ⟩|

 (11)

7

Two additional parameters, and , are initialized as [5]:

 (12)

 After initialization, the algorithm moves on to the iterative process.

Iteration
Through each pass of the iterative process a linear system is solved to obtain a new approximation ̂.

The linear system is constructed in the real space. Instead of working with ̂, the algorithm works with

 [
 (̂)
 (̂)

], the composite of the real values of ̂ and the imaginary values of ̂. The linear system

which is symmetric and positive definite is defined as:

 ()

 ∑(
()) (

())

 ()

 (∑

)

 [
 ()

 ()
] [

]

(13)

(14)

(15)

 () is the composite of the real and imaginary components of the current approximation ̂(), and

 () is the composite of the real and imaginary components of the next approximation ̂().

Following that, the parameters are updated for the following iteration:

(16)

 (
)

(17)

This process is repeated until the following stopping criterion is met:

∑ | |⟨ ̂() ⟩|

|

∑ | |⟨ ̂() ⟩|

|

 (18)

8

This stopping criterion is essentially checking whether ‖ ̂‖ is below a given tolerance.

The flow of the algorithm is represented in figure (2) below.

Figure 2

A transformed vector is inputted to the algorithm. The algorithm runs through the initialization phase

then to the iterative phase. After each pass of the iterative phase, a stopping criterion is checked. If the

criterion is met, the algorithm delivers its current approximation, otherwise the iterative phase is

repeated.

Memory Efficient Implementation
The formulations described are dependent on the frame vector representation, , of the

transformation (). This is an complex matrix. For large , for example , the storage

of these frame vectors is very costly. Furthermore, the matrix required in the initialization phase is an

 complex matrix, and the matrix required in the iterative phase is a real matrix. The

storage of these matrices would also be very costly for large problem sizes.

Avoiding such large storage requirements is critical for implementation on large problem sizes.

Therefore, the variables described so far have been reformulated in terms of the transformation ()

9

instead of its associated frame vectors. Where the transformation () is required, its formulation

represented by the fast Fourier transform will be used instead of the frame vectors. This will avoid,

altogether, the storage of .

For the matrix required in the initialization phase, the matrix times a given vector can be

reformulated as:

 (()) ‖ ‖ (19)

For the matrix required in the iterative phase, the matrix-vector product of the matrix and a given

vector can be redefined as:

 [
 { ({ () { (())}} (())) () }

 { ({ () { (())}} (())) () }
] (20)

And the right hand side, , of the linear system in the iterative phase can be reformulated as:

 [
 { ((())) ()}

 { ((())) ()}
] (21)

 in the given formulations represents the associated adjoint of the transformation (). It is

implemented as:

 () ∑

√
 ̅̅ ̅̅ (())

(22)

The given formulations have no dependence on the frame vector representation of (). Furthermore,

since the formulations produce products for and , the matrices and do not require

storage either. In this case, however, the principal eigenvalue of and the linear system involving

must both be solved without their explicit formulations. This will be done using the power method for

determining the principal eigenvalue of and the conjugate gradient method for solving the linear

system involving .

10

Implementation

Data Creation

The complex input vector will be generated synthetically using random number generation. Each

element of will consist of a randomly generated normal component and a randomly generated

imaginary component. Both random numbers will be distributed normally about 0 with variance 1. 5

different realizations of will be generated and saved for repeated use.

The weights used in the weighted transformation will also be synthetically generated using random

number generation. Each element of will have a random normal component and a random imaginary

component, each distributed normally about 0 with variance 1. There will be 5 different realizations of

each set ().

The noise, , added to to produce will be generated randomly as well. Each element will be

distributed normally about 0 with variance 1. There will be 1,000 different realizations of noise, .

Principal Eigenvalue (Initialization)
During the initialization stage of the iterative, recursive least squares algorithm, the principal eigenvalue

of a matrix must be obtained. To achieve this, the power method for obtaining the principal

eigenvector will be used. The power method starts with an initial approximation of the associated

eigenvector, () For the purposes of this implementation, () will be set to an array of random

numbers. Each element will be distributed normally about 0 with variance 1.

From () the algorithm will repeat as follows:

 ()
 ()

‖ ()‖

 () ()

 ‖ () ()‖

With the selection of an appropriate tolerance, this algorithm should produce an adequate

approximation for the principal eigenvector, , of the matrix . The associated eigenvalue is then

calculated for the unmodified matrix . It is calculated by the equation:

‖ ‖

‖ ‖
 ‖ ‖

11

Conjugate Gradient (Iteration)
Through each iteration of the iterative, recursive least squares algorithm, a linear system must

be solved. This would be cumbersome to solve exactly and would jeopardize the priority of memory

efficiency. Instead, the conjugate gradient method of solving linear systems will be used. The conjugate

gradient method is an iterative method for solving symmetric, positive definite linear systems, and since

 is a symmetric, strictly positive matrix whose lowest eigenvalue is bounded below by , the

conjugate gradient method can be used to solve the linear system .

The conjugate gradient method works by taking the residual of an approximate solution to a linear

system and reducing it by moving the solution along several different conjugate directions. Two vectors

 and are considered to be conjugate with respect to a matrix if they satisfy the following

condition:

For a given matrix in , there are always linearly independent conjugate directions. Traveling along

all directions produces the exact solution to the system. However, if during that time the approximation

converges to within a given tolerance of the solution, the process can be concluded at that time with a

sufficiently close approximation.

The algorithm will be initialized as [7]:

 () ̂()

 () ()

Where ̂() is the approximate solution at the kth iteration, () is the residual at the kth iteration, and

 () is the kth conjugate direction. ̂() is initialized to the current approximation of the iterative,

recursive least squares algorithm, represented by ().

Each iteration repeats as [7]:

⟨ () ()⟩

 () ()

 ̂() ̂() ()

 () () ()

 () () ()
⟨ () ()⟩

⟨ () ()⟩

 ‖ ()‖

12

In each iteration, the solution moves along the conjugate direction () a distance . The iterations are

repeated until the magnitude of the residual of the current approximation is less than a given tolerance.

Coding
The entire algorithm from preprocessing through post-processing is programmed in MATLAB.

Implementing the discrete Fourier transform is done using MATLAB’s () command. ()

implements a fast Fourier transform. Random numbers are generated using MATLAB’s ()

command, which generates random variates according to a standard normal distribution. Common

random numbers are used to generate the random noise vectors for each instance. Seeding is

controlled using MATLAB’s () command.

The function performing the iterative recursive least squares algorithm is labeled (). A

hierarchy of the function and its subfunctions is shown in figure (3) below.

Figure 3

 () is called to perform the iterative recursive least squares algorithm. Within it, there are

calls to () and (). () uses the power method to

determine the principal eigenvector of the matrix. Within () there is a call to

 (), which performs the formulation in equation (19). () employs

the conjugate gradient method to solve the linear system described in equation (13). It includes calls to

both (), which calculates the result of equation (20), and (), which

13

calculates the result of equation (21). (), (), and () all

perform calls to () and () to compute their results.

Reconstruction is performed for each noise realization of each signal to noise ratio of a transformed

signal. Parallelization is applied over calls to the reconstructive algorithm. MATLAB’s is used to

employ a parallel for-loop over all noise realizations for a given signal to noise ratio. To ensure common

random numbers are being used, independent seeding is used for each noise realization. The random

number seed for a given noise realization is set to the index of that particular noise realization. So the

seed for first noise realization would be one, two for the second, and so on.

Parameters
Below is a list of required parameters and the associated values they will be set to during large scale

testing.

 Signal size

Number of noise

realizations

Transformation

redundancy

Rate of convergence

parameter

Initialization weight for

regularization parameters

Power Method stopping

tolerance

Conjugate Gradient
stopping tolerance

 Minimum value

14

Post-processing
After a transformed signal has been passed through reconstruction, it is ready for post-processing. In

post-processing several key metrics are assessed. The reconstructed outputs for all noise realizations

for a given signal to noise ratio are used to calculate the bias of the output mean from the original

signal, the variance of the output, and the mean squared error of the output. As well, the Cramer Rao

Lower Bound is calculated for each signal to noise ratio. This is done for each input setup.

Due to the large potential number of noise realizations and the large signal length, storing the output of

each noise realization is too costly. To calculate the desired metrics, however, all that is needed is the

vector sum of the output signal over all noise realizations and the vector sum of the modulo-squared

elements of the output signal over all noise realizations. These values are labeled as and

 respectively and are formulated as follows:

 ∑ ̂()

 ̂()

(23)

 ∑

[

 | ̂

()
|

| ̂
()

|

| ̂
()

|

]

 (24)

Using only these two vectors as the output reduces the output load to two length vectors for each

signal to noise ratio. Furthermore, all the desired metrics can be calculated in terms of these two sums.

The bias is formulated as follows:

 ‖ ∑ ̂()

‖

 (25)

 (26)

 ∑| |

 (27)

The variance is formulated as follows:

∑[‖

∑ ̂()

 ̂()‖

]

 (28)

15

∑ (

| |

)

(29)

And the mean squared error is formulated as follows:

∑[‖ ̂()‖

]

 (30)

 (

) (31)

The Cramer Rao lower bound can be calculated from the inverse of a modified fisher information matrix,

 ̃, which is formulated as:

 ̃ ∑

‖ ‖
[5] (32)

The Cramer Rao lower bound derived from the trace of ̃ :

 (

 ((̃

)))

(33)

 (̃) is cumbersome to calculate directly from the definition of ̃. Instead (̃) is

calculated by the following:

 (̃) ∑⟨ ̃ ⟩

(34)

And ̃ multiplied by a given vector can be calculated by:

 ̃

√∑ | |

[
 ()

 ()
]

(35)

Here is the same as in equation (14).

These calculations are done for each signal to noise ratio. Once they are all calculated the results are all

plotted together against the signal to noise ratio. This is done for all input setups.

16

Validation

Method
Validation for the iterative, recursive least squares implementation can be done on the individual

modules within the algorithm, including the power method implementation and the conjugate gradient

implementation. Using a smaller sample data set with on the order of 100 rather than 10,000, the

power method can be substituted with MATLAB’s () function. () will reliably deliver the principal

eigenvalue that was sought after by the power method implementation. The power method

implementation can then be run on the same sample data in order to compare the results. If the results

are comparable, the power method module will be validated.

A similar procedure can be done for the conjugate gradient implementation. On a small data set with

on the order of 100, the conjugate gradient module can be substituted with MATLAB’s ().

 () will provide the exact solution to the linear system. This exact solution can be used to

compare with the results obtained using the conjugate gradient implementation. Comparable results

would provide validation. The conjugate gradient implementation can be further validated on large data

sets as well. This is done by letting the conjugate gradient run through all possible iterations. For a

system of size , the conjugate gradient method ensures absolute convergence to the true solution

in steps. Rather than returning a result within a certain tolerance, the implementation can be made to

run through all iterations regardless. The result will serve as the true solution to validate against.

The memory efficient implementation represented by equations (19), (20), and (21) will programmed

and referred to as the efficient implementation. It will be compared against the frame vector

implementation formulated by equations (9), (14), and (15) which will be called the sample

implementation. The results of these two implementations can be compared against one another for

small, sample problem sizes of .

Results
The power method and conjugate gradient method were both programmed and validated as described.

The conjugate gradient method reliably produces results comparable to MATLAB’s () with a

slight amount of round-off error () even when the conjugate gradient method is run through all

iterations. The power method successfully produces the principal eigenvector as desired, however the

eigenvector differs from the result of MATLAB’s () in that it is consistently off by a multiplicative

complex constant. Both eigenvectors, though, are associated with the same eigenvalue, the principal

eigenvalue.

Since the initial approximation of ̂ is dependent on the principal eigenvector of , the initial

approximations of the sample implementation and the efficient implementation are off by a

multiplicative phase factor, the same phase factor by which the two eigenvectors differed. This constant

difference perpetuates through all iterations of the least squares algorithm, thus making the final results

17

of the sample implementation and the efficient implementation equivalent in magnitude but off by a

phase factor.

The results of the sample implementation and efficient implementation are compared for three data

sets with . For each testing setup, the signal to noise ratio in is set to . The plot below

shows each element of the output of both implementations plotted on the complex plane:

It can be seen that the outputs do not line up. The norm difference between the principal eigenvector

of the efficient implementation and the principal eigenvector of the sample implementation was

 . The phase difference between the eigenvectors of the two implementations was .

Shifting the output of the efficient implementation by this phase factor results in the following plot:

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

Figure 4

Figure 5

18

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4

 5
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4

 5
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

The outputs now line up, showing that the two outputs are only off by the phase factor introduced

during the eigenvector retrieval in the initialization phase.

The same process is repeated for two more sample data sets with .

In this data set, the norm difference in the principal eigenvectors of was and the phase

difference was . After a phase shift in the output of the efficient implementation, the outputs

line up.

In this data set, the norm difference in the principal eigenvectors of was and the phase

difference was . Once more, after a phase shift in the output of the efficient implementation,

the outputs line up.

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

Figure 6 Figure 7

Figure 8

Figure 9

19

Testing

Preliminary Testing
A few preliminary tests are run on the resulting program to study certain aspects of its behavior. First, a

visual look was taken at the output of the efficient implementation for a problem size of

and a signal to noise ratio of . The magnitudes of the approximation ̂ and the original signal

are plotted alongside one another for each of the elements. A small portion of the plot is shown in

the figure below.

Figure 10

The approximate solution ̂ is represented in blue while the original signal is represented in black. For

10 dB signal to noise the approximate signal follows the same trend as the true solution very closely.

Below is a plot of the same results over the portion containing the point with the highest inaccuracy.

Figure 11

The highest inaccuracy occurs at an index around .

2870 2880 2890 2900 2910

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

e
{x

}

Element by Element Magnitude of x

true solution

algorithm result

3730 3740 3750 3760 3770 3780 3790
0

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

d
e
{x

}

Element by Element Magnitude of x

algorithm result

true solution

20

Power Method and Conjugate Gradient Tolerances

Next the convergence properties of the power method and the conjugate gradient method were

studied. For a given dataset with , both methods were run for various stopping tolerances

and the number of iterations required to reach completion was recorded. The resulting output for the

power method is shown below.

The stopping tolerance is plotted on the horizontal axis on a logarithmically decreasing scale. The power

method requires a considerable amount of iterations. For a stopping tolerance of the power

method requires about iterations. From the graph it can be concluded that the error in the power

method decays exponentially as the number of iterations is increased. In other words, increasing the

number of iterations provides diminishing returns in the accuracy of the power method.

The required iterations of the conjugate gradient method were also plotted against its stopping

tolerance. The resulting plot is shown below.

10
-20

10
-15

10
-10

10
-5

10
0

0

2000

4000

6000

8000

10000

12000

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s

Power Method iterations vs tolerance

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

2

4

6

8

10

12

14

16

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s

Conjugate Gradient iterations vs tolerance

Figure 12

21

Figure 13

The conjugate gradient method requires very few iterations and converges to high accuracy very quickly.

For a stopping tolerance of the conjugate gradient method requires iterations. This is

beneficial because the conjugate gradient method is called numerous times through the execution of

the least squares algorithm, once through each pass of the iterative phase. The trend of the error of the

conjugate gradient method is similar to that of the power method in that the error also decays

exponentially as the number of iterations is increased. However, the conjugate gradient method’s error

decays much more rapidly than the error in the power method.

Looking at the number of iterations for the power method to converge for various tolerance levels, it is

useful to know how these different tolerance levels would affect the final algorithm output. To study

this effect, the error, defined in equation (18), was recorded at each iteration through the course of the

iterative portion of the algorithm. This was done for power method tolerances of 1e-14, 1e-12, 1e-10,

and 1e-8. The error trends for each of the tolerances are plotted together below for and a

signal to noise ratio of .

Figure 14

It can readily be seen that the error trends line up almost exactly. Not only does reducing the power

method tolerance from 1e-14 to 1e-8 not affect the minimum error achieved through the course of the

algorithm, it does not affect the trend in the error through the course of the succeeding iterations.

Results for a signal to ratio of are show below.

0 50 100 150 200 250 300
74

75

76

77

78

79

80

81

82

83

Iteration

1
0
lo

g
1
0

(e
rr

o
r)

Error vs Iteration, Input 1, Weight 1, SNR -30

tol = 1e-14

tol = 1e-12

tol = 1e-10

tol = 1e-8

22

Figure 15

The same consistency is shown for . The results for a signal to noise ratio of are shown

below.

Figure 16

Again there is consistency across all the tolerances tested. By this result, it can be concluded that there

is no notable loss in algorithm accuracy when adjusting the power method tolerance between 1e-8 and

1e-14. Furthermore, in figure (12) it was shown that the power method requires almost double the

number of iterations to converge when increasing the tolerance from 1e-8 to 1e-14. Therefore, it is

beneficial to use a power method tolerance of 1e-8 to reduce program runtime with no notable loss in

the accuracy of the final approximation.

0 50 100 150 200 250 300 350
45

45.5

46

46.5

47

47.5

48

48.5

49

Iteration

1
0
lo

g
1
0

(e
rr

o
r)

Error vs Iteration, Input 1, Weight 1, SNR 0

tol = 1e-14

tol = 1e-12

tol = 1e-10

tol = 1e-8

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40

45

50

Iteration

1
0
lo

g
1
0

(e
rr

o
r)

Error vs Iteration, Input 1, Weight 1, SNR 30

tol = 1e-14

tol = 1e-12

tol = 1e-10

tol = 1e-8

23

From the plots, the stark difference in error trends can be noted for varying signal to noise ratios. It is

evident that higher signal to noise ratios require a greater number of iterations for the program to

converge to its optimal value. For lower signal to noise ratios, the algorithm does not attain nearly as

much improvement from initialization. It converges to its optimal value quickly and then diverges in the

subsequent iterations. As the signal to noise ratio is increased, this process is prolonged. The algorithm

takes longer to achieve its optimal value and then takes longer to diverge from there afterwards.

Memory Load

One of the primary goals in writing the efficient implementation is memory efficiency. Therefore, the

memory load of the efficient implementation is compared against the memory load of the sample

implementation at corresponding parts in the algorithm. MATLAB’s () function was used to track

all the variables in a function’s workspace at a given time. () delivers the memory requirements of

each variable stored. Summing up all the load of each variable will produce to total memory load of the

program at a specific time. Both implementations were studied for a problem of size . The

memory load was checked at the end of one iteration of the iterative phase of the least squares

algorithm. A visual representation of where the load was examined is shown below.

Figure 17

24

The results are graphed below.

Figure 18

The sample algorithm requires significantly more storage than the efficient algorithm. At the given

point in the algorithm, the sample algorithm’s storage requirements are over 2.5 megabytes while the

efficient algorithm requires only about 25 kilobytes.

The large storage disparity between the algorithms can be attributed primarily to the sample algorithm’s

storage of the transformation frame vectors, , and the matrix defined in equation (14). is an

 matrix of complex numbers. Both the real and imaginary elements of each complex number are

stored as double precision floating point numbers, requiring bytes for each (in total for each

complex number). For and , the memory requirements for would thus be

 bytes. Similarly, is a matrix of double precision floating point

numbers. The storage requirements for in the same problem setup would be

 bytes. Avoiding this storage is what allows the efficient algorithm to run on large problem sizes

of .

0

500000

1000000

1500000

2000000

2500000

3000000

sample algorithm efficient algorithm

2588750

25550

B
yt

e
s

Storage Requirements (n=100)

25

Program Runtime

Finally, the time performance of the efficient implementation of the least squares algorithm is

investigated on a problem size of . The MATLAB profiler was run on a call to

 (). The results are shown in the figure below.

Figure 19

“Total Time” represents the time from call to return of each function summed over all calls. “Self Time”

represents the time spent within the given function that is not spent within any other functions called

from within that given function. The right column provides a visual representation of the results. The

dark blue represents “Self Time” while the dark blue added to the light blue represents “Total Time”.

It can first be noted that () required 181.935 seconds to complete in this instance. Only

0.377 seconds were spent directly within (), the rest of the time was spent within

function calls. () is called once and its total time to completion is seconds, over

half the total runtime of (). Still, a vast majority of the program’s time is spent directly

within () and (). A visual representation of the relative “Self

Times” as a percentage of total algorithm runtime are shown in the pie chart below.

26

Figure 20

The pie chart shows that the time spent directly within () and ()

encompasses nearly4 of the runtime of (). The next most significant time

consuming function is () which only takes of of the runtime.

Database Testing
There are 5 different sets of input data, each of which can be passed through 5 uniquely weighted

transformations to produce a unique . The vector is generated by adding noise to . The noise

vector can be weighted by to produce a desired signal to noise ratio in .

The goal in testing is to test each input on multiple signal to noise ratio levels ranging from -30 decibels

to 30 decibels, in 10 decibel increments. The appropriate signal to noise ratio will be set by adjusting

in the following equation:

 [

∑ | |

 ∑ | |

] (18)

Given a certain transformed input, there are 1,000 different noise variations that can be used for each

signal to noise ratio level. This produces 1,000 output samples for a specific input at a given signal to

noise ratio level. From this data, the mean squared error of the output can be studied in relation to the

LS_Algorithm
0%

Power_Method
3%

Q_u_compute
3%

Conjugate_Gradient
1%

A_u_compute
4%

adjTransformation
45%

Transformation
44%

RHS_compute
0%

Time Consumption by Function

27

signal to noise ratio. As well, the bias of the mean of the output and the variance of the output can be

studied against the signal to noise ratio.

For a signal of length with 1,000 noise realizations, the following results were obtained for a

single input setup:

SNR () () () CRLB

-30 32.13 43.78 44.07 59.04

-20 32.39 39.29 40.09 49.04

-10 32.27 35.56 37.23 39.04

0 22.17 30.24 30.87 29.04

10 -2.21 19.16 19.19 19.04

20 -18.88 9.05 9.05 9.04

30 -30.63 -0.96 -0.96 -0.96

Plotting the results together gives the following graph:

Figure 21

It is clear that the accuracy and precision improve as the level of noise is reduced. The bias continually

improves as the signal to noise ratio is brought up to 30 dB. The variance and mean squared error

follow similar trends in this regard. Once the signal to noise ratio falls below -10 dB, the rise in the bias

-40.00
-30.00
-20.00
-10.00

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

SNR (dB)

Bias/Variance/MSE/CRLB vs SNR

Bias

Variance

MSE

CRLB

28

levels off. The variance and the mean squared error continue to rise, however. Furthermore, when the

signal to noise ratio falls below 0 dB the Cramer Rao lower bound starts to separate from the variance.

The variance in that region lies below the Cramer Rao lower bound, indicating a substantial amount of

bias has been introduced into the estimator.

Algorithm Analysis

Parameters
To give insight on the algorithm characteristics, a study was done on two of the fundamental

parameters of the algorithm, and . representes the level of redundancy in the linear

transformation. represents the rate of convergence of the iterative portion of the algorithm. Higher

values lead to slower convergence. and were both varied over several values and the resulting

effects on the bias, the variance, and the mean squared error as well as the number of iterations

required for the reconstructive algorithm to converge were studied. was varied through values of 4,

6, 8, and 12. was varied through values of .9, .95, and .99.

The results on the output metrics when varying are shown in the plots below. These tests were done

for over 1,000 noise realizations.

Figure 22

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(B
ia

s)

SNR (dB)

Bias vs SNR

R = 4

R = 6

R = 8

R = 12

29

Figure 23

Figure 24

It is clear that higher values produce greater accuracy and precision in the output for high signal to

noise ratios. However, this benefit diminishes and becomes negligible for negative signal to noise ratios.

 represents the level of redundancy in the linear transformation. Higher redundancy provides more

information about the original signal during reconstruction. This explains the greater accuracy for

higher values. The lack of benefit, though, for low signal to noise ratios could be due to the

algorithm’s inability to adequately reconstruct the original signal regardless of the level of redundancy.

The number of iterations required for the reconstructive algorithm to converge for varied values are

listed below.

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(V
ar

ia
n

ce
)

SNR (dB)

Variance vs SNR

R = 4

R = 6

R = 8

R = 12

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(M
SE

)

SNR (dB)

MSE vs SNR

R = 4

R = 6

R = 8

R = 12

30

Iterations/Realization (n = 1,000)

SNR R = 4 R = 6 R = 8 R = 12

-30 42.6 43.2 43.5 43.0

-20 45.3 46.5 47.1 47.3

-10 52.2 54.7 55.9 56.9

0 69.1 71.2 73.9 92.2

10 2599.0 348.3 340.1 335.2

20 700.9 361.7 346.1 344.4

30 486.6 360.6 348.0 344.0

Figure 25

Most notable on the plot is the behavior of the trend. For signal to noise ratios from -30 to 0, the

 trend behaves just like the others. However, at 10 dB signal to noise, there is a huge spike in

required iterations. Furthermore, this behavior is not exclusive to this data set. Running the same tests

on other data sets more often than not delivers this sort of pattern. It is still unknown why there is a

spike for 10 dB signal to noise, but the spike diminishes for 20 dB and 30 dB signal to noise. Further

investigation into the algorithm’s behavior for low redundancy transformations is needed to help

explain this trend.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

-30 -20 -10 0 10 20 30

It
e

ra
ti

o
n

s/
R

e
al

iz
at

io
n

SNR (dB)

Iterations/Realization vs SNR

R = 4

R = 6

R = 8

R = 12

31

Taking the results out of the plot provides better insight into the general trend. This plot is shown

below.

Figure 26

Here the number of iterations seems to remain relatively constant over two regions; positive signal to

noise, and nonpostitive signal to noise. Furthermore, the trends for each value seem to be relatively

similar, the number of iterations remains close to 50 for negative signal to noise, and once the signal to

noise hits 10 dB the number of iterations jumps to around 350. This is what is expected given the error

trends for different signal to noise ratios that was presented earlier in figures (14), (15), and (16).

The results on the output metrics when varying are shown on the plots below. These tests were done

for over 1,000 noise realizations.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

-30 -20 -10 0 10 20 30

It
e

ra
ti

o
n

s/
R

e
al

iz
at

io
n

SNR (dB)

Iterations/Realization vs SNR

R = 6

R = 8

R = 12

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(B
ia

s)

SNR (dB)

Bias vs SNR

Gamma = .90

Gamma = .99

Gamma = .95

32

Figure 27

Figure 28

Figure 29

The trends for each value follow each other very closely, especially for high signal to noise ratios.

Once the signal to noise ratio falls to 0 dB and below, a small separation in variance and mean squared

error is introduced. The most relative separation is present actually at 0 dB. This could be because

reconstruction is difficult enough at 0 dB that the algorithm gets the added benefit of smaller iterative

steps but not too difficult that the benefit becomes negligible.

The number of iterations required to complete reconstruction for varied values is listed in the table

below.

-5.00
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(V
ar

ia
n

ce
)

SNR (dB)

Variance vs SNR

Gamma = .90

Gamma = .99

Gamma = .95

-5.00
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

-30 -20 -10 0 10 20 30

1
0

*l
o

g1
0

(M
SE

)

SNR (dB)

MSE vs SNR

Gamma = .90

Gamma = .99

Gamma = .95

33

Iterations/Realization (n = 1,000)

SNR Gamma = .99 Gamma = .95 Gamma = .90

-30 150.9 43.5 22.4

-20 160.3 47.1 23.6

-10 193.7 55.9 29.3

0 283.4 73.9 44.0

10 1592.5 340.1 171.5

20 1584.2 346.1 175.7

30 1579.1 348.0 173.0

Below is a plot of the results.

Figure 30

Higher values of require more iterations from the reconstructive algorithm for convergence. This is

supported by the fact that controls the step size between iterations of the algorithm. Specifically,

controls the rate of decay of the regularization parameters and . The faster the decay, the more

quickly the algorithm can converge to its solution. What’s notable about the trend in is the increase in

iterations required when transitioning from negative signal to noise ratios to positive signal to noise

ratios. Moreover, the great disparity in this transition jump between and . While

there is a jump of nearly 300 iterations between SNR = 0 dB and SNR = 10 dB for , there is jump

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

-30 -20 -10 0 10 20 30

It
e

ra
ti

o
n

s/
R

e
al

iz
at

io
n

SNR (dB)

Iterations/Realization vs SNR

Gamma = .90

Gamma = .99

Gamma = .95

34

of approximately 1300 iterations for . Therefore the cost of increase in becomes very

significant for positive signal to noise ratios.

Computational Complexity
The computational complexity of the reconstructive algorithm was studied with respect to input size.

Running reconstruction 100 consecutive times on various input sizes and timing the results yielded the

following output:

n value Total Time (s) # of trials Time/trial (s)

4000 3514.3 100 35.143

5000 4892.2 100 48.922

6000 6364.3 100 63.643

7000 7669.4 100 76.694

8000 8775.6 100 87.756

9000 11364.8 100 113.648

10000 11934.7 100 119.347

The time per realization results are plotted below.

Figure 31

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

4000 5000 6000 7000 8000 9000 10000

Ti
m

e
/r

e
al

iz
at

io
n

 (
s)

n value

Time per Realization vs N value

35

The trend looks virtually linear for large . This is expected given the information previously presented.

From figure (20) it is seen that the algorithm spends approximately of its in ()

and (). These functions primarily perform repeated fast Fourier transforms and

inverse fast Fourier transforms. The fast Fourier transform has order (), which far large would

look similar to the results seen here.

Given that algorithm spends an overwhelming majority of its time performing fast Fourier transforms,

there is potential for speedup if the fast Fourier transform can be optimized for time efficiency. This can

be done in MATLAB using the Fastest Fourier Transfrom in the West library. It is called upon using the

 () command. When given certain parameters, this command finds the optimal fast Fourier

transform algorithm to use for the given platform. Upon the next call to () MATALB will perform a

search for the most efficient fast Fourier algorithm and then use that algorithm for all subsequent fast

Fourier transforms.

Below is a performance comparison between the original fast Fourier transform and the optimized

version. The time to complete 5 million Fourier transforms is shown for several vector lengths in the

plot below.

Figure 32

There trend suggests that on average there is a constant proportional increase in performance for all

vector lengths. A chart of the relative speedups at each vector length is shown below.

n Speedup

1000 1.41

2000 1.32

0

100

200

300

400

500

600

700

800

1000 3000 5000 7000 9000

Ti
m

e
 (

s)

n

Time to complete 5 million fft()

without fftw

with fftw

36

3000 1.24

4000 1.40

5000 1.14

6000 1.28

7000 1.19

8000 1.33

9000 1.34

10000 1.13

When implementing () in the reconstructive algorithm, the goal is to achieve speedups

comparable to what is seen here. Upon the first implementation of () in the reconstructive

algorithm, there was no noticeable speedup. This was due to the fact that each fast Fourier transform

was being called within a separate parallel thread while the initial call to () was made in the

original workspace. Thus, the individual threads did not recognize any call to ().

After adjusting the program to make individual calls to () for each parallel thread, a marginal

speedup was observed. Running the reconstructive algorithm on a signal of length of 10,000 yielded a

speedup of 1.025 when implementing (). This does not match up to the speedups seen in figure

(32). This could still be due to parallelization. The speedups seen in figure (32) were for () calls

when all system resources were available. When running the reconstructive algorithm, all calls to ()

are made in parallel, thus only the resources of that particular node are available. This could affect the

potential speedup of (), though more investigation is needed.

37

Timeline

October
 Post-processing framework

 Database generation

November
 MATLAB implementation of iterative recursive least squares

algorithm

December Validate modules written so far

February
 Implement power iteration method

 Implement conjugate gradient

By March 15 Validate power iteration and conjugate gradient

March 15 – April 15
 Test on synthetic databases

 Extract metrics

April 15 – end of

semester
 Write final report

38

Deliverables
The project produced several deliverables. They are listed below:

 Proposal presentation

 Written proposal

 Midterm presentation

 Midterm report

 Final presentation

 Final report

 MATLAB code

 Input data

 Output data

 Output plots

References
[1] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical linear algebra. Springer, 2008.

[2] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference,

Princeton, NJ, May 2010.

[3] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase,

Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

[4] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.

[5] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex

case. 2013.

[6] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."Frames and Bases.

Birkhäuser Boston, 2008. 1-32.

[7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the

agonizing pain." (1994).

