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Introduction 

Background 
A recurring problem in signal processing involves signal reconstruction using only the magnitudes of the 

coefficients of a linear transformation.  This problem has applications in the fields of speech processing 

and x-ray crystallography.  In speech processing, it is common to work with a speech signal’s 

spectrogram.  Working with the spectrogram provides the ability to perform various audio 

manipulations.  The challenge then becomes to retrieve a processed signal’s discrete-time signal, as the 

spectrogram does explicitly carry any phase information with regards to the signal.  In x-ray 

crystallography, the diffraction pattern of an x-ray beam will deliver the magnitudes of a transformed 

signal of electron density levels.  Obtaining the desired electron density information requires the 

phaseless retrieval of the original signal. 

The project depicted in this paper implements and tests an iterative, recursive least squares algorithm 

described in Balan[5] to perform phaseless reconstruction from the magnitudes of the coefficients of a 

linear transformation.  Testing is done on synthetically generated input data created using random 

number generation.  A random input vector is generated and passed through a transformation 

algorithm.  The transformed signal is then passed to the iterative, recursive least squares algorithm to 

reconstruct the original signal.  Following that, post-processing is done on the results. 

The implementation is programmed in MATLAB.  The implementation will be designed to prioritize 

memory efficiency.  Memory efficiency, in this regard, applies primarily to the storage of the resulting 

linear system involved in reconstruction.  The linear system will be on the order of            .  

Avoiding the costly storage of this system and deriving its contents when needed will be the primary 

focus during implementation of the algorithm.  Following the algorithm’s completion, the program’s 

performance is studied with regards to time efficiency, accuracy, and scalability with problem size. 

 

Problem Setup 

Given an n-dimensional complex signal,       , that has been passed through a redundant linear 

transformation,  ( ), the objective is to reconstruct   from the element by element squared modulus 

of the transformed signal.  The transformed signal will be labeled as follows: 

 

 ( )    

[
 
 
 
 
  

  

 
 

  ]
 
 
 
 

     (1) 

 

The transformed signal lies in the   dimensional complex space, where      .    here represents 

the level of redundancy in the transformation  ( ). 
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The element by element squared modulus of   is represented by  : 
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     (2) 

 

  has been transformed into the real space to produce  .  Since it lies in the real space,   does not carry 

any phase information of the original signal, fitting the criterion for phaseless reconstruction. 

The resulting vector will be passed into the iterative, recursive least square algorithm, but not before 

adding a variable amount of Gaussian noise.  The resulting input to the algorithm is labeled   and is 

defined by: 

         (3) 

 

Where   is random noise drawn from a standard normal distribution and   is the desired standard 

deviation.    is the vector of transformation magnitudes with simulated noise.  The iterative, recursive 

least squares algorithm will use the input   to produce an approximation of  , labeled  ̂.  The entire 

process works as follows: 
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After  ̂ is obtained, the estimation is passed to post-processing to study certain output trends with 

regards to varying signal to noise ratios in  .  

Transformation 
The transformation used in the implementation is a weighted discrete Fourier transform.  In the 

transformation, each element of   is first multiplied by a complex weight,   .  Then the discrete Fourier 

transform is taken on the resulting vector.  This is repeated   times, each time with an independent set 

of weights. 
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( )
 

 

   
( )

]  
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             (4) 

 

The resulting transformation output   is a composite of each of the        transformations, making   lie 

in the       complex dimensional space. 
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  ]
 
 
 
 

     (5) 

 

The transformation,  ( ), can also be defined in terms of   unique frame vectors of length   

labeled     .  In such case, the transformation would be the composite of the scalar product of 

the input singal,  , with each of the   frame vectors: 

 

 ( )   [

⟨    ⟩

⟨    ⟩
 

⟨    ⟩

] (6) 

 

Where the scalar product of two complex vectors,   and  , of length   is defined as: 

 
⟨   ⟩   ∑    ̅ 

 

   

 

 

(7) 

For the case of the weighted discrete Fourier transform, the frame vector formulation for  ( ) 

would be: 
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After   is obtained from the weighted discrete Fourier transform,   is obtained by taking the modulus 

squared of each element of  .  Finally, Gaussian noise is added to   to produce  , the input to the 

iterative, recursive least squares algorithm. 

Algorithm 
The reconstructive algorithm to be implemented has been introduced and described in Balan[5].  It 

consists of two primary processes, the initialization and the iterative solver.  The algorithm serves as a 

least squares solver that is designed to minimize ‖   ̂‖ , where  ̂ is the   value in equation (2) 

obtained from inputting the current estimation,  ̂, into the preprocessing transformation. 

Initialization 
Initialization starts with finding the principal eigenvalue,   , and its associated eigenvector,   , of a 

matrix   defined by: 

 
  ∑       

 

 

   

     (9) 

 

Where   , defined earlier, is the kth frame vector of  ( ). 

Before the principal eigenpair is retrieved, the following modification is performed on  :  

          (10) 
        ‖ ‖             

This modification ensures that    is positive definite, subsequently ensuring that the power method for 

finding the principal eigenvector will converge. 

Once this eigenpair is discovered the first estimation,  ̂( ), can be initialized as [5]: 

 

 ̂( )    √
(   )    

∑ |⟨     ⟩|
  

   

  (11) 
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Two additional parameters,   and  , are initialized as [5]:  

            (12) 

 

 After initialization, the algorithm moves on to the iterative process. 

 

Iteration 
Through each pass of the iterative process a linear system is solved to obtain a new approximation  ̂.  

The linear system is constructed in the real space.  Instead of working with  ̂, the algorithm works with 

  [
    ( ̂)
    ( ̂)

], the composite of the real values of  ̂ and the imaginary values of  ̂.  The linear system 

which is symmetric and positive definite is defined as: 

   (   )    

          ∑(   
( ))  (   

( ))
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(13) 
 

(14) 
 
 

(15) 

 

 ( ) is the composite of the real and imaginary components of the current approximation  ̂( ), and 

 (   ) is the composite of the real and imaginary components of the next approximation  ̂(   ). 

Following that, the parameters are updated for the following iteration: 

              
 

(16) 

         (     
   )     

 

(17) 

              

 

This process is repeated until the following stopping criterion is met: 

 
∑ |    |⟨ ̂( )    ⟩|
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 (18) 
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This stopping criterion is essentially checking whether ‖   ̂‖  is below a given tolerance. 

The flow of the algorithm is represented in figure (2) below. 

 

Figure 2 

A transformed vector   is inputted to the algorithm.  The algorithm runs through the initialization phase 

then to the iterative phase.  After each pass of the iterative phase, a stopping criterion is checked.  If the 

criterion is met, the algorithm delivers its current approximation, otherwise the iterative phase is 

repeated. 

 

Memory Efficient Implementation 
The formulations described are dependent on the frame vector representation,     , of the 

transformation  ( ).  This is an     complex matrix.  For large  , for example         , the storage 

of these frame vectors is very costly.  Furthermore, the matrix   required in the initialization phase is an 

    complex matrix, and the matrix   required in the iterative phase is a       real matrix.  The 

storage of these matrices would also be very costly for large problem sizes. 

Avoiding such large storage requirements is critical for implementation on large problem sizes.  

Therefore, the variables described so far have been reformulated in terms of the transformation  ( ) 
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instead of its associated frame vectors.  Where the transformation  ( ) is required, its formulation 

represented by the fast Fourier transform will be used instead of the frame vectors.  This will avoid, 

altogether, the storage of     . 

For the    matrix required in the initialization phase, the matrix times a given vector   can be 

reformulated as: 

        (     ( ))   ‖ ‖    (19) 

 

For the   matrix required in the iterative phase, the matrix-vector product of the matrix   and a given 

vector   can be redefined as: 

 

    [
  {  (    { ( )       { ( ( ))}}    ( ( )))  (   )   }

  {  (    { ( )       { ( ( ))}}    ( ( )))  (   )   }
]   (20) 

 

And the right hand side,  , of the linear system in the iterative phase can be reformulated as: 

 

  [
  {  (     ( ( )))     ( )}

  {  (     ( ( )))     ( )}
] (21) 

 

   in the given formulations represents the associated adjoint of the transformation  ( ).  It is 

implemented as: 

 

  ( )  ∑
 

√   
     ̅̅ ̅̅      ( (   )        )

 

   

 

                                                    

(22) 

 

The given formulations have no dependence on the frame vector representation of  ( ).  Furthermore, 

since the formulations produce products for      and    , the matrices   and   do not require 

storage either.  In this case, however, the principal eigenvalue of    and the linear system involving   

must both be solved without their explicit formulations.  This will be done using the power method for 

determining the principal eigenvalue of    and the conjugate gradient method for solving the linear 

system involving  . 
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Implementation 

Data Creation 

The complex input vector        will be generated synthetically using random number generation.  Each 

element of   will consist of a randomly generated normal component and a randomly generated 

imaginary component.  Both random numbers will be distributed normally about 0 with variance 1.  5 

different realizations of   will be generated and saved for repeated use. 

The weights used in the weighted transformation will also be synthetically generated using random 

number generation.  Each element of   will have a random normal component and a random imaginary 

component, each distributed normally about 0 with variance 1.  There will be 5 different realizations of 

each set  (     ). 

The noise,  , added to   to produce   will be generated randomly as well.  Each element will be 

distributed normally about 0 with variance 1.  There will be 1,000 different realizations of noise,  . 

 

Principal Eigenvalue (Initialization) 
During the initialization stage of the iterative, recursive least squares algorithm, the principal eigenvalue 

of a matrix   must be obtained.  To achieve this, the power method for obtaining the principal 

eigenvector will be used.  The power method starts with an initial approximation of the associated 

eigenvector,  ( )   For the purposes of this implementation,  ( ) will be set to an array of random 

numbers.  Each element will be distributed normally about 0 with variance 1. 

From  ( ) the algorithm will repeat as follows: 

         (   )  
    ( )

‖    ( )‖
 

       ( )                               (   )                                

          ‖ (   )   ( )‖            

With the selection of an appropriate tolerance, this algorithm should produce an adequate 

approximation for the principal eigenvector,   , of the matrix   .  The associated eigenvalue    is then 

calculated for the unmodified matrix  .  It is calculated by the equation: 

   
‖     ‖

‖  ‖
 ‖ ‖  
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Conjugate Gradient (Iteration) 
Through each iteration of the iterative, recursive least squares algorithm, a       linear system must 

be solved.  This would be cumbersome to solve exactly and would jeopardize the priority of memory 

efficiency.  Instead, the conjugate gradient method of solving linear systems will be used.  The conjugate 

gradient method is an iterative method for solving symmetric, positive definite linear systems, and since 

  is a symmetric, strictly positive matrix whose lowest eigenvalue is bounded below by       , the 

conjugate gradient method can be used to solve the linear system         . 

The conjugate gradient method works by taking the residual of an approximate solution to a linear 

system and reducing it by moving the solution along several different conjugate directions.  Two vectors 

   and    are considered to be conjugate with respect to a matrix   if they satisfy the following 

condition: 

   
        

For a given matrix in   , there are always   linearly independent conjugate directions.  Traveling along 

all directions produces the exact solution to the system.  However, if during that time the approximation 

converges to within a given tolerance of the solution, the process can be concluded at that time with a 

sufficiently close approximation. 

The algorithm will be initialized as [7]: 

 ( )      ̂( ) 

 ( )   ( ) 

Where  ̂( ) is the approximate solution at the kth iteration,  ( ) is the residual at the kth iteration, and 

 ( ) is the kth conjugate direction.   ̂( ) is initialized to the current approximation of the iterative, 

recursive least squares algorithm, represented by  ( ). 

Each iteration repeats as [7]: 

           
⟨ ( )  ( )⟩

 ( )   ( )
 

 ̂(   )   ̂( )    ( ) 

 (   )    ( )     ( ) 

 (   )    (   )   ( )
⟨ (   )  (   )⟩

⟨ ( )  ( )⟩
 

      ‖ ( )‖
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In each iteration, the solution moves along the conjugate direction  ( ) a distance  .  The iterations are 

repeated until the magnitude of the residual of the current approximation is less than a given tolerance. 

 

Coding 
The entire algorithm from preprocessing through post-processing is programmed in MATLAB.  

Implementing the discrete Fourier transform is done using MATLAB’s    () command.     () 

implements a fast Fourier transform.  Random numbers are generated using MATLAB’s      () 

command, which generates random variates according to a standard normal distribution.  Common 

random numbers are used to generate the random noise vectors for each instance.  Seeding is 

controlled using MATLAB’s    () command. 

The function performing the iterative recursive least squares algorithm is labeled             ().  A 

hierarchy of the function and its subfunctions is shown in figure (3) below. 

 

Figure 3 

            () is called to perform the iterative recursive least squares algorithm.  Within it, there are 

calls to             () and                   ().              () uses the power method to 

determine the principal eigenvector of the    matrix.  Within             () there is a call to 

           (), which performs the formulation in equation (19).                    () employs 

the conjugate gradient method to solve the linear system described in equation (13).  It includes calls to 

both            (), which calculates the result of equation (20), and            (), which 
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calculates the result of equation (21).             (),            (), and            () all 

perform calls to               () and                       () to compute their results. 

Reconstruction is performed for each noise realization of each signal to noise ratio of a transformed 

signal.  Parallelization is applied over calls to the reconstructive algorithm.  MATLAB’s        is used to 

employ a parallel for-loop over all noise realizations for a given signal to noise ratio.  To ensure common 

random numbers are being used, independent seeding is used for each noise realization.  The random 

number seed for a given noise realization is set to the index of that particular noise realization.  So the 

seed for first noise realization would be one, two for the second, and so on. 

Parameters 
Below is a list of required parameters and the associated values they will be set to during large scale 

testing. 

  Signal size       

  
Number of noise 

realizations 
      

  
Transformation 

redundancy 
  

  
Rate of convergence 

parameter 
     

  
Initialization weight for 

regularization parameters 
    

       
Power Method stopping 

tolerance 
     

       
Conjugate Gradient 
stopping tolerance 

      

     Minimum   value 
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Post-processing 
After a transformed signal has been passed through reconstruction, it is ready for post-processing.  In 

post-processing several key metrics are assessed.  The reconstructed outputs for all noise realizations 

for a given signal to noise ratio are used to calculate the bias of the output mean from the original 

signal, the variance of the output, and the mean squared error of the output.  As well, the Cramer Rao 

Lower Bound is calculated for each signal to noise ratio.  This is done for each input setup. 

Due to the large potential number of noise realizations and the large signal length, storing the output of 

each noise realization is too costly.  To calculate the desired metrics, however, all that is needed is the 

vector sum of the output signal over all noise realizations and the vector sum of the modulo-squared 

elements of the output signal over all noise realizations.  These values are labeled as       and 

       respectively and are formulated as follows: 

 

       ∑  ̂( )

 

   

 

                               

     ̂( )                                           

(23) 

 

       ∑

[
 
 
 
 
 
 
 | ̂ 

( )
|
 

| ̂ 
( )

|
 

 
 

| ̂ 
( )

|
 

]
 
 
 
 
 
 
 

 

   

 (24) 

 

Using only these two vectors as the output reduces the output load to two   length vectors for each 

signal to noise ratio.  Furthermore, all the desired metrics can be calculated in terms of these two sums.  

The bias is formulated as follows: 

 

      ‖  ∑ ̂( )

 

   

‖

 

 (25) 

 
         

     

 
    (26) 

 
     ∑|         |

 

 

   

 (27) 

The variance is formulated as follows: 

 

    
 

   
∑[‖

 

 
∑  ̂( )

 

   

  ̂( )‖

 

]

 

   

 (28) 
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∑ (        

|      |
 

 ) 
   

   
 

(29) 

 

And the mean squared error is formulated as follows: 

 

    
 

 
∑[‖   ̂( )‖

 
]

 

   

 (30) 

 
    (  

 

 
)           (31) 

 

The Cramer Rao lower bound can be calculated from the inverse of a modified fisher information matrix, 

 ̃, which is formulated as: 

  ̃  ∑         
  

    
 

‖ ‖        
[5] (32) 

 

The Cramer Rao lower bound derived from the trace of  ̃  : 

 
             (

  

 
 (     ( ̃

  
)   )) 

                                               

(33) 
 

 

     ( ̃  ) is cumbersome to calculate directly from the definition of  ̃.  Instead      ( ̃  ) is 

calculated by the following: 

 
     ( ̃  )   ∑⟨ ̃       ⟩

  

   

 

                                           

(34) 
 

 

And  ̃   multiplied by a given vector   can be calculated by: 

  ̃                    
 

          
 

√∑ |  |  

[
     ( )

    ( )
] 

(35) 
 
 

 

Here   is the same as in equation (14). 

These calculations are done for each signal to noise ratio.  Once they are all calculated the results are all 

plotted together against the signal to noise ratio.  This is done for all input setups.  
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Validation 

Method 
Validation for the iterative, recursive least squares implementation can be done on the individual 

modules within the algorithm, including the power method implementation and the conjugate gradient 

implementation.  Using a smaller sample data set with   on the order of 100 rather than 10,000, the 

power method can be substituted with MATLAB’s    () function.     () will reliably deliver the principal 

eigenvalue that was sought after by the power method implementation.  The power method 

implementation can then be run on the same sample data in order to compare the results.  If the results 

are comparable, the power method module will be validated. 

A similar procedure can be done for the conjugate gradient implementation.  On a small data set with   

on the order of 100, the conjugate gradient module can be substituted with MATLAB’s         ().  

        () will provide the exact solution to the linear system.  This exact solution can be used to 

compare with the results obtained using the conjugate gradient implementation.  Comparable results 

would provide validation.  The conjugate gradient implementation can be further validated on large data 

sets as well.  This is done by letting the conjugate gradient run through all possible iterations.  For a 

system of size    , the conjugate gradient method ensures absolute convergence to the true solution 

in   steps.  Rather than returning a result within a certain tolerance, the implementation can be made to 

run through all iterations regardless.  The result will serve as the true solution to validate against. 

The memory efficient implementation represented by equations (19), (20), and (21) will programmed 

and referred to as the efficient implementation.  It will be compared against the frame vector 

implementation formulated by equations (9), (14), and (15) which will be called the sample 

implementation.  The results of these two implementations can be compared against one another for 

small, sample problem sizes of      . 

 

Results 
The power method and conjugate gradient method were both programmed and validated as described.  

The conjugate gradient method reliably produces results comparable to MATLAB’s         () with a 

slight amount of round-off error (      ) even when the conjugate gradient method is run through all 

iterations.  The power method successfully produces the principal eigenvector as desired, however the 

eigenvector differs from the result of MATLAB’s    () in that it is consistently off by a multiplicative 

complex constant.  Both eigenvectors, though, are associated with the same eigenvalue, the principal 

eigenvalue. 

Since the initial approximation of  ̂ is dependent on the principal eigenvector of  , the initial 

approximations of the sample implementation and the efficient implementation are off by a 

multiplicative phase factor, the same phase factor by which the two eigenvectors differed.  This constant 

difference perpetuates through all iterations of the least squares algorithm, thus making the final results 
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of the sample implementation and the efficient implementation equivalent in magnitude but off by a 

phase factor. 

The results of the sample implementation and efficient implementation are compared for three data 

sets with      .  For each testing setup, the signal to noise ratio in   is set to      .  The plot below 

shows each element of the output of both implementations plotted on the complex plane: 

 

 

 

 

 

 

 

 

 

 

It can be seen that the outputs do not line up.  The norm difference between the principal eigenvector 

of the efficient implementation and the principal eigenvector of the sample implementation was 

      .  The phase difference between the eigenvectors of the two implementations was           .  

Shifting the output of the efficient implementation by this phase factor results in the following plot: 

 

 

 

 

 

 

 

 

  1

  2

  3

  4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

 

 

x sample

x efficient

Figure 4 

Figure 5 



18 
 

  1

  2

  3

  4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

 

 

x sample

x efficient

  1

  2

  3

  4

  5
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

 

 

x sample

x efficient

  1

  2

  3

  4

  5
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

 

 

x sample

x efficient

The outputs now line up, showing that the two outputs are only off by the phase factor introduced 

during the eigenvector retrieval in the initialization phase. 

The same process is repeated for two more sample data sets with      . 

In this data set, the norm difference in the principal eigenvectors of   was        and the phase 

difference was           .  After a phase shift in the output of the efficient implementation, the outputs 

line up. 

   

 

 

 

 

 

 

 

 

 

In this data set, the norm difference in the principal eigenvectors of   was        and the phase 

difference was            .  Once more, after a phase shift in the output of the efficient implementation, 

the outputs line up. 
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Testing 

Preliminary Testing 
A few preliminary tests are run on the resulting program to study certain aspects of its behavior.  First, a 

visual look was taken at the output of the efficient implementation for a problem size of          

and a signal to noise ratio of      .  The magnitudes of the approximation  ̂ and the original signal   

are plotted alongside one another for each of the   elements.  A small portion of the plot is shown in 

the figure below. 

 

Figure 10 

The approximate solution  ̂ is represented in blue while the original signal   is represented in black.  For 

10 dB signal to noise the approximate signal follows the same trend as the true solution very closely.  

Below is a plot of the same results over the portion containing the point with the highest inaccuracy. 

 

Figure 11 

The highest inaccuracy occurs at an index around     . 
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Power Method and Conjugate Gradient Tolerances 

Next the convergence properties of the power method and the conjugate gradient method were 

studied.  For a given dataset with         , both methods were run for various stopping tolerances 

and the number of iterations required to reach completion was recorded.  The resulting output for the 

power method is shown below. 

 

 

The stopping tolerance is plotted on the horizontal axis on a logarithmically decreasing scale.  The power 

method requires a considerable amount of iterations.  For a stopping tolerance of       the power 

method requires about       iterations.  From the graph it can be concluded that the error in the power 

method decays exponentially as the number of iterations is increased.  In other words, increasing the 

number of iterations provides diminishing returns in the accuracy of the power method. 

The required iterations of the conjugate gradient method were also plotted against its stopping 

tolerance.  The resulting plot is shown below. 
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Figure 13 

The conjugate gradient method requires very few iterations and converges to high accuracy very quickly.  

For a stopping tolerance of       the conjugate gradient method requires    iterations.  This is 

beneficial because the conjugate gradient method is called numerous times through the execution of 

the least squares algorithm, once through each pass of the iterative phase.  The trend of the error of the 

conjugate gradient method is similar to that of the power method in that the error also decays 

exponentially as the number of iterations is increased.  However, the conjugate gradient method’s error 

decays much more rapidly than the error in the power method. 

Looking at the number of iterations for the power method to converge for various tolerance levels, it is 

useful to know how these different tolerance levels would affect the final algorithm output.  To study 

this effect, the error, defined in equation (18), was recorded at each iteration through the course of the 

iterative portion of the algorithm.  This was done for power method tolerances of 1e-14, 1e-12, 1e-10, 

and 1e-8.  The error trends for each of the tolerances are plotted together below for          and a 

signal to noise ratio of       . 

 

Figure 14 

It can readily be seen that the error trends line up almost exactly.  Not only does reducing the power 

method tolerance from 1e-14 to 1e-8 not affect the minimum error achieved through the course of the 

algorithm, it does not affect the trend in the error through the course of the succeeding iterations.  

Results for a signal to ratio of      are show below. 
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Figure 15 

The same consistency is shown for     .  The results for a signal to noise ratio of       are shown 

below. 

 

Figure 16 

Again there is consistency across all the tolerances tested.  By this result, it can be concluded that there 

is no notable loss in algorithm accuracy when adjusting the power method tolerance between 1e-8 and 

1e-14.  Furthermore, in figure (12) it was shown that the power method requires almost double the 

number of iterations to converge when increasing the tolerance from 1e-8 to 1e-14.  Therefore, it is 

beneficial to use a power method tolerance of 1e-8 to reduce program runtime with no notable loss in 

the accuracy of the final approximation. 
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From the plots, the stark difference in error trends can be noted for varying signal to noise ratios.  It is 

evident that higher signal to noise ratios require a greater number of iterations for the program to 

converge to its optimal value.  For lower signal to noise ratios, the algorithm does not attain nearly as 

much improvement from initialization.  It converges to its optimal value quickly and then diverges in the 

subsequent iterations.  As the signal to noise ratio is increased, this process is prolonged.  The algorithm 

takes longer to achieve its optimal value and then takes longer to diverge from there afterwards. 

 

Memory Load 

One of the primary goals in writing the efficient implementation is memory efficiency.  Therefore, the 

memory load of the efficient implementation is compared against the memory load of the sample 

implementation at corresponding parts in the algorithm.  MATLAB’s     () function was used to track 

all the variables in a function’s workspace at a given time.      () delivers the memory requirements of 

each variable stored.  Summing up all the load of each variable will produce to total memory load of the 

program at a specific time.  Both implementations were studied for a problem of size      .  The 

memory load was checked at the end of one iteration of the iterative phase of the least squares 

algorithm.  A visual representation of where the load was examined is shown below. 

 

  

Figure 17 
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The results are graphed below. 

 

Figure 18 

The sample algorithm requires significantly more storage than the efficient algorithm.    At the given 

point in the algorithm, the sample algorithm’s storage requirements are over 2.5 megabytes while the 

efficient algorithm requires only about 25 kilobytes. 

The large storage disparity between the algorithms can be attributed primarily to the sample algorithm’s 

storage of the transformation frame vectors,     , and the   matrix defined in equation (14).       is an 

    matrix of complex numbers.  Both the real and imaginary elements of each complex number are 

stored as double precision floating point numbers, requiring   bytes for each (   in total for each 

complex number).  For       and    , the memory requirements for      would thus be 

                     bytes.  Similarly,   is a matrix of       double precision floating point 

numbers.  The storage requirements for   in the same problem setup would be           

        bytes.  Avoiding this storage is what allows the efficient algorithm to run on large problem sizes 

of         . 
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Program Runtime 

Finally, the time performance of the efficient implementation of the least squares algorithm is 

investigated on a problem size of         .  The MATLAB profiler was run on a call to 

            ().  The results are shown in the figure below. 

 

Figure 19 

“Total Time” represents the time from call to return of each function summed over all calls.  “Self Time” 

represents the time spent within the given function that is not spent within any other functions called 

from within that given function.  The right column provides a visual representation of the results.  The 

dark blue represents “Self Time” while the dark blue added to the light blue represents “Total Time”. 

It can first be noted that             () required 181.935 seconds to complete in this instance.  Only 

0.377 seconds were spent directly within             (), the rest of the time was spent within 

function calls.              () is called once and its total time to completion is        seconds, over 

half the total runtime of             ().  Still, a vast majority of the program’s time is spent directly 

within               () and                  ().  A visual representation of the relative “Self 

Times” as a percentage of total algorithm runtime are shown in the pie chart below. 
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Figure 20 

The pie chart shows that the time spent directly within               () and                  () 

encompasses nearly4     of the runtime of             ().  The next most significant time 

consuming function is            () which only takes of    of the runtime. 

 

Database Testing 
There are 5 different sets of input data, each of which can be passed through 5 uniquely weighted 

transformations to produce a unique  .  The vector   is generated by adding noise to  .  The noise 

vector   can be weighted by   to produce a desired signal to noise ratio in  . 

The goal in testing is to test each input on multiple signal to noise ratio levels ranging from -30 decibels 

to 30 decibels, in 10 decibel increments.  The appropriate signal to noise ratio will be set by adjusting   

in the following equation: 

 
              [
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  ∑ |  |
  

   

] (18) 

 

Given a certain transformed input, there are 1,000 different noise variations that can be used for each 

signal to noise ratio level.  This produces 1,000 output samples for a specific input at a given signal to 

noise ratio level.  From this data, the mean squared error of the output can be studied in relation to the 
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signal to noise ratio.  As well, the bias of the mean of the output and the variance of the output can be 

studied against the signal to noise ratio. 

For a signal of length         with 1,000 noise realizations, the following results were obtained for a 

single input setup: 

SNR         (    )         (        )         (   ) CRLB 

-30 32.13 43.78 44.07 59.04 

-20 32.39 39.29 40.09 49.04 

-10 32.27 35.56 37.23 39.04 

0 22.17 30.24 30.87 29.04 

10 -2.21 19.16 19.19 19.04 

20 -18.88 9.05 9.05 9.04 

30 -30.63 -0.96 -0.96 -0.96 

 

Plotting the results together gives the following graph: 

 

Figure 21 

It is clear that the accuracy and precision improve as the level of noise is reduced.  The bias continually 

improves as the signal to noise ratio is brought up to 30 dB.  The variance and mean squared error 

follow similar trends in this regard.  Once the signal to noise ratio falls below -10 dB, the rise in the bias 
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levels off.  The variance and the mean squared error continue to rise, however.  Furthermore, when the 

signal to noise ratio falls below 0 dB the Cramer Rao lower bound starts to separate from the variance.  

The variance in that region lies below the Cramer Rao lower bound, indicating a substantial amount of 

bias has been introduced into the estimator. 

Algorithm Analysis 

Parameters 
To give insight on the algorithm characteristics, a study was done on two of the fundamental 

parameters of the algorithm,   and  .    representes the level of redundancy in the linear 

transformation.    represents the rate of convergence of the iterative portion of the algorithm.  Higher   

values lead to slower convergence.    and   were both varied over several values and the resulting 

effects on the bias, the variance, and the mean squared error as well as the number of iterations 

required for the reconstructive algorithm to converge were studied.    was varied through values of 4, 

6, 8, and 12.    was varied through values of .9, .95, and .99. 

The results on the output metrics when varying   are shown in the plots below.  These tests were done 

for         over 1,000 noise realizations. 

 

Figure 22 
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Figure 23 

 

Figure 24 

It is clear that higher   values produce greater accuracy and precision in the output for high signal to 

noise ratios.  However, this benefit diminishes and becomes negligible for negative signal to noise ratios.  

  represents the level of redundancy in the linear transformation.  Higher redundancy provides more 

information about the original signal during reconstruction.  This explains the greater accuracy for 

higher   values.  The lack of benefit, though, for low signal to noise ratios could be due to the 

algorithm’s inability to adequately reconstruct the original signal regardless of the level of redundancy. 

The number of iterations required for the reconstructive algorithm to converge for varied   values are 

listed below. 
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Iterations/Realization (n = 1,000) 

SNR R = 4 R = 6 R = 8 R = 12 

-30 42.6 43.2 43.5 43.0 

-20 45.3 46.5 47.1 47.3 

-10 52.2 54.7 55.9 56.9 

0 69.1 71.2 73.9 92.2 

10 2599.0 348.3 340.1 335.2 

20 700.9 361.7 346.1 344.4 

30 486.6 360.6 348.0 344.0 

 

 

Figure 25 

Most notable on the plot is the behavior of the     trend.  For signal to noise ratios from -30 to 0, the 

    trend behaves just like the others.  However, at 10 dB signal to noise, there is a huge spike in 

required iterations.  Furthermore, this behavior is not exclusive to this data set.  Running the same tests 

on other data sets more often than not delivers this sort of pattern.  It is still unknown why there is a 

spike for 10 dB signal to noise, but the spike diminishes for 20 dB and 30 dB signal to noise.  Further 

investigation into the algorithm’s behavior for low redundancy transformations is needed to help 

explain this trend.  
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Taking the     results out of the plot provides better insight into the general trend.  This plot is shown 

below. 

 

Figure 26 

Here the number of iterations seems to remain relatively constant over two regions; positive signal to 

noise, and nonpostitive signal to noise.   Furthermore, the trends for each   value seem to be relatively 

similar, the number of iterations remains close to 50 for negative signal to noise, and once the signal to 

noise hits 10 dB the number of iterations jumps to around 350.  This is what is expected given the error 

trends for different signal to noise ratios that was presented earlier in figures (14), (15), and (16). 

The results on the output metrics when varying   are shown on the plots below.  These tests were done 

for         over 1,000 noise realizations. 
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Figure 27 

 

Figure 28 

 

Figure 29 

The trends for each   value follow each other very closely, especially for high signal to noise ratios.  

Once the signal to noise ratio falls to 0 dB and below, a small separation in variance and mean squared 

error is introduced.  The most relative separation is present actually at 0 dB.  This could be because 

reconstruction is difficult enough at 0 dB that the algorithm gets the added benefit of smaller iterative 

steps but not too difficult that the benefit becomes negligible.  

The number of iterations required to complete reconstruction for varied   values is listed in the table 

below. 
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Iterations/Realization (n = 1,000) 

SNR Gamma = .99 Gamma = .95 Gamma = .90 

-30 150.9 43.5 22.4 

-20 160.3 47.1 23.6 

-10 193.7 55.9 29.3 

0 283.4 73.9 44.0 

10 1592.5 340.1 171.5 

20 1584.2 346.1 175.7 

30 1579.1 348.0 173.0 

 

Below is a plot of the results. 

 

Figure 30 

Higher values of   require more iterations from the reconstructive algorithm for convergence.  This is 

supported by the fact that   controls the step size between iterations of the algorithm.  Specifically,   

controls the rate of decay of the regularization parameters   and  .  The faster the decay, the more 

quickly the algorithm can converge to its solution.  What’s notable about the trend in   is the increase in 

iterations required when transitioning from negative signal to noise ratios to positive signal to noise 

ratios.  Moreover, the great disparity in this transition jump between       and          .  While 

there is a jump of nearly 300 iterations between SNR = 0 dB and SNR = 10 dB for      , there is jump 
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of approximately 1300 iterations for      .  Therefore the cost of increase in   becomes very 

significant for positive signal to noise ratios. 

 

Computational Complexity 
The computational complexity of the reconstructive algorithm was studied with respect to input size.  

Running reconstruction 100 consecutive times on various input sizes and timing the results yielded the 

following output: 

n value Total Time (s) # of trials Time/trial (s) 

4000 3514.3 100 35.143 

5000 4892.2 100 48.922 

6000 6364.3 100 63.643 

7000 7669.4 100 76.694 

8000 8775.6 100 87.756 

9000 11364.8 100 113.648 

10000 11934.7 100 119.347 

 

The time per realization results are plotted below. 

 

Figure 31 
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The trend looks virtually linear for large  .  This is expected given the information previously presented.  

From figure (20) it is seen that the algorithm spends approximately     of its in               () 

and                  ().  These functions primarily perform repeated fast Fourier transforms and 

inverse fast Fourier transforms.  The fast Fourier transform has order       ( ), which far large   would 

look similar to the results seen here. 

Given that algorithm spends an overwhelming majority of its time performing fast Fourier transforms, 

there is potential for speedup if the fast Fourier transform can be optimized for time efficiency.  This can 

be done in MATLAB using the Fastest Fourier Transfrom in the West library.  It is called upon using the 

    () command.  When given certain parameters, this command finds the optimal fast Fourier 

transform algorithm to use for the given platform.  Upon the next call to    () MATALB will perform a 

search for the most efficient fast Fourier algorithm and then use that algorithm for all subsequent fast 

Fourier transforms. 

Below is a performance comparison between the original fast Fourier transform and the optimized 

version.  The time to complete 5 million Fourier transforms is shown for several vector lengths in the 

plot below. 

 

Figure 32 

There trend suggests that on average there is a constant proportional increase in performance for all 

vector lengths.  A chart of the relative speedups at each vector length is shown below. 
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3000 1.24 

4000 1.40 

5000 1.14 

6000 1.28 

7000 1.19 

8000 1.33 

9000 1.34 

10000 1.13 

 

When implementing     () in the reconstructive algorithm, the goal is to achieve speedups 

comparable to what is seen here.  Upon the first implementation of     () in the reconstructive 

algorithm, there was no noticeable speedup.  This was due to the fact that each fast Fourier transform 

was being called within a separate parallel thread while the initial call to     () was made in the 

original workspace.  Thus, the individual threads did not recognize any call to     (). 

After adjusting the program to make individual calls to     () for each parallel thread, a marginal 

speedup was observed.  Running the reconstructive algorithm on a signal of length of 10,000 yielded a 

speedup of 1.025 when implementing     ().  This does not match up to the speedups seen in figure 

(32).  This could still be due to parallelization.  The speedups seen in figure (32) were for    () calls 

when all system resources were available.  When running the reconstructive algorithm, all calls to    () 

are made in parallel, thus only the resources of that particular node are available.  This could affect the 

potential speedup of     (), though more investigation is needed. 
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Timeline 
 

October 
 Post-processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least squares 

algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – April 15 
 Test on synthetic databases 

 Extract metrics 

April 15 – end of 

semester 
 Write final report 
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Deliverables 
The project produced several deliverables.  They are listed below: 

 Proposal presentation 

 Written proposal 

 Midterm presentation 

 Midterm report 

 Final presentation 

 Final report 

 MATLAB code 

 Input data 

 Output data 

 Output plots 
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