

AMSC 663/664 Project Proposal

Memory Efficient Signal
Reconstruction from
Phaseless Coefficients
of a Linear Mapping
Naveed Haghani
nhaghan1@math.umd.edu

Project Advisor:
Dr. Radu Balan
rvbalan@cscamm.umd.edu
Professor of Applied Mathematics, University of Maryland
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling
Norbert Weiner Center

1

Table of Contents
Introduction .. 2

Background ... 2

Problem Setup .. 2

Transformation ... 4

Algorithm .. 4

Initialization... 4

Iteration .. 5

Implementation .. 6

Data Creation .. 6

Principal Eigenvalue (Initialization) ... 7

Conjugate Gradient (Iteration) ... 7

Coding ... 8

Testing ... 9

Validation .. 9

Timeline .. 10

Deliverables ... 11

References .. 11

2

Introduction

Background
A recurring problem in signal processing involves signal reconstruction using the magnitudes of the

coefficients of a linear transformation. This problem has applications in the fields of speech processing

and x-ray crystallography. In speech processing, it is common to work with a speech signal’s

spectrogram. Working with the spectrogram provides the ability to perform various audio

manipulations. The challenge then becomes to retrieve a processed signal’s discrete-time signal, as the

spectrogram does not carry any phase information with regards to the signal. In x-ray crystallography,

the diffraction pattern of an x-ray beam will deliver the magnitudes of a transformed signal of electron

density levels. Obtaining the desired electron density information requires the phaseless retrieval of the

original signal.

The project proposed in this paper will implement and test an iterative, recursive least squares

algorithm described in Balan[5] to perform phaseless reconstruction from the magnitudes of the

coefficients of a linear transformation. Testing will be done on synthetically generated input data

created using random number generation. A random input vector will be generated and passed through

a transformation algorithm. The transformed signal will then be passed to the iterative, recursive least

squares algorithm to reconstruct the original signal. Following that, post processing will be done on the

results.

The implementation will be programmed in MATLAB. The implementation will be designed to prioritize

memory efficiency. Memory efficiency, in this regard, applies primarily to the storage of the resulting

linear system involved in reconstruction. The linear system will be on the order of .

Avoiding the costly storage of this system and deriving its contents when needed will be the primary

focus during implementation of the algorithm. Following the algorithm’s completion, the program’s

performance will be studied with regards to time efficiency, accuracy, and scalability with problem size.

Problem Setup

Given an n-dimensional complex signal, , that has been passed through a linear transformation,

 (), the objective is to is to reconstruct from the element by element modulus of the transformation

vector. The transformation vector will be labeled

 ()

[

]

 (1)

The transformed signal lies in the dimensional complex space, where . here represents

the level of redundancy within the transformation ().

3

The element by element modulus of is represented by :

[

| |

| |

| |]

 (2)

 has been transformed into the real space to produce . Since it lies in the real space, doesn’t carry

any phase information of the original signal, fitting the criterion for phaseless reconstruction.

The resulting vector will be passed into the iterative, recursive least square algorithm, but not before

adding a variable amount of Gaussian noise. The resulting input to the algorithm is labeled and is

defined by:

 (3)

Where is Gaussian noise and is a weight factor used to achieve a desired signal to noise ratio for

testing. is the vector of transformation magnitudes with simulated noise. The iterative, recursive

least squares algorithm will use the input to produce an approximation of , labeled ̂. The entire

process works as follows:

Transformation

Element by Element

Modulus

Additive Noise

Iterative, recursive

least squares

algorithm

 ̂

4

After ̂ is obtained, the estimation is passed into a post processing framework to study certain output

characteristics, namely certain trends with regards to varying signal to noise ratios in .

Transformation
The transformation that will be used in the implementation is a weighted discrete Fourier transform.

First each element of is multiplied by a complex weight, . Then the discrete Fourier transform is

taken on the resulting vector. This is repeated times, each time with an independent set of weights.

{

[

()

()

]

[

]

}

 (4)

The resulting transformation output is a composite of each of the transformations, making lie

in the complex dimensional space.

[

]

 (5)

For the sake of this study, will be set to 8.

After is obtained from the weighted discrete fourier transform, is obtained by taking the modulus

squared of each element of . Finally, Gaussian noise is added to to produce , the input to the

iterative, recursive least squares algorithm.

Algorithm
The reconstructive algorithm to be implemented has been introduced and described in Balan[5]. It

consists of two primary processes, the initialization and the iterative solver. The algorithm serves as a

least squares solver that is designed to minimize ‖ ̂‖ , where ̂ is the value in equation (2)

obtained from inputting the current estimation, ̂, into the preprocessing transformation.

Initialization
Initialization starts with finding the principal eigenvalue, , and its associated eigenvector, , of a

matrix defined by:

 ∑

 (6)

5

Where is the kth frame vector from the transformation (). For the weighted discrete Fourier

transform is defined by:

√

[

()

()

()

 ()]

 (

) (7)

Before the principal eigenpair is retrieved, the following modification is performed on :

 (8)
 ‖ ‖

This modification ensures that is positive definite, subsequently ensuring that and that the

power method for finding the principal eigenvector will converge.

Once this eigenpair is discovered the first estimation, ̂(), can be initialized as:

 ̂() √
()

∑ |⟨ ⟩|

 (9)

Two additional parameters, and , are initialized as:

 (10)

 After initialization, the algorithm moves on to the iterative process.

w

Iteration
Through each pass of the iterative process a linear system is solved to obtain a new approximation ̂.

The linear system is constructed in the real space. Instead of working with ̂, the algorithm works with

 [
 (̂)
 (̂)

], the composite of the real values of ̂ and the imaginary values of ̂. The linear system

which is symmetric and positive definite is defined as:

 ()

 ∑(

()) (
())

 ()

(11)

6

 (∑

)

 [
 ()

 ()
] [

]

(12)

(13)

 () is the composite of the real and imaginary components of the current approximation ̂(), and

 () is the composite of the real and imaginary components of the next approximation ̂().

Following that, the parameters are updated for the following iteration:

(14)

 (
)

(15)

 (16)

This process is repeated until the following stopping criterion is met:

∑ | |⟨ () ⟩|

|

 (17)

This stopping criterion is essentially checking whether ‖ ̂‖ is below a given tolerance.

Implementation

Data Creation

The complex input vector will be generated synthetically using random number generation. Each

element of x will consist of a randomly generated normal component and a randomly generated

imaginary component. Both random numbers will be distributed normally about 0 with variance 1. ,

which is the vector length of , will be on the order of 10,000. 10 different realizations of will be

generated and saved for repeated use.

The weights used in the weighted transformation will also be synthetically generated using random

number generation. Each element of will have a random normal component and a random imaginary

component, each distributed normally about 0 with variance 1. There will be 10 different realizations of

each set ().

The noise, , added to to produce will be generated randomly as well. Each element will be

distributed normally about 0 with variance 1. There will be 10,000 different realization of noise, .

7

Principal Eigenvalue (Initialization)
During the initialization stage of the iterative, recursive least squares algorithm, the principal eigenvalue

of a matrix must be calculated. To achieve this, the power method for obtaining the principal

eigenvalue will be used. The power method starts with an initial approximation of the associated

eigenvector, () For the purposes of this implementation, () will be set to an array of random

numbers. Each element will be distributed normally about 0 with variance 1.

From () the algorithm will repeat as follows:

 ()
 ()

‖ ()‖

 () ()

 ‖ () ()‖

With the selection of an appropriate tolerance, this algorithm should produce an adequate

approximation for the principal eigenvalue and its associated eigenvector that is used during the

initialization stage of the least squares algorithm.

Conjugate Gradient (Iteration)
Through each iteration of the iterative, recursive least squares algorithm, a linear system must

be solved. This would be cumbersome to solve exactly and would jeopardize the priority of memory

efficiency. Instead, the conjugate gradient method of solving linear systems will be used. The conjugate

gradient method is an iterative method for solving symmetric, positive definite linear systems.

The conjugate gradient method works by taking the residual of an approximate solution to a linear

system and reducing it by moving the solution along several different conjugate directions. Two vectors

 and are considered to be conjugate with respect to a linear system if they satisfy the following

condition:

For a given matrix in , there are always linearly independent conjugate directions. Traveling along

all directions produces the exact solution to the system. However, if during that time the iterations

converge to within a given tolerance of the solution, the process can be concluded at that time with a

sufficient approximation.

The algorithm will be initialized as follows:

 () ̂()

 () ()

8

Where ̂() is the approximate solution at the kth iteration, () is the residual at the kth iteration, and

 () is the kth conjugate direction.

Each iteration repeats as follows:

⟨ () ()⟩

 () ()

 ̂() ̂() ()

 () () ()

 () () ()
⟨ () ()⟩

⟨ () ()⟩

 ‖ ()‖

In each iteration, the solution moves along the conjugate direction () a distance . The iterations are

repeated until the magnitude of the residual of the current approximation is less than a given tolerance.

Coding
The entire algorithm from preprocessing through post processing will be implemented in MATLAB. The

iterative, recursive least squares algorithm will be programmed to run in parallel on different input

vectors. This will increase the time efficiency of the program as it runs over multiple input data sets.

To implement the discrete Fourier transform, MATLAB’s () function will be used. () implements

a fast Fourier transform. Random numbers will primarily be generated using MATLAB’s ()

command. For generating the random noise variants however, a linear congruential generator will be

implemented. The linear congruential generator works as follows:

 ()()

Here is the modulus, is the multiplier, is the increment, and is the seed. For a given integer ,

the associated random number would equal:

Using a linear congruential generator has the advantage that if the same seed is used in different testing

implementations, then the same exact sequence of random numbers would be produced in each case.

Since there will be 10,000 different realizations of noise vectors, it will be beneficial to generate them

each time the program runs, rather than saving and loading each realization.

9

To preserve memory efficiency, implementing the iterative, recursive least squares algorithm will be

done without storing the entire linear system. This is made possible by the use of the

conjugate gradient solver. Whenever a specific vector of the matrix is needed for computation, that

vector will be computed and delivered on the spot. It will still be necessary to store various vectors of

length or , but as long as the storage remains on that order then the desired storage goals will be

preserved.

Testing
There will be 10 different sets of input data, each of which can be passed through 10 different uniquely

weighted transformations to produce a unique . The vector is generated by adding noise to . The

noise vector can be weighted by to produce a desired signal to noise ratio in .

The goal in testing will be to test each input on a multiple of signal to noise ratio levels ranging from -30

decibels to 30 decibels, in 5 decibel increments. The appropriate signal to noise ratio will be set by

adjusting in the following equation:

 [

∑ | |

 ∑ | |

] (18)

Given a certain transformed input, there are 10,000 different noise variations that can be used to for

each signal to noise ratio level. This will produce 10,000 output samples for a specific input at a given

signal to noise ratio level. From this data, the mean squared error of the output can be studied in

relation to the signal to noise ratio. As well, the bias of the mean of the output and the variance of the

output can be studied against the signal to noise ratio.

Validation
Validation for the iterative, recursive least squares implementation can be done on the individual

modules within the algorithm, including the power method implementation and the conjugate gradient

implementation. Using a smaller sample data set with on the order of 100 rather than 10,000, the

power method can be substituted with MATLAB’s () function. () will reliably deliver the principal

eigenvalue that was sought after by the power method implementation. The power method

implementation can then be run on the same sample data in order to compare the results. If the results

are comparable, the power method module will be validated.

A similar procedure can be done for the conjugate gradient implementation. On a small data set with

on the order of 100, the conjugate gradient module can be substituted with MATLAB’s ().

 () will provide the exact solution to the linear system. This exact solution can be used to

compare with the results obtained using the conjugate gradient implementation. Comparable results

would provide validation. The conjugate gradient implementation can be further validated on large data

sets as well. This is done by letting the conjugate gradient run through all possible iterations. For a

10

system of size , the conjugate gradient method ensures absolute convergence to the true solution

in steps. Rather than returning a result within a certain tolerance, the implementation can be made to

run through all iterations regardless. The result will serve as the true solution to validate against.

Timeline

October
 Post processing framework

 Database generation

November
 MATLAB implementation of iterative recursive least squares

algorithm

December Validate modules written so far

February
 Implement power method

 Implement conjugate gradient

By March 15 Validate power method and conjugate gradient

March 15 – April 15
 Test on synthetic databases

 Extract metrics

April 15 – end of

semester
 Write final report

11

Deliverables
The project will produce several deliverables. They are listed below:

 Proposal presentation

 Written proposal

 Midterm presentation

 Final presentation

 Final report

 MATLAB program

 Input data

 Output data

 Output charts and graphs

References
[1] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical linear algebra. Springer, 2008.

[2] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference,

Princeton, NJ, May 2010.

[3] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase,

Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

[4] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.

[5] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex

case. 2013.

[6] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."Frames and Bases.

Birkhäuser Boston, 2008. 1-32.

[7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the

agonizing pain." (1994).

