Memory Efficient Signal Reconstruction from Phaseless Coefficients of a Linear Mapping

Naveed Haghani
nhaghan1@math.umd.edu
Project Advisor:
Dr. Radu Balan
rvbalan@cscamm.umd.edu
Professor of Applied Mathematics, University of Maryland
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling
Norbert Weiner Center

Problem

Original Signal

Transformation
$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{C}^{n} \longrightarrow$ Transformation $\longrightarrow c=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ \vdots \\ c_{m}\end{array}\right] \in \mathbb{C}^{m}$

Transformation Magnitudes
Original Signal Approximation

$$
\alpha=\left[\begin{array}{c}
\left|c_{1}\right|^{2} \\
\left|c_{2}\right|^{2} \\
\vdots \\
\vdots \\
\left|c_{m}\right|^{2}
\end{array}\right] \in \mathbb{R}^{m} \longrightarrow \hat{x}=\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{2} \\
\vdots \\
\text { Reconstruct } \\
\vdots \\
\hat{x}_{n}
\end{array}\right] \in \mathbb{C}^{n}
$$

Application: Audio Processing

- Employs the use of an audio signals spectrogram
- Spectrogram- time-frequency representation of an audio signal
$>$ Useful in the processing and manipulation of audio signals
$>$ Does not carry phase information
- Would like to recover an audio signal after processing its spectrogram

Example Spectrogram

C:MyRecording.caf

spek 0.8.2
PCM signed 16 -bit big-endian, $256 \mathrm{kbps}, 16000 \mathrm{~Hz}$, 1 channel

created using spek 0.8.2

Transformation $c=T(x)$

- Weighted Discrete Fourier Transform

$$
\begin{aligned}
& B_{j}=\text { Discrete Fourier Transform }\left\{\left[\begin{array}{ccc}
w_{1}^{(j)} & 0 \\
& \ddots & \\
0 & w_{n}^{(j)}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]\right\} \\
& \text { for } 1 \leq j \leq R \text { randomly generated arrays of complex weights }\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
\vdots \\
w_{n}
\end{array}\right] \\
& \qquad c=T(x)=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
B_{R}
\end{array}\right]
\end{aligned}
$$

Approach

$$
y=\alpha+\sigma \cdot v, \quad \sigma \cdot v: \text { noise }
$$

Transform + Modulus

Algorithm

Algorithm Initialization

$$
Q=\sum_{k=1}^{m} y_{k} f_{k} f_{k}^{*}
$$

[4]
f_{k} is kth frame vector from transformation $\mathrm{T}(\mathrm{x})$
$\begin{gathered}\begin{array}{c}\text { Discrete } \\ \text { Fourier } \\ \text { Transform }\end{array} \\ \text { For the }\end{gathered} \Longrightarrow f_{k}=\frac{1}{\sqrt{R \cdot n}}\left[\begin{array}{c}w_{1}^{(j)} \cdot 1 \\ w_{2}^{(j)} e^{-i 2 \pi j \cdot 1 / n} \\ \vdots \\ \vdots \\ w_{n}^{(j)} e^{-i 2 \pi j \cdot n / n}\end{array}\right]$

$$
\text { where } j=\operatorname{ceiling}\left(\frac{k}{R}\right)
$$

Algorithm Initialization (cont.)

- Find Principal Eigenvector of $Q^{+}=Q+q \cdot I$
$>I$ is identity matrix
$>q=\|y\|_{\infty}$ a positive constant to ensure positivedefiniteness of Q
- Use Power Iteration Method
- Initialize $e_{k}^{(0)} \sim N(0,1)$, for $k=[1, n]$
$>$ Repeat:
- $e^{(t+1)}=\frac{Q^{+} \cdot e^{(t)}}{\left\|Q^{+} \cdot e^{(t)}\right\|}$
- If $\left\|e^{(t+1)}-e^{(t)}\right\|<$ tolerance, end repeat

Algorithm Initialization (cont.)

$$
\begin{equation*}
\hat{x}^{(0)}=e \sqrt{\frac{(1-\rho) \cdot a}{\sum_{k=1}^{m}\left|\left\langle e, f_{k}\right\rangle\right|^{4}}} \tag{4}
\end{equation*}
$$

e : principal eigenvector of Q^{+}
a: associated eigenvalue
ρ : constant between $(0,1)$

$$
\mu_{0}=\lambda_{0}=\rho \cdot a
$$

[4]

Algorithm Iteration

- Work in Real space
$>\xi=\left[\begin{array}{c}\operatorname{real}(\hat{x}) \\ \operatorname{imag}(\hat{x})\end{array}\right]$
- Solve linear system $A \xi^{(t+1)}=b$, where

$$
\begin{align*}
& A=\sum_{k=1}^{m}\left(\Phi_{k} \xi^{(t)}\right) \cdot\left(\Phi_{k} \xi^{(t)}\right)^{*}+\left(\lambda_{t}+\mu_{t}\right) \cdot 1 \\
& b=\left(\sum_{k=1}^{m} y_{k} \Phi_{k}+\mu_{t} 1\right) \cdot \xi^{t} \tag{4}
\end{align*}
$$

$$
\Phi_{k}=\phi_{k} \phi_{k}^{T}+J \phi_{k} \phi_{k}^{T} \mathrm{~J}^{\mathrm{T}}, \text { where } \phi_{k}=\left[\begin{array}{c}
\operatorname{real}\left(f_{k}\right) \\
\operatorname{imag}\left(f_{k}\right)
\end{array}\right] \text { and } \mathrm{J}=\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]
$$

$\xi^{(t+1)}=$ next approximation

Algorithm Iteration (cont.)

- Update λ, μ

$$
\lambda_{t+1}=\gamma \lambda_{t+1}, \quad \mu_{t+1}=\max \left(\gamma \mu_{t}, \mu^{\min }\right), \quad \text { where } 0<\gamma<1
$$

- Stopping criterion

$$
\begin{equation*}
\sum_{k=1}^{m}\left|y_{k}-\left|\left\langle x^{(t)}, f_{k}\right\rangle\right|^{2}\right|^{2} \leq \kappa m \sigma^{2}, \text { where } \kappa \text { is a constant }>1 \tag{4}
\end{equation*}
$$

Conjugate Gradient

- Iterative solver for linear systems that are symmetric and positive definite
- Travel towards solution along mutually conjugate directions
$>$ Vectors p^{1} and p^{2} are conjugate if $p^{1^{T}} A p^{2}=0$
- For a matrix in \mathbb{R}^{n} there are n different conjugate directions, forming a complete basis
- Traveling along each of the n directions should converge to the true solution

Conjugate Gradient

$$
r^{(k)}=b-A \hat{x}^{(k)}
$$

$r^{(k)}$: residual at kth iteration
$\hat{x}^{(k)}$: approximate solution at $\mathrm{k}^{\text {th }}$ iteration
$p^{(0)}=r^{(0)}$
Repeat until $\left\|r^{(k)}\right\|^{2}<$ tolerance

$$
\begin{aligned}
& \alpha=\frac{\left\langle r^{(k)}, r^{(k)}\right\rangle}{p^{(k)^{T}} A p^{(k)}} \\
& \hat{x}^{(k+1)}=\hat{x}^{(k)}+\alpha p^{(k)} \\
& r^{(k+1)}=r^{(k)}-\alpha A p^{(k)} \\
& p^{(k+1)}=r^{(k+1)}+p^{(k)} \frac{\left\langle r^{(k+1)}, r^{(k+1)}\right\rangle}{\left\langle r^{(k)}, r^{(k)}\right\rangle}
\end{aligned}
$$

Implementation

- MATLAB
$>$ Will use $f f($ () function for Fourier Transform
- As memory efficient as possible
$>$ Avoid allocating memory for entire linear system
- Linear system is $2 \mathrm{n} \times 2 \mathrm{n}$
- n is large
- Compute each vector component as it is needed

Data Construction

- Input data synthetically generated
- $n \sim 10,000, R=8, m=R \cdot n$
- 10 realizations of signal sample x

$$
>x_{k} \sim N(0,1)+i N(0,1), \text { for } k[1, n]
$$

- 10 realizations of $w^{(1: R)}$
$>w_{k}^{(j)} \sim N(0,1)+i N(0,1)$, for $k[1, n], j[1 R]$
- 10,000 realizations of noise v
$>v_{k} \sim N(0,1)$, for $k[1, m]$

Testing

- $y=\alpha+\sigma \cdot v$
- For each ν, vary σ to achieve desired SNR
- SNR [-30 dB, 30 dB] increments of 5

$$
>S N R_{d B}=10 \cdot \log _{10}\left[\frac{\sum_{k=1}^{m}\left|c_{k}\right|^{2}}{\sigma^{2} \sum_{k=1}^{m}\left|v_{k}\right|^{2}}\right]
$$

- Obtain 10,000 output values for each input y at each SNR

Post Processing

- For each SNR level of each input, calculate
$>$ mean (\hat{x})
$>$ Variance (\hat{x})
$>\operatorname{MSE}(\hat{x})$
- Study trend of each output vs SNR level

Metrics

- Memory usage
- Scaling of numerical complexity with problem size
- Time efficiency of algorithm
- Accuracy vs SNR

Validation

- Power Iteration
$>$ Validate using Matlab's eigenvalue solver, eig()
- Conjugate Gradient
- Validate on small sample input using exact solution from decomposition (Matlab's mldivide())
$>$ Compare output with conjugate gradient's complete convergence
- Validate complete system by proximity to true solution

Schedule

October	- Post processing framework - Database generation
November	- MATLAB implementation of iterative recursive least squares algorithm
December	- Validate modules written so far
February	- Implement power iteration method - Implement conjugate gradient
By March 15	- Validate power iteration and conjugate gradient
March 15 April 15	- Test on synthetic databases - Extract metrics
April 15 end of semester	- Write final report

Deliverables

- Presentations
- Proposal
- Final Report
- Program
- Input data
- Output data
- Output charts and graphs

References

[1] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference, Princeton, NJ, May 2010.
[2] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345356.
[3] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.
[4] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex case. 2013.
[5] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."Frames and Bases. Birkhäuser Boston, 2008. 1-32.
[6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical linear algebra. Springer, 2008.
[7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain." (1994).

