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Application: Audio Processing 

 Employs the use of an audio signals 

spectrogram 

 Spectrogram- time-frequency representation of 

an audio signal 

Useful in the processing and manipulation of audio 

signals 

Does not carry phase information 

 Would like to recover an audio signal after 

processing its spectrogram 



Example Spectrogram 

created using spek 0.8.2 



Transformation 𝑐 = 𝑇 𝑥  

 Weighted Discrete Fourier Transform 

 
𝐵𝑗 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
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Approach 

Algorithm 

𝑦 𝜖 ℝ𝑚 𝑥  𝜖 ℂ𝑛 

Transform 

+ 

Element by element 

modulus 

x 𝜖 ℂ𝑛 𝛼 𝜖 ℝ𝑚 

𝑦 = 𝛼 + σ ⋅ ν, σ ⋅ ν: 𝑛𝑜𝑖𝑠𝑒 
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Algorithm Initialization 
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𝑓𝑘  is kth frame vector from transformation T(x) 
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Algorithm Initialization (cont.) 

 Find Principal Eigenvector of 𝑄+ = 𝑄 + 𝑞 ⋅ 𝐼 
𝐼 is identity matrix 

𝑞 = 𝑦 ∞ a positive constant to ensure positive-
definiteness of 𝑄 

 Use Power Iteration Method 

– Initialize 𝑒𝑘
(0)

~𝑁 0,1 , 𝑓𝑜𝑟 𝑘 = 1, 𝑛  

Repeat: 

• 𝑒(𝑡+1) = 𝑄+⋅𝑒(𝑡)

𝑄+⋅𝑒(𝑡)
 

• If 𝑒(𝑡+1) − 𝑒(𝑡) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, end repeat 

 
 

 



Algorithm Initialization (cont.) 

𝑥 (0) = 𝑒
1 − 𝜌 ⋅ 𝑎

 𝑒, 𝑓𝑘
4𝑚

𝑘=1

 

𝑒: 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑄+  

𝑎: 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  

𝜌: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0, 1   

[4] 

𝜇0 = 𝜆0 = 𝜌 ⋅ 𝑎 
[4] 



Algorithm Iteration 

𝐴 =  (Φ𝑘𝜉
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𝜉(𝑡+1) = next approximation 

 Work in Real space 
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 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where 
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Algorithm Iteration (cont.) 

 Update 𝜆, 𝜇 

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡 , 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1  

 Stopping criterion 

 𝑦𝑘 − 𝑥(𝑡), 𝑓𝑘
2 2

≤  𝜅𝑚𝜎2, 𝑤ℎ𝑒𝑟𝑒 𝜅 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 1

𝑚

𝑘=1
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Conjugate Gradient 

 Iterative solver for linear systems that are 
symmetric and positive definite 

 Travel towards solution along mutually 
conjugate directions 

Vectors 𝑝1𝑎𝑛𝑑 𝑝2 are conjugate if 𝑝1𝑇
𝐴𝑝2 = 0 

 For a matrix in ℝ𝑛 there are 𝑛 different 
conjugate directions, forming a complete basis 

 Traveling along each of the 𝑛 directions should 
converge to the true solution 



Conjugate Gradient 

𝑟(𝑘) = 𝑏 − 𝐴𝑥 (𝑘) 

𝑟(𝑘) ∶ residual at kth iteration 

𝑥 (𝑘) ∶ approximate solution at kth iteration 

𝑝(0) = 𝑟(0)  

𝑝(𝑘+1) =  𝑟(𝑘+1) + 𝑝(𝑘)
𝑟(𝑘+1), 𝑟(𝑘+1)

𝑟(𝑘), 𝑟(𝑘)
 

𝛼 =  
𝑟(𝑘), 𝑟(𝑘)

𝑝(𝑘)𝑇𝐴𝑝(𝑘)
 

𝑟(𝑘+1) =  𝑟(𝑘) − 𝛼𝐴𝑝(𝑘) 

Repeat until 𝑟(𝑘) 2
< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

𝑥 𝑘+1 = 𝑥 𝑘 + 𝛼𝑝 𝑘  



Implementation 

 MATLAB 

Will use fft() function for Fourier Transform 

 

 As memory efficient as possible 

Avoid allocating memory for entire linear system 

• Linear system is 2n x 2n 

• n is large 

• Compute each vector component as it is needed 

 



Data Construction 

 Input data synthetically generated 

 𝑛~10,000, 𝑅 = 8,𝑚 = 𝑅 ⋅ 𝑛 

 10 realizations of signal sample 𝑥 

𝑥𝑘~𝑁 0,1 + 𝑖𝑁 0,1 , 𝑓𝑜𝑟 𝑘 [1, 𝑛] 

 10 realizations of 𝑤(1:𝑅) 

𝑤𝑘
𝑗
~𝑁 0,1 + 𝑖𝑁 0,1 , 𝑓𝑜𝑟 𝑘 1, 𝑛 , 𝑗 [1 𝑅] 

 10,000 realizations of noise ν 

ν 𝑘~𝑁 0,1 , 𝑓𝑜𝑟 𝑘 [1,𝑚] 

 



Testing 

 𝑦 = 𝛼 + σ ⋅ ν 

 For each ν, vary 𝜎 to achieve desired SNR 

 SNR [-30 dB, 30 dB] increments of 5 

𝑆𝑁𝑅𝑑𝐵 = 10 ⋅ log10
 𝑐𝑘

2𝑚
𝑘=1

𝜎2  𝜈𝑘
2𝑚

𝑘=1
 

 Obtain 10,000 output values for each input y at 

each SNR 



Post Processing 

 For each SNR level of each input, calculate 

mean(𝑥 ) 

Variance(𝑥 ) 

MSE(𝑥 ) 

 Study trend of each output vs SNR level 



Metrics 

 Memory usage 

 Scaling of numerical complexity with problem 

size 

 Time efficiency of algorithm 

 Accuracy vs SNR 



Validation 

 Power Iteration 

Validate using Matlab’s eigenvalue solver, eig() 

 Conjugate Gradient 

Validate on small sample input using exact 

solution from decomposition (Matlab’s mldivide()) 

Compare output with conjugate gradient’s 

complete convergence 

 Validate complete system by proximity to true 

solution 



Schedule 

October 
 Post processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least squares 

algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – 

April 15 

 Test on synthetic databases 

 Extract metrics 

April 15 – 

end of 

semester 

 Write final report 



Deliverables 

 Presentations 

 Proposal 

 Final Report 

 Program 

 Input data 

 Output data 

 Output charts and graphs 
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