Memory Efficient Signal Reconstruction from Phaseless Coefficients of a Linear Mapping

Naveed Haghani nhaghan1@math.umd.edu

Project Advisor: Dr. Radu Balan rvbalan@cscamm.umd.edu Professor of Applied Mathematics, University of Maryland Department of Mathematics Center for Scientific Computation and Mathematical Modeling Norbert Weiner Center

Problem

Transformation Magnitudes

Original Signal Approximation

Application: Audio Processing

- Employs the use of an audio signals spectrogram
- Spectrogram- time-frequency representation of an audio signal
 - Useful in the processing and manipulation of audio signals
 - Does not carry phase information
- Would like to recover an audio signal after processing its spectrogram

Example Spectrogram

C:\MyRecording.caf

spek 0.8.2

PCM signed 16-bit big-endian, 256 kbps, 16000 Hz, 1 channel

created using spek 0.8.2

Transformation c = T(x)

Weighted Discrete Fourier Transform

 $B_j = Discrete Fourier Transform$

$$\left\{ \begin{bmatrix} w_1^{(j)} & 0 \\ \ddots \\ 0 & w_n^{(j)} \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \right\}$$

 w_1^{-} w_2^{-} \vdots \vdots

for $1 \le j \le R$ randomly generated arrays of complex weights

 $c = T(x) = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ \vdots \\ B_R \end{bmatrix}$

Approach

 $y = \alpha + \sigma \cdot \nu$, $\sigma \cdot \nu$: noise

Algorithm Initialization

$$Q = \sum_{k=1}^{m} y_k f_k f_k^*$$
^[4]

 f_k is kth frame vector from transformation T(x)

For the
Discrete
$$\implies f_k = \frac{1}{\sqrt{R \cdot n}} \begin{bmatrix} w_1^{(j)} \cdot 1 \\ w_2^{(j)} e^{-i2\pi j \cdot 1/n} \\ \vdots \\ w_n^{(j)} e^{-i2\pi j \cdot n/n} \end{bmatrix}$$
 where $j = ceiling\left(\frac{k}{R}\right)$

Algorithm Initialization (cont.)

- Find Principal Eigenvector of Q⁺ = Q + q ⋅ I
 I is identity matrix
 - $> q = ||y||_∞$ a positive constant to ensure positivedefiniteness of Q
- Use Power Iteration Method
 - Initialize $e_k^{(0)} \sim N(0,1)$, for k = [1, n]

≻Repeat:

•
$$e^{(t+1)} = \frac{Q^{+} \cdot e^{(t)}}{\|Q^{+} \cdot e^{(t)}\|}$$

• If $\|e^{(t+1)} - e^{(t)}\| < tolerance$, end repeat

Algorithm Initialization (cont.)

$$\hat{x}^{(0)} = e_{\sqrt{\frac{(1-\rho)\cdot a}{\sum_{k=1}^{m} |\langle e, f_k \rangle|^4}}}$$
^[4]

e: principal eigenvector of Q⁺ a: associated eigenvalue ρ: constant between (0,1)

$$\mu_0 = \lambda_0 = \rho \cdot a_{[4]}$$

Algorithm Iteration

Work in Real space

$$\succ \xi = \begin{bmatrix} real(\hat{x}) \\ imag(\hat{x}) \end{bmatrix}$$

• Solve linear system $A\xi^{(t+1)} = b$, where $A = \sum_{k=1}^{m} (\Phi_k \xi^{(t)}) \cdot (\Phi_k \xi^{(t)})^* + (\lambda_t + \mu_t) \cdot 1_{[4]}$ $b = \left(\sum_{k=1}^{m} y_k \Phi_k + \mu_t 1\right) \cdot \xi^t_{[4]}$ $\Phi_k = \phi_k \phi_k^T + J \phi_k \phi_k^T J^T, \text{ where } \phi_k = \begin{bmatrix} real(f_k) \\ imag(f_k) \end{bmatrix} \text{ and } J = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$

 $\xi^{(t+1)} = \text{next approximation}$

Algorithm Iteration (cont.)

• Update λ, μ

$$\lambda_{t+1} = \gamma \lambda_{t+1}, \qquad \mu_{t+1} = \max(\gamma \mu_t, \mu^{min}), \qquad \text{where } 0 < \gamma < 1$$

Stopping criterion

 $\sum_{k=1}^{m} \left| y_k - \left| \left\langle x^{(t)}, f_k \right\rangle \right|^2 \right|^2 \le \kappa m \sigma^2, \text{ where } \kappa \text{ is a constant} > 1$ ^[4]

Conjugate Gradient

- Iterative solver for linear systems that are symmetric and positive definite
- Travel towards solution along mutually conjugate directions

> Vectors p^1 and p^2 are conjugate if $p^1^T A p^2 = 0$

- For a matrix in Rⁿ there are n different conjugate directions, forming a complete basis
- Traveling along each of the *n* directions should converge to the true solution

Conjugate Gradient

$$r^{(k)} = b - A\hat{x}^{(k)}$$

 $r^{(k)}$: residual at kth iteration

 $\hat{x}^{(k)}$: approximate solution at kth iteration $p^{(0)} = r^{(0)}$

Repeat until $||r^{(k)}||^2 < tolerance$ $\alpha = \frac{\langle r^{(k)}, r^{(k)} \rangle}{p^{(k)^T} A p^{(k)}}$ $\hat{x}^{(k+1)} = \hat{x}^{(k)} + \alpha p^{(k)}$ $r^{(k+1)} = r^{(k)} - \alpha A p^{(k)}$ $p^{(k+1)} = r^{(k+1)} + p^{(k)} \frac{\langle r^{(k+1)}, r^{(k+1)} \rangle}{\langle r^{(k)}, r^{(k)} \rangle}$

Implementation

MATLAB

>Will use *fft()* function for Fourier Transform

- As memory efficient as possible
 Avoid allocating memory for entire linear system
 - Linear system is 2n x 2n
 - n is large
 - Compute each vector component as it is needed

Data Construction

- Input data synthetically generated
- $n \sim 10,000, R = 8, m = R \cdot n$
- 10 realizations of signal sample x $\gg x_k \sim N(0,1) + iN(0,1), for k [1,n]$
- 10 realizations of $w^{(1:R)}$ $\gg w_k^{(j)} \sim N(0,1) + iN(0,1), for k [1,n], j [1 R]$
- 10,000 realizations of noise v $\gg v_k \sim N(0,1)$, for k [1,m]

Testing

- $y = \alpha + \sigma \cdot v$
- For each v, vary σ to achieve desired SNR
- SNR [-30 dB, 30 dB] increments of 5

$$\succ SNR_{dB} = 10 \cdot \log_{10} \left[\frac{\sum_{k=1}^{m} |c_k|^2}{\sigma^2 \sum_{k=1}^{m} |v_k|^2} \right]$$

Obtain 10,000 output values for each input y at each SNR

Post Processing

- For each SNR level of each input, calculate
 > mean(x̂)
 > Variance(x̂)
 > MSE(x̂)
- Study trend of each output vs SNR level

Metrics

- Memory usage
- Scaling of numerical complexity with problem size
- Time efficiency of algorithm
- Accuracy vs SNR

Validation

- Power Iteration
 - ≻ Validate using Matlab's eigenvalue solver, *eig()*
- Conjugate Gradient
 - Validate on small sample input using exact solution from decomposition (Matlab's *mldivide()*)
 - Compare output with conjugate gradient's complete convergence
- Validate complete system by proximity to true solution

<u>Schedule</u>

October	Post processing frameworkDatabase generation
November	 MATLAB implementation of iterative recursive least squares algorithm
December	 Validate modules written so far
February	Implement power iteration methodImplement conjugate gradient
By March 15	 Validate power iteration and conjugate gradient
March 15 – April 15	Test on synthetic databasesExtract metrics
April 15 – end of semester	 Write final report

Deliverables

- Presentations
- Proposal
- Final Report
- Program
- Input data
- Output data
- Output charts and graphs

<u>References</u>

- [1] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference, Princeton, NJ, May 2010.
- [2] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.
- [3] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.
- [4] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex case. 2013.
- [5] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."*Frames and Bases*. Birkhäuser Boston, 2008. 1-32.
- [6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. *Numerical linear algebra*. Springer, 2008.
- [7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain." (1994).