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Transformation T(x) = ¢

= Redundant linear transformation
= Maps vector in C" to C™
—m=R-n
— R Is redundancy of the Transformation T (x)

= Defined by m vectors in C™ labeled f;.,,, such
that:

T(x)=c=]|: andciz (X,ﬁ)




Transformation T(x) = ¢

= \Weighted Discrete Fourier Transform

wd
B; = Discrete Fourier Transform s i -

for 1 <j < Rrandomly generated arrays of complex weights

T(x)=c=

0 WT(lj)
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Transformation T(x) = ¢

(X, f1)
T(x) = (x, f2)
(X, fm)
For the weighted DFT f;, Is defined as:
( I Wl(j) 11
) Wz(j)e—ian% where j = ceiling (%)
fr = conj < = : . .
: B andrzmod( = )
) _Wéj)e—iZRT-TJ




Algorithm Initialization

m

Q = Z Yicfifk
k=1 [4]

e: principal eigenvector of Q

a: associated eigenvalue of Q
p: constant between (0, 1)

(1-p)-a
\ Zk=alle, fiol* [4]

u0=/10=p-a[4]




Algorithm Iteration

= Work in Real space
¢ =|
= Solve linear system A&(*+1) = b where

A= ;<¢k€<t>> (@EO) + Aebu) 1

m
b:<zyk¢k+ﬂt'1>'€t
k=1

[4]

real(Xx)
imag(X)

]

real(f) and [O —I]
I

D = i + i)’ where ¢y = [imag(fk) g

§(t+1) — pext approximation



Algorithm Iteration (cont.)

= Update A, u

At+1 = VA+1) Uerr = max(ype, p™m), where 0 <y <1 4]

= Stopping criterion

m
z Vie — [(x®, fi)l ‘ < kmo?, where k is a constant < 1 o



Program Goals

= Approximate signal x forn ~ 10,000

= Cannot store f;.,, for large n

= Write a Sample implementation for small n
(~100) that stores Transformation vectors f;..,

= Write Efficient implementation that avoids this
storage

— Uses the transformation and its adjoint to compute
Q- u, A u,and b when needed.




Efficient Implementation

Q- u=T(yxTW)+ lIylle

A-u=
_Re <rT* (real {T(u) * canj{T(x(t))}} * T(x(t))) + A+ p) - u}-

_Im :T* (real {T(u) E conj{T(x(t))}} g T(x(t))) + A+ p)- u}_

b:—Re{ _
{

Im

T* (y K T(x(t))) +u- x(t)}
T (y *+ T(x®)) + - x©}




Adjoint Transformation T*(c)

R

f n: W ' ifft(c(k—l)-n+1-k-n)
= VR - n |
where if ft is the inverse fft



Implementation thus far

v Write sample implementation for small data
sets

v Write memory efficient implementation
avolding the storage of the transformation
matrix.

v'Write Power Method for finding the principal
eigenpair

v Write Conjugate Gradient Method for solving the
linear system.

v Cross-Validate Programs






Preliminary Tests

= \alidation

= Study of iterative solvers
— Power Method
— Conjugate Gradient
= Time efficiency and memory efficiency
= Preliminary Testing Parameters
= Study of iterative solvers
— R =8,SNR,;z = 10dB
— Program comparisons: n = 100
— Other tests: n = 10,000




Validation

= Sample implementation and Efficient
Implementation can be compared for small
problem sizes

= Algorithms produce identical results off by a
phase factor

— Principal eigenvector used in initialization are off
by a constant






lterative Solvers

= Both the Power Method and the Conjugate
Gradient Method require a stopping tolerance

= Required # of Iterations vs stopping tolerance
was Investigated

= n=10,000









Output vs Original Signal

= Qutput, X, of the efficient implementation Is
compared to the original signal

= n = 10,000, SNR;z; = 10 dB

= Magnitude of each element Is plotted.



—+F— true solution
—~ algorithm result




— o algorithm result
— = true solution




Storage Requirements

= Memory use Is important for usability on large
data sets

= Track memory load of stored variables using
MATLAB’s whos() at the end of Recursive LS
Algorithm iteration (n = 100)

= Efficient implementation avoids the storage of
Transformation vectors

— Significantly more memory efficient
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Time Efficiency

= Studying the time consumption of the efficient
Implementation of LS_Algorithm()

= n=10,000
= Stopping tol for PM. and C.G. = 1014
= Power Method takes very long to complete

= Most time Is spent within Trans formation()
and adjTransformation()




Function Name Total Time Self Time* Total Time Plot
(dark band = self time)

LS_Algorithm 181.935s | 0.377s

94.735 s 5717 s

89.018 s 4378 s

86.267 s 2.215s

82.393 s 7.321s

82.302 s 82.302 s

79.932 s 79.532 s

1.659 s 0.093 s




Time Consumption by Function

Transformation
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Schedule

= Post processing framework

Qe | Database generation
v" MATLAB implementation of iterative recursive least
November :
squares algorithm
December | v Validate modules written so far
v Implement power iteration method
February : :
v Implement conjugate gradient
By March 15| v* Validate power iteration and conjugate gradient
March 15— | = Test on synthetic databases
April 15 | = Extract metrics
April 15 —
end of = Write final report

semester
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