
Memory Efficient Signal 

Reconstruction from Phaseless 

Coefficients of a Linear Mapping 

Naveed Haghani 

nhaghan1@math.umd.edu 

 

Project Advisor: 

Dr. Radu Balan 

rvbalan@cscamm.umd.edu 

Professor of Applied Mathematics, University of Maryland 

Department of Mathematics 

Center for Scientific Computation and Mathematical Modeling 

Norbert Weiner Center 

Midterm Presentation 



Problem Overview 

𝑥 =

𝑥1

𝑥2

⋮
⋮
𝑥𝑛

𝜖 ℂ𝑛 Transformation 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

𝜖 ℂ𝑚 

𝛼 =

𝑐1
2

𝑐2
2

⋮
⋮

𝑐𝑚
2

𝜖 ℝ𝑚 

Transformation Magnitudes 

Original Signal 

Reconstruct 

Original Signal 
𝑥 =

𝑥 1
𝑥 2
⋮
⋮
𝑥 𝑛

𝜖 ℂ𝑛 

Original Signal Approximation 

Transformation 



Reconstructive Algorithm 

𝑥  

𝑦 𝜖 𝑅𝑚 Calculate 

Matrix Q 

Determine 

Principal 

Eigenvector 

Initialize 

Parameters 

Initialization 

Update 

Parameters 

Conjugate 

Gradient 

Solver 

Set Up 

Linear 

System 

Iteration 

Check 

Stopping 

Criterion 



Transformation 𝑇 𝑥 = 𝑐 

 Redundant linear transformation 

 Maps vector in ℂ𝑛 to ℂ𝑚 

– 𝑚 = 𝑅 ⋅ 𝑛 

– 𝑅 is redundancy of the Transformation 𝑇(𝑥) 

 Defined by 𝑚 vectors in ℂ𝑛 labeled 𝑓1:𝑚 such 
that: 

𝑇 𝑥 = 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

 and 𝑐𝑖 = 𝑥, 𝑓𝑖  



Transformation 𝑇 𝑥 = 𝑐 

 Weighted Discrete Fourier Transform 

 
𝐵𝑗 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

𝑤1
(𝑗)

0
⋱

0 𝑤𝑛
(𝑗)

⋅

𝑥1

𝑥2

⋮
⋮
𝑥𝑛

  

𝑇 𝑥 = 𝑐 =
1

𝑅 ⋅ 𝑛
⋅

𝐵1

𝐵2

⋮
⋮

𝐵𝑅

 

𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑅 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑟𝑎𝑦𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑤1

𝑤2

⋮
⋮

𝑤𝑛

 



Transformation 𝑇 𝑥 = 𝑐 

𝑇 𝑥 =  

𝑥, 𝑓1
𝑥, 𝑓2
⋮

𝑥, 𝑓𝑚

 

 

For the weighted DFT 𝑓𝑘 is defined as: 

 𝑓𝑘 = 𝑐𝑜𝑛𝑗
1

𝑅⋅𝑛

𝑤1
𝑗

⋅ 1

𝑤2
𝑗
𝑒−𝑖2𝜋𝑟⋅

1

𝑛

⋮
⋮

𝑤𝑛
𝑗
𝑒−𝑖2𝜋𝑟⋅

𝑛−1

𝑛

 

𝑤ℎ𝑒𝑟𝑒  𝑗 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
𝑘

𝑛
 

𝑎𝑛𝑑 𝑟 = 𝑚𝑜𝑑
𝑘 − 1

𝑛
 



Algorithm Initialization 

𝑄 =  𝑦𝑘𝑓𝑘𝑓𝑘
∗

𝑚

𝑘=1

 

[4] 

𝑥 (0) = 𝑒
1 − 𝜌 ⋅ 𝑎

 𝑒, 𝑓𝑘
4𝑚

𝑘=1

 

[4] 

𝑒: 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑄+  

𝑎: 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄  

𝜌: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0, 1   

𝜇0 = 𝜆0 = 𝜌 ⋅ 𝑎 
[4] 



Algorithm Iteration 

𝐴 =  (Φ𝑘𝜉
(𝑡)) ⋅ (Φ𝑘𝜉

(𝑡))∗ 

𝑚

𝑘=1

+ 𝜆𝑡 + 𝜇𝑡 ⋅ 𝐼 

𝑏 =  𝑦𝑘Φ𝑘 + 𝜇𝑡 ⋅ 𝐼

𝑚

𝑘=1

⋅ 𝜉𝑡 

𝜉(𝑡+1) = next approximation 

 Work in Real space 

 𝜉 =
𝑟𝑒𝑎𝑙(𝑥 )
𝑖𝑚𝑎𝑔(𝑥 )

 

 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where 

 
[4] 

[4] 

Φ𝑘 = 𝜙𝑘𝜙𝑘
𝑇 + 𝐽𝜙𝑘𝜙𝑘

𝑇JT, where 𝜙𝑘 =
𝑟𝑒𝑎𝑙(𝑓𝑘)

𝑖𝑚𝑎𝑔 𝑓𝑘
 and J =  

0 −𝐼
𝐼 0

 



Algorithm Iteration (cont.) 

 Update 𝜆, 𝜇 

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡, 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1  

 Stopping criterion 

 𝑦𝑘 − 𝑥(𝑡), 𝑓𝑘
2 2

≤  𝜅𝑚𝜎2, 𝑤ℎ𝑒𝑟𝑒 𝜅 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < 1

𝑚

𝑘=1

 

[4] 

[4] 



Program Goals 

 Approximate signal 𝑥 for 𝑛 ∼ 10,000 

 Cannot store 𝑓1:𝑚 for large 𝑛 

 Write a Sample implementation for small 𝑛 

(~100) that stores Transformation vectors 𝑓1:𝑚 

 Write Efficient implementation that avoids this 

storage 

– Uses the transformation and its adjoint to compute 

𝑄 ⋅ 𝑢, 𝐴 ⋅ 𝑢, and 𝑏 when needed. 

 



Efficient Implementation 

𝑄 ⋅ 𝑢 = 𝑇∗ 𝑦 .∗ 𝑇 𝑢 + 𝑦 ∞ 

 

𝐴 ⋅ 𝑢 = 

𝑅𝑒 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢  .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢

𝐼𝑚 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢  .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢
   

 

 

𝑏 =
𝑅𝑒 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡

𝐼𝑚 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡
 

 



Adjoint Transformation 𝑇∗(𝑐) 

 

 
1

𝑅 ⋅ 𝑛
⋅ 𝑛 ⋅ 𝑤𝑘 ⋅ 𝑖𝑓𝑓𝑡 𝑐 𝑘−1 ⋅𝑛+1:𝑘⋅𝑛

𝑅

𝑘=1

 

𝑤ℎ𝑒𝑟𝑒 𝑖𝑓𝑓𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑓𝑓𝑡 

 



Implementation thus far 

Write sample implementation for small data 
sets 

Write memory efficient implementation 
avoiding the storage of the transformation 
matrix. 

Write Power Method for finding the principal 
eigenpair 

Write Conjugate Gradient Method for solving the 
linear system. 

Cross-Validate Programs 



LS_Algorithm() 

Power_Method() 

Q_u_compute() 

Conjugate_Gradient() 

A_u_compute() RHS_compute() 

Transformation() Adjoint_Transformation() 



Preliminary Tests 

 Validation 

 Study of iterative solvers 

– Power Method 

– Conjugate Gradient 

 Time efficiency and memory efficiency 

 Preliminary Testing Parameters 

 Study of iterative solvers 

– 𝑅 = 8, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

– Program comparisons: 𝑛 = 100 

– Other tests: 𝑛 = 10,000 



Validation 

 Sample implementation and Efficient 

implementation can be compared for small 

problem sizes 

 

 Algorithms produce identical results off by a 

phase factor 

– Principal eigenvector used in initialization are off 

by a constant 



Output Results 𝑥  

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient

  1

  2

  3

  4
Im{x}

 Re{x}

 

 

x sample

x efficient



Iterative Solvers 

 Both the Power Method and the Conjugate 

Gradient Method require a stopping tolerance 

 

 Required # of iterations vs stopping tolerance 

was investigated 

 

 𝑛 = 10,000 



10
-20

10
-15

10
-10

10
-5

10
0

0

2000

4000

6000

8000

10000

12000

stopping tolerance

#
 o

f 
it

e
ra

ti
o
n

s

Power Method iterations vs tolerance



10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

2

4

6

8

10

12

14

16

stopping tolerance

#
 o

f 
it

e
ra

ti
o
n

s
Conjugate Gradient iterations vs tolerance



Output vs Original Signal 

 Output, 𝑥 , of the efficient implementation is 

compared to the original signal 

 

 𝑛 = 10,000, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

 

 Magnitude of each element is plotted. 



2870 2880 2890 2900 2910

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

e
{x

}
Element by Element Magnitude of x

 

 

true solution

algorithm result



3730 3740 3750 3760 3770 3780 3790
0

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

d
e
{x

}
Element by Element Magnitude of x

 

 

algorithm result

true solution



Storage Requirements 

 Memory use is important for usability on large 

data sets 

 Track memory load of stored variables using 

𝑀𝐴𝑇𝐿𝐴𝐵’s 𝑤ℎ𝑜𝑠() at the end of Recursive LS 

Algorithm iteration (𝑛 = 100) 

 Efficient implementation avoids the storage of 

Transformation vectors 

– Significantly more memory efficient 



Reconstructive Algorithm 

𝑥  

𝑦 𝜖 𝑅𝑚 Calculate 

Matrix Q 

Determine 

Principal 

Eigenvector 

Initialize 

Parameters 

Initialization 

Update 

Parameters 

Conjugate 

Gradient 

Solver 

Set Up 

Linear 

System 

Iteration 

Check 

Stopping 

Criterion 

Check 

Memory 

Load 



0

500000

1000000

1500000

2000000

2500000

3000000

sample algorithm efficient algorithm

2,588,750 

25,550 

B
y

te
s 

Storage Requirements (n=100) 



Time Efficiency 

 Studying the time consumption of the efficient 

implementation of 𝐿𝑆_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚()  

 𝑛 = 10,000 

 Stopping tol for P.M. and C.G. = 10−14 

 Power_Method takes very long to complete 

 Most time is spent within 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 
and 𝑎𝑑𝑗𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 



Time Consumption by Function 



LS_Algorithm 

0% 

Power_Method 

3% 

Q_u_compute 

3% 

Conjugate_Gradient 

1% A_u_compute 

4% 

adjTransformation 

45% 

Transformation 

44% 

RHS_compute 

0% 

Time Consumption by Function 



Schedule 

October 
 Post processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least 

squares algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – 

April 15 

 Test on synthetic databases 

 Extract metrics 

April 15 – 

end of 

semester 

 Write final report 



References 
[1] R. Balan, On Signal Reconstruction from Its Spectrogram, 
 Proceedings of the CISS Conference, Princeton, NJ, May 2010. 
[2] R. Balan, P. Casazza, D. Edidin, On signal  reconstruction 
 without phase,  Appl.Comput.Harmon.Anal. 20 (2006), 345-
 356. 

[3] R. Balan, Reconstruction of signals from magnitudes of 
 redundant representations. 2012. 

[4] R. Balan, Reconstruction of signals from magnitudes of 
 redundant representations: the complex case. 2013. 
[5] Christensen, Ole. "Frames in Finite-dimensional Inner 
 Product Spaces."Frames and Bases. Birkhäuser Boston,  2008. 
 1-32. 
[6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical 
 linear  algebra. Springer, 2008. 
[7] Shewchuk, Jonathan Richard. "An introduction to the 
 conjugate gradient method without the agonizing pain." 
 (1994). 

 


