Midterm Presentation

Memory Efficient Signal Reconstruction from Phaseless Coefficients of a Linear Mapping

Naveed Haghani
nhaghan1@math.umd.edu
Project Advisor:
Dr. Radu Balan
rvbalan@cscamm.umd.edu
Professor of Applied Mathematics, University of Maryland
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling Norbert Weiner Center

Problem Overview

Original Signal
Transformation
$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{C}^{n} \longrightarrow$ Transformation $\longrightarrow c=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ \vdots \\ c_{m}\end{array}\right] \in \mathbb{C}^{m}$

Transformation Magnitudes
Original Signal Approximation

$$
\alpha=\left[\begin{array}{c}
\left|c_{1}\right|^{2} \\
\left|c_{2}\right|^{2} \\
\vdots \\
\vdots \\
\left|c_{m}\right|^{2}
\end{array}\right] \in \mathbb{R}^{m} \longrightarrow \hat{x}=\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{2} \\
\vdots \\
\text { Reconstruct } \\
\vdots \\
\hat{x}_{n}
\end{array}\right] \in \mathbb{C}^{n}
$$

Reconstructive Algorithm

Transformation $T(x)=c$

- Redundant linear transformation
- Maps vector in \mathbb{C}^{n} to \mathbb{C}^{m}
$-m=R \cdot n$
$-R$ is redundancy of the Transformation $T(x)$
- Defined by m vectors in \mathbb{C}^{n} labeled $f_{1: m}$ such that:

$$
T(x)=c=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
\vdots \\
c_{m}
\end{array}\right] \text { and } c_{i}=\left\langle x, f_{i}\right\rangle
$$

Transformation $T(x)=c$

- Weighted Discrete Fourier Transform

$$
\begin{gathered}
B_{j}=\text { Discrete Fourier Transform }\left\{\left[\begin{array}{cc}
w_{1}^{(j)} & 0 \\
& \ddots \\
0 & w_{n}^{(j)}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]\right\} \\
\text { for } 1 \leq j \leq R \text { randomly generated arrays of complex weights }\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
\vdots \\
w_{n}
\end{array}\right] \\
\qquad T(x)=c=\frac{1}{\sqrt{R \cdot n}} \cdot\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
B_{R}
\end{array}\right]
\end{gathered}
$$

Transformation $T(x)=c$

$$
T(x)=\left[\begin{array}{c}
\left\langle x, f_{1}\right\rangle \\
\left\langle x, f_{2}\right\rangle \\
\vdots \\
\left\langle x, f_{m}\right\rangle
\end{array}\right]
$$

For the weighted DFT f_{k} is defined as:

$$
f_{k}=\operatorname{conj}\left\{\frac{1}{\sqrt{R \cdot n}}\left[\begin{array}{c}
w_{1}^{(j)} \cdot 1 \\
w_{2}^{(j)} e^{-i 2 \pi r \cdot \frac{1}{n}} \\
\vdots \\
\vdots \\
w_{n}^{(j)} e^{-i 2 \pi r \cdot \frac{n-1}{n}}
\end{array}\right]\right\} \quad \begin{aligned}
& \text { where } j=\operatorname{ceiling}\left(\frac{k}{n}\right) \\
& \text { and } r=\bmod \left(\frac{k-1}{n}\right)
\end{aligned}
$$

Algorithm Initialization

$$
Q=\sum_{k=1}^{m} y_{k} f_{k} f_{k}^{*}
$$

e : principal eigenvector of Q^{+} a: associated eigenvalue of Q ρ : constant between $(0,1)$

$$
\begin{equation*}
\hat{x}^{(0)}=e \sqrt{\frac{(1-\rho) \cdot a}{\sum_{k=1}^{m}\left|\left\langle e, f_{k}\right\rangle\right|^{4}}} \quad \mu_{0}=\lambda_{0}=\rho \cdot a \tag{4}
\end{equation*}
$$

Algorithm Iteration

- Work in Real space
$>\xi=\left[\begin{array}{c}\operatorname{real}(\hat{x}) \\ \operatorname{imag}(\hat{x})\end{array}\right]$
- Solve linear system $A \xi^{(t+1)}=b$, where

$$
\begin{aligned}
& A=\sum_{k=1}^{m}\left(\Phi_{k} \xi^{(t)}\right) \cdot\left(\Phi_{k} \xi^{(t)}\right)^{*}+\left(\lambda_{t}+\mu_{t}\right) \cdot I \\
& b=\left(\sum_{k=1}^{m} y_{k} \Phi_{k}+\mu_{t} \cdot I\right) \cdot \xi^{t} \\
& \quad \Phi_{k}=\phi_{k} \phi_{k}^{T}+J \phi_{k} \phi_{k}^{T} \mathrm{~J}^{\mathrm{T}}, \text { where } \phi_{k}=\left[\begin{array}{l}
\operatorname{real}\left(f_{k}\right) \\
\operatorname{imag}\left(f_{k}\right)
\end{array}\right] \text { and } \mathrm{J}=\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]
\end{aligned}
$$

$\xi^{(t+1)}=$ next approximation

Algorithm Iteration (cont.)

- Update λ, μ
$\lambda_{t+1}=\gamma \lambda_{t+1}, \quad \mu_{t+1}=\max \left(\gamma \mu_{t}, \mu^{\text {min }}\right), \quad$ where $0<\gamma<1$
- Stopping criterion

$$
\begin{equation*}
\sum_{k=1}^{m}\left|y_{k}-\left|\left\langle x^{(t)}, f_{k}\right\rangle\right|^{2}\right|^{2} \leq \kappa m \sigma^{2}, \text { where } \kappa \text { is a constant }<1 \tag{4}
\end{equation*}
$$

Program Goals

- Approximate signal x for $n \sim 10,000$
- Cannot store $f_{1: m}$ for large n
- Write a Sample implementation for small n (~ 100) that stores Transformation vectors $f_{1: m}$
- Write Efficient implementation that avoids this storage
- Uses the transformation and its adjoint to compute $Q \cdot u, A \cdot u$, and b when needed.

Efficient Implementation

$$
Q \cdot u=T^{*}(y . * T(u))+\|y\|_{\infty}
$$

$$
\left[\begin{array}{c}
A \cdot u= \\
\operatorname{Re}\left\{T^{*}\left(\operatorname{real}\left\{T(u) \cdot * \operatorname{conj}\left\{T\left(x^{(t)}\right)\right\}\right\} \cdot * T\left(x^{(t)}\right)\right)+(\lambda+\mu) \cdot u\right\} \\
\operatorname{Im}\left\{T^{*}\left(\operatorname{real}\left\{T(u) \cdot * \operatorname{conj}\left\{T\left(x^{(t)}\right)\right\}\right\} . * T\left(x^{(t)}\right)\right)+(\lambda+\mu) \cdot u\right\}
\end{array}\right]
$$

$$
b=\left[\begin{array}{l}
\operatorname{Re}\left\{T^{*}\left(y . * T\left(x^{(t)}\right)\right)+\mu \cdot x^{(t)}\right\} \\
\operatorname{Im}\left\{T^{*}\left(y . * T\left(x^{(t)}\right)\right)+\mu \cdot x^{(t)}\right\}
\end{array}\right]
$$

Adjoint Transformation $T^{*}(c)$

$$
\begin{gathered}
\sum_{k=1}^{R} \frac{1}{\sqrt{R \cdot n}} \cdot n \cdot \overline{w^{k}} \cdot \operatorname{ifft}\left(c_{(k-1) \cdot n+1: k \cdot n}\right) \\
\text { where ifft is the inverse fft }
\end{gathered}
$$

Implementation thus far

\checkmark Write sample implementation for small data sets
\checkmark Write memory efficient implementation avoiding the storage of the transformation matrix.
\checkmark Write Power Method for finding the principal eigenpair
\checkmark Write Conjugate Gradient Method for solving the linear system.
\checkmark Cross-Validate Programs

LS_Algorithm()

Preliminary Tests

- Validation
- Study of iterative solvers
- Power Method
- Conjugate Gradient
- Time efficiency and memory efficiency
- Preliminary Testing Parameters
- Study of iterative solvers
$-R=8, S N R_{d B}=10 d B$
- Program comparisons: $n=100$
- Other tests: $n=10,000$

Validation

- Sample implementation and Efficient implementation can be compared for small problem sizes
- Algorithms produce identical results off by a phase factor
- Principal eigenvector used in initialization are off by a constant

Output Results \hat{x}

Iterative Solvers

- Both the Power Method and the Conjugate Gradient Method require a stopping tolerance
- Required \# of iterations vs stopping tolerance was investigated
- $n=10,000$

Conjugate Gradient iterations vs tolerance

Output vs Original Signal

- Output, \hat{x}, of the efficient implementation is compared to the original signal
- $n=10,000, S N R_{d B}=10 d B$
- Magnitude of each element is plotted.

Element by Element Magnitude of x

Element by Element Magnitude of x

Storage Requirements

- Memory use is important for usability on large data sets
- Track memory load of stored variables using MATLAB's whos () at the end of Recursive LS Algorithm iteration $(n=100)$
- Efficient implementation avoids the storage of Transformation vectors
- Significantly more memory efficient

Reconstructive Algorithm

Storage Requirements ($\mathrm{n}=100$)

Time Efficiency

- Studying the time consumption of the efficient implementation of $L S_{-}$Algorithm()
- $n=10,000$
- Stopping tol for P.M. and C.G. $=10^{-14}$
- Power_Method takes very long to complete
- Most time is spent within Transformation() and adjTransformation()

Time Consumption by Function

Function Name	Calls	Total Time	Self Time *	Total Time Plot (dark band = self time)
LS_Algorithm	1	181.935 s	0.377 s	
Power_Method	1	94.735 s	5.717 s	\mathbf{I}
Q_u_compute	12717	89.018 s	4.378 s	
Conjugate_Gradient	219	86.267 s	2.215 s	\square
A_u_compute	7957	82.393 s	7.321 s	\mathbf{I}
adjTransformation	20893	82.302 s	82.302 s	
Transformation	29071	79.532 s	79.532 s	
RHS_compute	219	1.659 s	0.093 s	I

Time Consumption by Function

Schedule

October	- Post processing framework \checkmark Database generation
November	\checkmark MATLAB implementation of iterative recursive least squares algorithm
December	\checkmark Validate modules written so far
February	\checkmark Implement power iteration method \checkmark Implement conjugate gradient
By March 15	\checkmark Validate power iteration and conjugate gradient
March 15 April 15	- Test on synthetic databases - Extract metrics
April 15 end of semester	- Write final report

References

[1] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference, Princeton, NJ, May 2010.
[2] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345356.
[3] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.
[4] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex case. 2013.
[5] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."Frames and Bases. Birkhäuser Boston, 2008. 1-32.
[6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical linear algebra. Springer, 2008.
[7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain." (1994).

