
Memory Efficient Signal

Reconstruction from Phaseless

Coefficients of a Linear Mapping

Naveed Haghani

nhaghan1@math.umd.edu

Project Advisor:

Dr. Radu Balan

rvbalan@cscamm.umd.edu

Professor of Applied Mathematics, University of Maryland

Department of Mathematics

Center for Scientific Computation and Mathematical Modeling

Norbert Weiner Center

Midterm Presentation

Problem Overview

𝑥 =

𝑥1

𝑥2

⋮
⋮
𝑥𝑛

𝜖 ℂ𝑛 Transformation 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

𝜖 ℂ𝑚

𝛼 =

𝑐1
2

𝑐2
2

⋮
⋮

𝑐𝑚
2

𝜖 ℝ𝑚

Transformation Magnitudes

Original Signal

Reconstruct

Original Signal
𝑥 =

𝑥 1
𝑥 2
⋮
⋮
𝑥 𝑛

𝜖 ℂ𝑛

Original Signal Approximation

Transformation

Reconstructive Algorithm

𝑥

𝑦 𝜖 𝑅𝑚 Calculate

Matrix Q

Determine

Principal

Eigenvector

Initialize

Parameters

Initialization

Update

Parameters

Conjugate

Gradient

Solver

Set Up

Linear

System

Iteration

Check

Stopping

Criterion

Transformation 𝑇 𝑥 = 𝑐

 Redundant linear transformation

 Maps vector in ℂ𝑛 to ℂ𝑚

– 𝑚 = 𝑅 ⋅ 𝑛

– 𝑅 is redundancy of the Transformation 𝑇(𝑥)

 Defined by 𝑚 vectors in ℂ𝑛 labeled 𝑓1:𝑚 such
that:

𝑇 𝑥 = 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

 and 𝑐𝑖 = 𝑥, 𝑓𝑖

Transformation 𝑇 𝑥 = 𝑐

 Weighted Discrete Fourier Transform

𝐵𝑗 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

𝑤1
(𝑗)

0
⋱

0 𝑤𝑛
(𝑗)

⋅

𝑥1

𝑥2

⋮
⋮
𝑥𝑛

𝑇 𝑥 = 𝑐 =
1

𝑅 ⋅ 𝑛
⋅

𝐵1

𝐵2

⋮
⋮

𝐵𝑅

𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑅 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑟𝑎𝑦𝑠 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑤1

𝑤2

⋮
⋮

𝑤𝑛

Transformation 𝑇 𝑥 = 𝑐

𝑇 𝑥 =

𝑥, 𝑓1
𝑥, 𝑓2
⋮

𝑥, 𝑓𝑚

For the weighted DFT 𝑓𝑘 is defined as:

 𝑓𝑘 = 𝑐𝑜𝑛𝑗
1

𝑅⋅𝑛

𝑤1
𝑗

⋅ 1

𝑤2
𝑗
𝑒−𝑖2𝜋𝑟⋅

1

𝑛

⋮
⋮

𝑤𝑛
𝑗
𝑒−𝑖2𝜋𝑟⋅

𝑛−1

𝑛

𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
𝑘

𝑛

𝑎𝑛𝑑 𝑟 = 𝑚𝑜𝑑
𝑘 − 1

𝑛

Algorithm Initialization

𝑄 = 𝑦𝑘𝑓𝑘𝑓𝑘
∗

𝑚

𝑘=1

[4]

𝑥 (0) = 𝑒
1 − 𝜌 ⋅ 𝑎

 𝑒, 𝑓𝑘
4𝑚

𝑘=1

[4]

𝑒: 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑄+

𝑎: 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄

𝜌: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0, 1

𝜇0 = 𝜆0 = 𝜌 ⋅ 𝑎
[4]

Algorithm Iteration

𝐴 = (Φ𝑘𝜉
(𝑡)) ⋅ (Φ𝑘𝜉

(𝑡))∗

𝑚

𝑘=1

+ 𝜆𝑡 + 𝜇𝑡 ⋅ 𝐼

𝑏 = 𝑦𝑘Φ𝑘 + 𝜇𝑡 ⋅ 𝐼

𝑚

𝑘=1

⋅ 𝜉𝑡

𝜉(𝑡+1) = next approximation

 Work in Real space

 𝜉 =
𝑟𝑒𝑎𝑙(𝑥)
𝑖𝑚𝑎𝑔(𝑥)

 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where

[4]

[4]

Φ𝑘 = 𝜙𝑘𝜙𝑘
𝑇 + 𝐽𝜙𝑘𝜙𝑘

𝑇JT, where 𝜙𝑘 =
𝑟𝑒𝑎𝑙(𝑓𝑘)

𝑖𝑚𝑎𝑔 𝑓𝑘
 and J =

0 −𝐼
𝐼 0

Algorithm Iteration (cont.)

 Update 𝜆, 𝜇

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡, 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1

 Stopping criterion

 𝑦𝑘 − 𝑥(𝑡), 𝑓𝑘
2 2

≤ 𝜅𝑚𝜎2, 𝑤ℎ𝑒𝑟𝑒 𝜅 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < 1

𝑚

𝑘=1

[4]

[4]

Program Goals

 Approximate signal 𝑥 for 𝑛 ∼ 10,000

 Cannot store 𝑓1:𝑚 for large 𝑛

 Write a Sample implementation for small 𝑛

(~100) that stores Transformation vectors 𝑓1:𝑚

 Write Efficient implementation that avoids this

storage

– Uses the transformation and its adjoint to compute

𝑄 ⋅ 𝑢, 𝐴 ⋅ 𝑢, and 𝑏 when needed.

Efficient Implementation

𝑄 ⋅ 𝑢 = 𝑇∗ 𝑦 .∗ 𝑇 𝑢 + 𝑦 ∞

𝐴 ⋅ 𝑢 =

𝑅𝑒 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢 .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢

𝐼𝑚 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢 .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢

𝑏 =
𝑅𝑒 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡

𝐼𝑚 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡

Adjoint Transformation 𝑇∗(𝑐)

1

𝑅 ⋅ 𝑛
⋅ 𝑛 ⋅ 𝑤𝑘 ⋅ 𝑖𝑓𝑓𝑡 𝑐 𝑘−1 ⋅𝑛+1:𝑘⋅𝑛

𝑅

𝑘=1

𝑤ℎ𝑒𝑟𝑒 𝑖𝑓𝑓𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑓𝑓𝑡

Implementation thus far

Write sample implementation for small data
sets

Write memory efficient implementation
avoiding the storage of the transformation
matrix.

Write Power Method for finding the principal
eigenpair

Write Conjugate Gradient Method for solving the
linear system.

Cross-Validate Programs

LS_Algorithm()

Power_Method()

Q_u_compute()

Conjugate_Gradient()

A_u_compute() RHS_compute()

Transformation() Adjoint_Transformation()

Preliminary Tests

 Validation

 Study of iterative solvers

– Power Method

– Conjugate Gradient

 Time efficiency and memory efficiency

 Preliminary Testing Parameters

 Study of iterative solvers

– 𝑅 = 8, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵

– Program comparisons: 𝑛 = 100

– Other tests: 𝑛 = 10,000

Validation

 Sample implementation and Efficient

implementation can be compared for small

problem sizes

 Algorithms produce identical results off by a

phase factor

– Principal eigenvector used in initialization are off

by a constant

Output Results 𝑥

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

x sample

x efficient

Iterative Solvers

 Both the Power Method and the Conjugate

Gradient Method require a stopping tolerance

 Required # of iterations vs stopping tolerance

was investigated

 𝑛 = 10,000

10
-20

10
-15

10
-10

10
-5

10
0

0

2000

4000

6000

8000

10000

12000

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s

Power Method iterations vs tolerance

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

2

4

6

8

10

12

14

16

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s
Conjugate Gradient iterations vs tolerance

Output vs Original Signal

 Output, 𝑥 , of the efficient implementation is

compared to the original signal

 𝑛 = 10,000, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵

 Magnitude of each element is plotted.

2870 2880 2890 2900 2910

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

e
{x

}
Element by Element Magnitude of x

true solution

algorithm result

3730 3740 3750 3760 3770 3780 3790
0

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

d
e
{x

}
Element by Element Magnitude of x

algorithm result

true solution

Storage Requirements

 Memory use is important for usability on large

data sets

 Track memory load of stored variables using

𝑀𝐴𝑇𝐿𝐴𝐵’s 𝑤ℎ𝑜𝑠() at the end of Recursive LS

Algorithm iteration (𝑛 = 100)

 Efficient implementation avoids the storage of

Transformation vectors

– Significantly more memory efficient

Reconstructive Algorithm

𝑥

𝑦 𝜖 𝑅𝑚 Calculate

Matrix Q

Determine

Principal

Eigenvector

Initialize

Parameters

Initialization

Update

Parameters

Conjugate

Gradient

Solver

Set Up

Linear

System

Iteration

Check

Stopping

Criterion

Check

Memory

Load

0

500000

1000000

1500000

2000000

2500000

3000000

sample algorithm efficient algorithm

2,588,750

25,550

B
y

te
s

Storage Requirements (n=100)

Time Efficiency

 Studying the time consumption of the efficient

implementation of 𝐿𝑆_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚()

 𝑛 = 10,000

 Stopping tol for P.M. and C.G. = 10−14

 Power_Method takes very long to complete

 Most time is spent within 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛()
and 𝑎𝑑𝑗𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛()

Time Consumption by Function

LS_Algorithm

0%

Power_Method

3%

Q_u_compute

3%

Conjugate_Gradient

1% A_u_compute

4%

adjTransformation

45%

Transformation

44%

RHS_compute

0%

Time Consumption by Function

Schedule

October
 Post processing framework

 Database generation

November
 MATLAB implementation of iterative recursive least

squares algorithm

December Validate modules written so far

February
 Implement power iteration method

 Implement conjugate gradient

By March 15 Validate power iteration and conjugate gradient

March 15 –

April 15

 Test on synthetic databases

 Extract metrics

April 15 –

end of

semester

 Write final report

References
[1] R. Balan, On Signal Reconstruction from Its Spectrogram,
 Proceedings of the CISS Conference, Princeton, NJ, May 2010.
[2] R. Balan, P. Casazza, D. Edidin, On signal reconstruction
 without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-
 356.

[3] R. Balan, Reconstruction of signals from magnitudes of
 redundant representations. 2012.

[4] R. Balan, Reconstruction of signals from magnitudes of
 redundant representations: the complex case. 2013.
[5] Christensen, Ole. "Frames in Finite-dimensional Inner
 Product Spaces."Frames and Bases. Birkhäuser Boston, 2008.
 1-32.
[6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical
 linear algebra. Springer, 2008.
[7] Shewchuk, Jonathan Richard. "An introduction to the
 conjugate gradient method without the agonizing pain."
 (1994).

