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Reconstructive Algorithm 
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Transformation 𝑇 𝑥 = 𝑐 

 Redundant linear transformation 

 Maps vector in ℂ𝑛 to ℂ𝑚 

– 𝑚 = 𝑅 ⋅ 𝑛 

– 𝑅 is redundancy of the Transformation 𝑇(𝑥) 

 Defined by 𝑚 vectors in ℂ𝑛 labeled 𝑓1:𝑚 such 
that: 

𝑇 𝑥 = 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

 and 𝑐𝑖 = 𝑥, 𝑓𝑖  



Transformation 𝑇 𝑥 = 𝑐 

 Weighted Discrete Fourier Transform 

 
𝐵𝑗 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
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Transformation 𝑇 𝑥 = 𝑐 
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For the weighted DFT 𝑓𝑘 is defined as: 
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Algorithm Initialization 
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Algorithm Iteration 
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 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where 
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Algorithm Iteration (cont.) 

 Update 𝜆, 𝜇 

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡, 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1  

 Stopping criterion 

 𝑦𝑘 − 𝑥(𝑡), 𝑓𝑘
2 2
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Program Goals 

 Approximate signal 𝑥 for 𝑛 ∼ 10,000 

 Cannot store 𝑓1:𝑚 for large 𝑛 

 Write a Sample implementation for small 𝑛 

(~100) that stores Transformation vectors 𝑓1:𝑚 

 Write Efficient implementation that avoids this 

storage 

– Uses the transformation and its adjoint to compute 

𝑄 ⋅ 𝑢, 𝐴 ⋅ 𝑢, and 𝑏 when needed. 

 



Efficient Implementation 

𝑄 ⋅ 𝑢 = 𝑇∗ 𝑦 .∗ 𝑇 𝑢 + 𝑦 ∞ 

 

𝐴 ⋅ 𝑢 = 
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Adjoint Transformation 𝑇∗(𝑐) 
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Implementation thus far 

Write sample implementation for small data 
sets 

Write memory efficient implementation 
avoiding the storage of the transformation 
matrix. 

Write Power Method for finding the principal 
eigenpair 

Write Conjugate Gradient Method for solving the 
linear system. 

Cross-Validate Programs 



LS_Algorithm() 

Power_Method() 

Q_u_compute() 

Conjugate_Gradient() 

A_u_compute() RHS_compute() 

Transformation() Adjoint_Transformation() 



Preliminary Tests 

 Validation 

 Study of iterative solvers 

– Power Method 

– Conjugate Gradient 

 Time efficiency and memory efficiency 

 Preliminary Testing Parameters 

 Study of iterative solvers 

– 𝑅 = 8, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

– Program comparisons: 𝑛 = 100 

– Other tests: 𝑛 = 10,000 



Validation 

 Sample implementation and Efficient 

implementation can be compared for small 

problem sizes 

 

 Algorithms produce identical results off by a 

phase factor 

– Principal eigenvector used in initialization are off 

by a constant 



Output Results 𝑥  
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Iterative Solvers 

 Both the Power Method and the Conjugate 

Gradient Method require a stopping tolerance 

 

 Required # of iterations vs stopping tolerance 

was investigated 

 

 𝑛 = 10,000 
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Output vs Original Signal 

 Output, 𝑥 , of the efficient implementation is 

compared to the original signal 

 

 𝑛 = 10,000, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

 

 Magnitude of each element is plotted. 
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Storage Requirements 

 Memory use is important for usability on large 

data sets 

 Track memory load of stored variables using 

𝑀𝐴𝑇𝐿𝐴𝐵’s 𝑤ℎ𝑜𝑠() at the end of Recursive LS 

Algorithm iteration (𝑛 = 100) 

 Efficient implementation avoids the storage of 

Transformation vectors 

– Significantly more memory efficient 
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Time Efficiency 

 Studying the time consumption of the efficient 

implementation of 𝐿𝑆_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚()  

 𝑛 = 10,000 

 Stopping tol for P.M. and C.G. = 10−14 

 Power_Method takes very long to complete 

 Most time is spent within 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 
and 𝑎𝑑𝑗𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 



Time Consumption by Function 
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Schedule 

October 
 Post processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least 

squares algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – 

April 15 

 Test on synthetic databases 

 Extract metrics 

April 15 – 

end of 

semester 

 Write final report 
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