Midterm Presentation

Memory Efficient Signal Reconstruction from Phaseless Coefficients of a Linear Mapping

Naveed Haghani nhaghan1@math.umd.edu

Project Advisor:

Dr. Radu Balan

rvbalan@cscamm.umd.edu

Professor of Applied Mathematics, University of Maryland

Department of Mathematics

Center for Scientific Computation and Mathematical Modeling

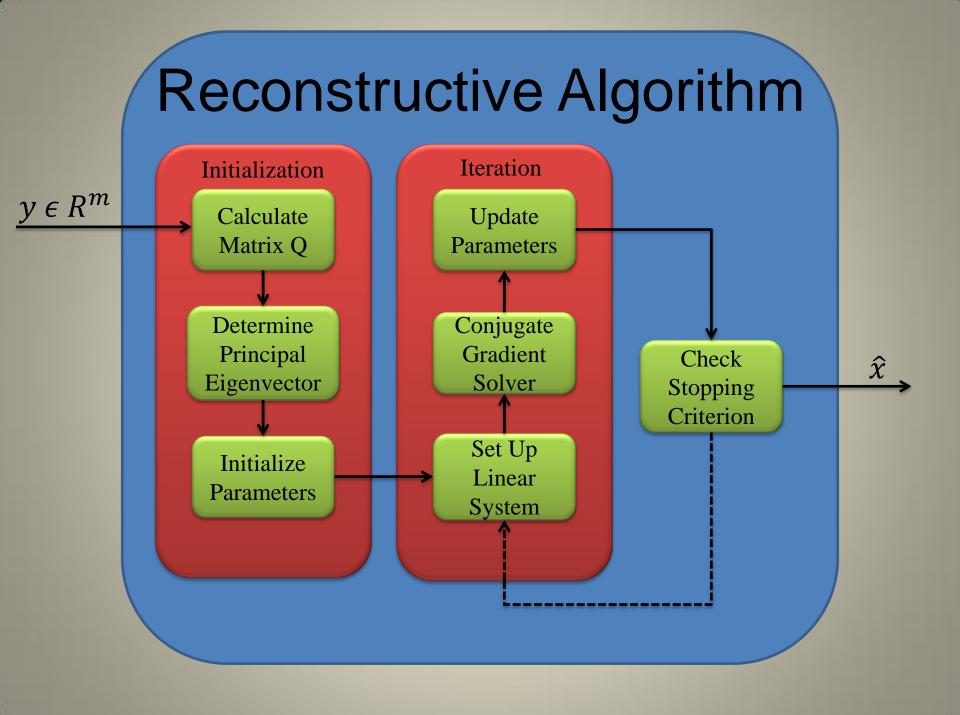
Norbert Weiner Center

Problem Overview

Transformation Magnitudes

Original Signal Approximation

$$\alpha = \begin{bmatrix} |c_1|^2 \\ |c_2|^2 \\ \vdots \\ |c_m|^2 \end{bmatrix} \epsilon \mathbb{R}^m \longrightarrow \hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} \epsilon \mathbb{C}^n$$
Reconstruct
Original Signal



Transformation T(x) = c

- Redundant linear transformation
- Maps vector in \mathbb{C}^n to \mathbb{C}^m
 - $-m=R\cdot n$
 - -R is redundancy of the Transformation T(x)
- Defined by m vectors in \mathbb{C}^n labeled $f_{1:m}$ such that:

$$T(x) = c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} \text{ and } c_i = \langle x, f_i \rangle$$

Transformation T(x) = c

Weighted Discrete Fourier Transform

$$B_{j} = Discrete \ Fourier \ Transform \left\{ \begin{bmatrix} w_{1}^{(j)} & 0 \\ \ddots & \\ 0 & w_{n}^{(j)} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \right\}$$

for $1 \le j \le R$ randomly generated arrays of complex weights

$$T(x) = c = \frac{1}{\sqrt{R \cdot n}} \cdot \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_R \end{bmatrix}$$

Transformation T(x) = c

$$T(x) = \begin{bmatrix} \langle x, f_1 \rangle \\ \langle x, f_2 \rangle \\ \vdots \\ \langle x, f_m \rangle \end{bmatrix}$$

For the weighted DFT f_k is defined as:

$$f_{k} = conj \begin{cases} \frac{1}{\sqrt{R \cdot n}} \begin{bmatrix} w_{1}^{(j)} \cdot 1 \\ w_{2}^{(j)} e^{-i2\pi r \cdot \frac{1}{n}} \\ \vdots \\ \vdots \\ w_{n}^{(j)} e^{-i2\pi r \cdot \frac{n-1}{n}} \end{bmatrix} \end{cases} \quad where \ j = ceiling \left(\frac{k}{n}\right)$$

$$and \ r = mod \left(\frac{k-1}{n}\right)$$

Algorithm Initialization

$$Q = \sum_{k=1}^{m} y_k f_k f_k^*$$

e: principal eigenvector of Q^+

a: associated eigenvalue of Q

 ρ : constant between (0,1)

$$\hat{x}^{(0)} = e \sqrt{\frac{(1-\rho) \cdot a}{\sum_{k=1}^{m} |\langle e, f_k \rangle|^4}} \qquad \mu_0 = \lambda_0 = \rho \cdot a_{[4]}$$

Algorithm Iteration

Work in Real space

• Solve linear system $A\xi^{(t+1)} = b$, where

$$A = \sum_{k=1}^{m} (\Phi_k \xi^{(t)}) \cdot (\Phi_k \xi^{(t)})^* + (\lambda_t + \mu_t) \cdot I$$
 [4]

$$b = \left(\sum_{k=1}^{m} y_k \Phi_k + \mu_t \cdot I\right) \cdot \xi^t$$
[4]

$$\Phi_k = \phi_k \phi_k^T + J \phi_k \phi_k^T J^T$$
, where $\phi_k = \begin{bmatrix} real(f_k) \\ imag(f_k) \end{bmatrix}$ and $J = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$

 $\xi^{(t+1)}$ = next approximation

Algorithm Iteration (cont.)

• Update λ , μ

$$\lambda_{t+1} = \gamma \lambda_{t+1}$$
, $\mu_{t+1} = \max(\gamma \mu_t, \mu^{min})$, where $0 < \gamma < 1$ [4]

Stopping criterion

$$\sum_{k=1}^{m} \left| y_k - \left| \left\langle x^{(t)}, f_k \right\rangle \right|^2 \right|^2 \le \kappa m \sigma^2, \text{ where } \kappa \text{ is a constant } < 1$$
[4]

Program Goals

- Approximate signal x for $n \sim 10,000$
- Cannot store $f_{1:m}$ for large n
- Write a <u>Sample implementation</u> for small n (~100) that stores Transformation vectors $f_{1:m}$
- Write <u>Efficient implementation</u> that avoids this storage
 - Uses the transformation and its adjoint to compute $Q \cdot u$, $A \cdot u$, and b when needed.

Efficient Implementation

$$Q \cdot u = T^*(y \cdot T(u)) + \|y\|_{\infty}$$

$$A \cdot u =$$

$$A \cdot u =$$

$$\left[Re\left\{T^*\left(real\left\{T(u) .* conj\left\{T(x^{(t)})\right\}\right\} .* T(x^{(t)})\right) + (\lambda + \mu) \cdot u\right\}\right]$$

$$Im\left\{T^*\left(real\left\{T(u) .* conj\left\{T(x^{(t)})\right\}\right\} .* T(x^{(t)})\right) + (\lambda + \mu) \cdot u\right\}\right]$$

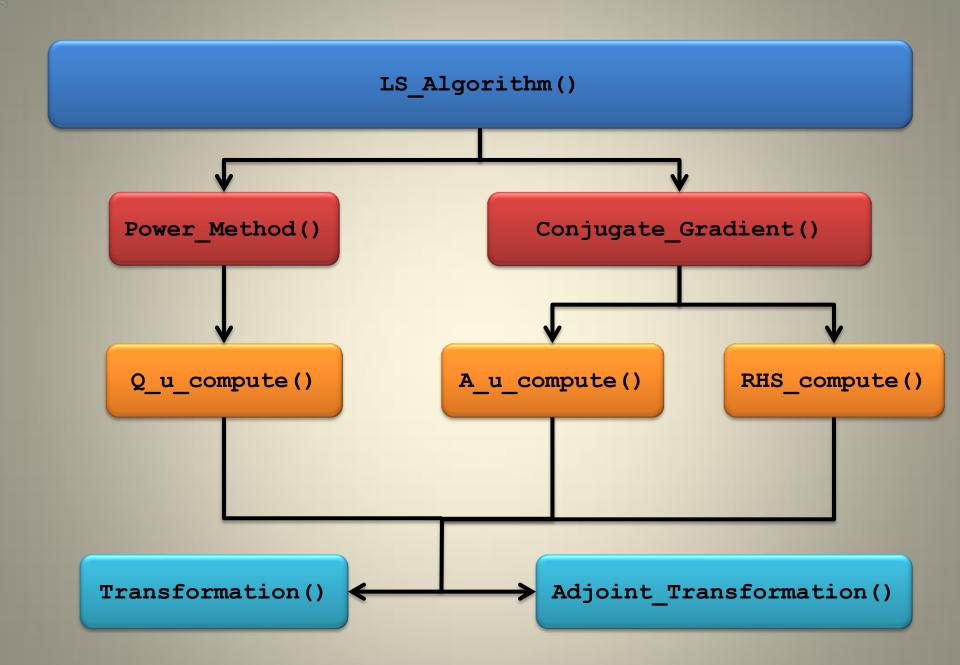
$$b = \begin{bmatrix} Re\left\{T^*\left(y \cdot * T(x^{(t)})\right) + \mu \cdot x^{(t)}\right\} \\ Im\left\{T^*\left(y \cdot * T(x^{(t)})\right) + \mu \cdot x^{(t)}\right\} \end{bmatrix}$$

Adjoint Transformation $T^*(c)$

$$\sum_{k=1}^{R} \frac{1}{\sqrt{R \cdot n}} \cdot n \cdot \overline{w^k} \cdot ifft(c_{(k-1)\cdot n+1:k\cdot n})$$
where if ft is the inverse fft

Implementation thus far

- ✓ Write sample implementation for small data sets
- ✓ Write memory efficient implementation avoiding the storage of the transformation matrix.
 - ✓ Write Power Method for finding the principal eigenpair
 - ✓ Write Conjugate Gradient Method for solving the linear system.
- ✓ Cross-Validate Programs



Preliminary Tests

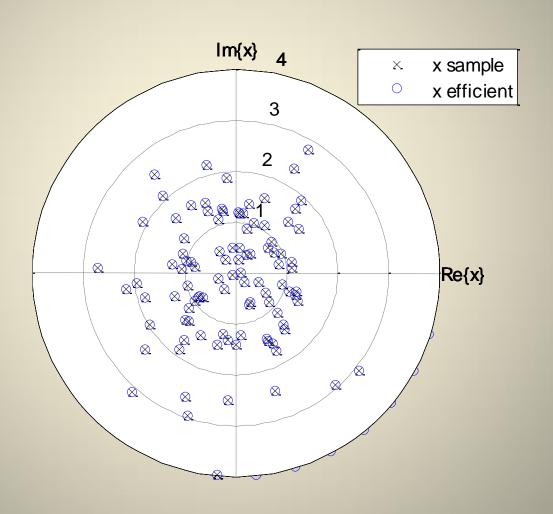
- Validation
- Study of iterative solvers
 - Power Method
 - Conjugate Gradient
- Time efficiency and memory efficiency
- Preliminary Testing Parameters
- Study of iterative solvers
 - $-R = 8, SNR_{dB} = 10 dB$
 - Program comparisons: n = 100
 - Other tests: n = 10,000

Validation

 Sample implementation and Efficient implementation can be compared for small problem sizes

- Algorithms produce identical results off by a phase factor
 - Principal eigenvector used in initialization are off by a constant

Output Results \hat{x}

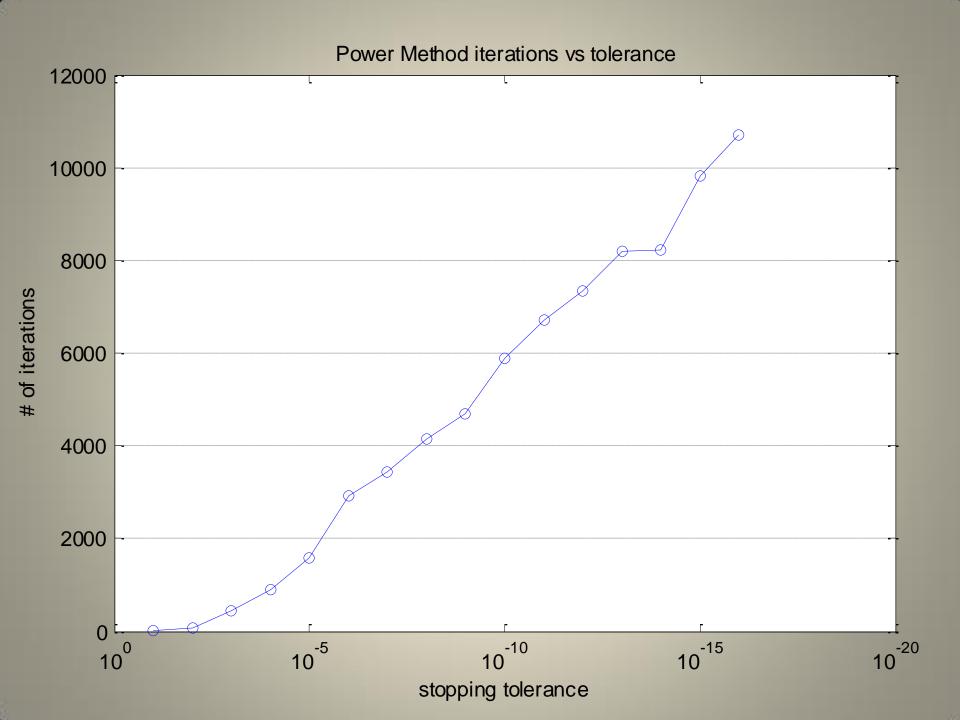


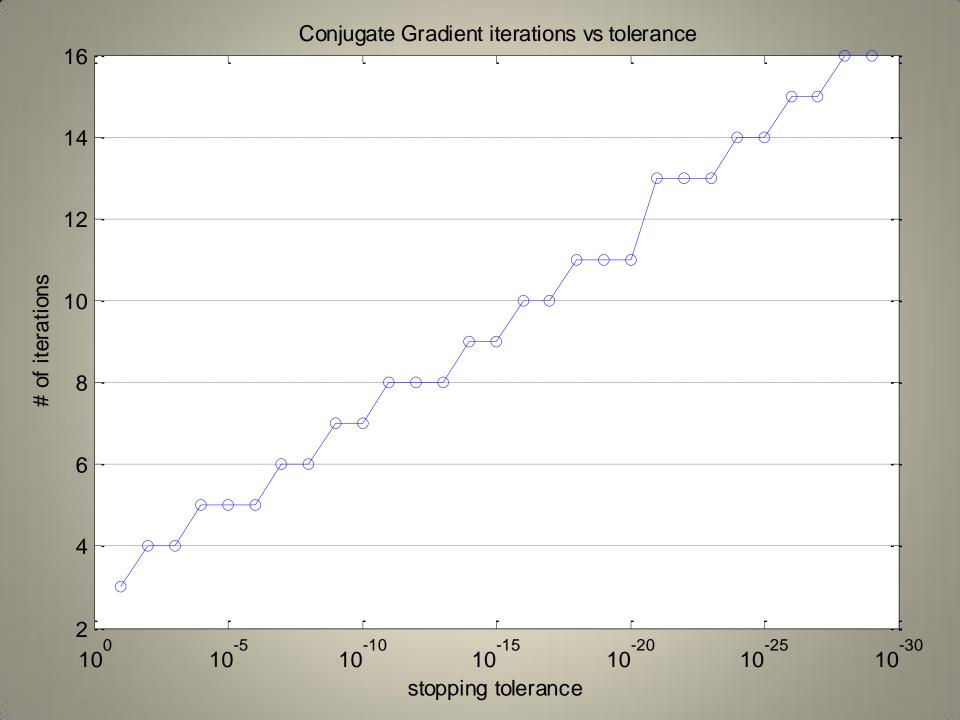
Iterative Solvers

Both the Power Method and the Conjugate
 Gradient Method require a stopping tolerance

 Required # of iterations vs stopping tolerance was investigated

n = 10,000





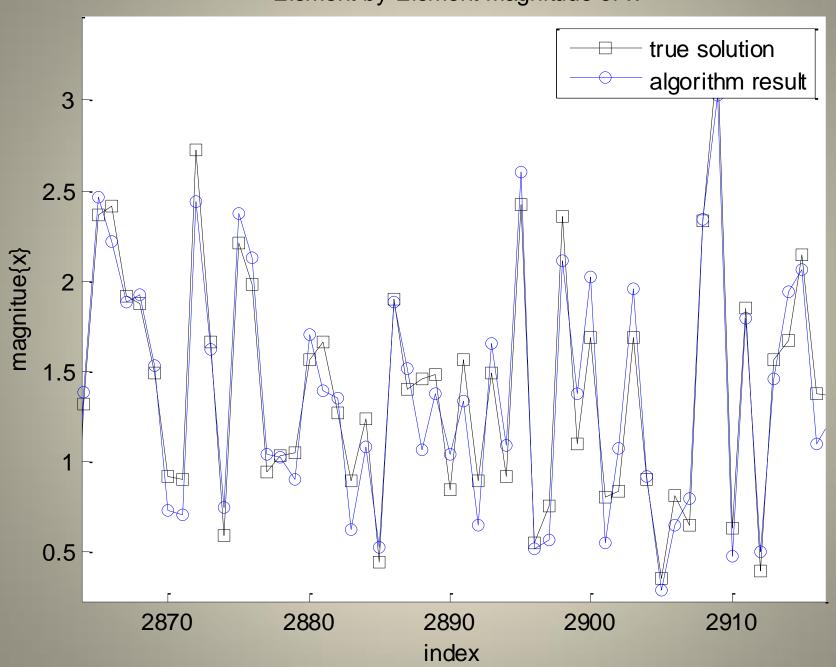
Output vs Original Signal

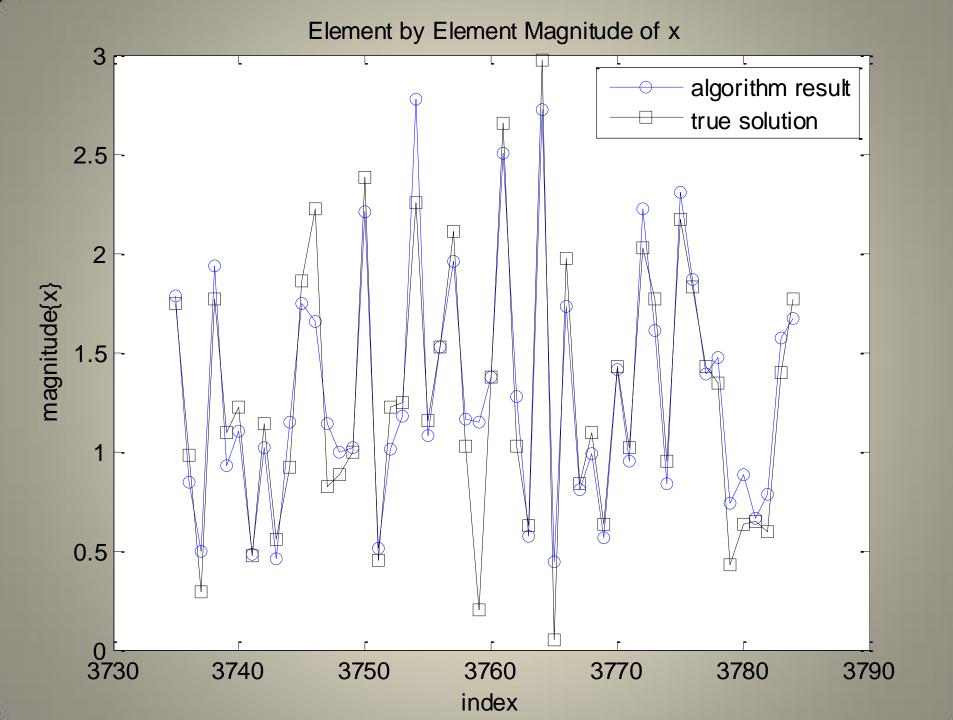
• Output, \hat{x} , of the <u>efficient implementation</u> is compared to the original signal

$$n = 10,000, SNR_{dB} = 10 dB$$

Magnitude of each element is plotted.

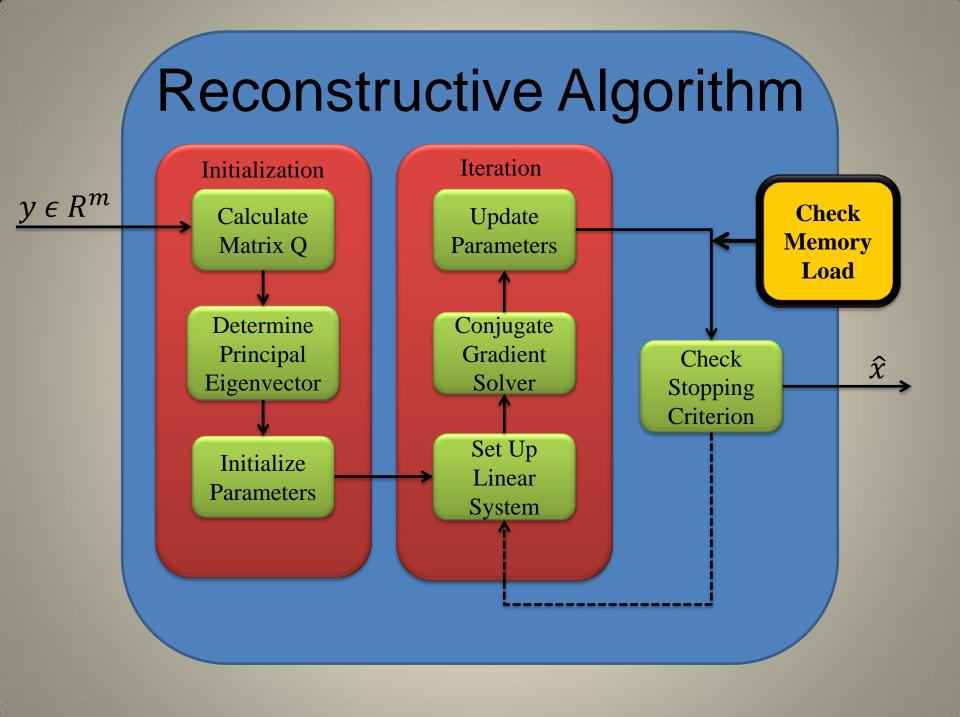
Element by Element Magnitude of x



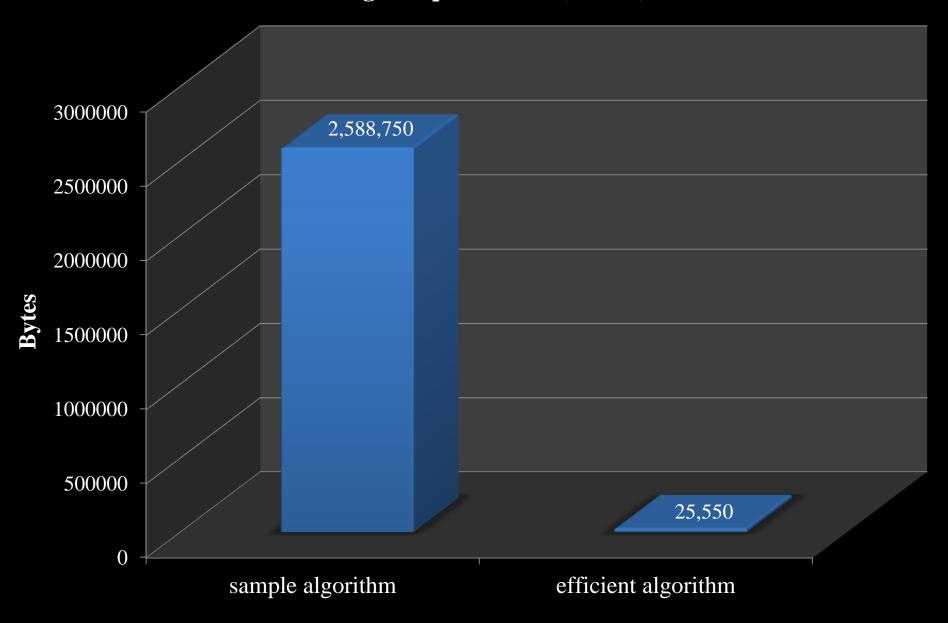


Storage Requirements

- Memory use is important for usability on large data sets
- Track memory load of stored variables using MATLAB's whos() at the end of Recursive LS Algorithm iteration (n = 100)
- <u>Efficient implementation</u> avoids the storage of Transformation vectors
 - Significantly more memory efficient



Storage Requirements (n=100)



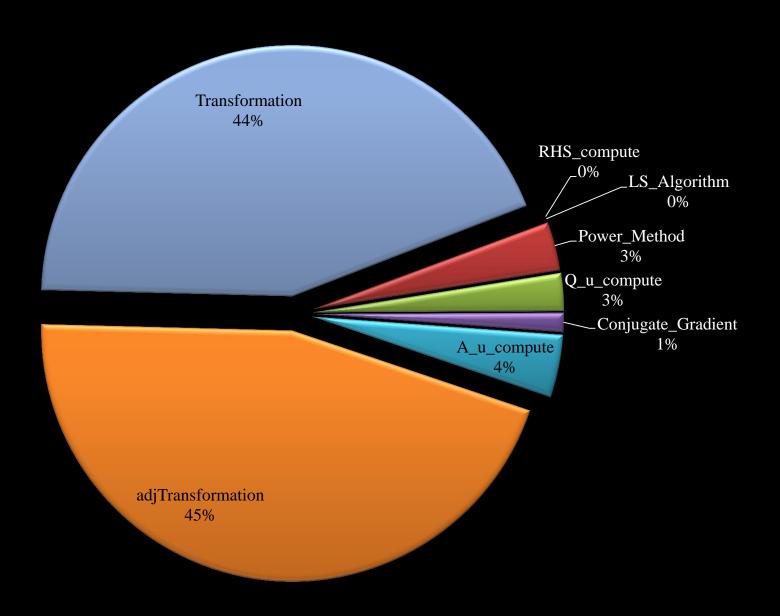
Time Efficiency

- Studying the time consumption of the <u>efficient</u> <u>implementation</u> of *LS_Algorithm()*
- n = 10,000
- Stopping tol for P.M. and C.G. = 10^{-14}
- Power_Method takes very long to complete
- Most time is spent within Transformation()
 and adjTransformation()

Time Consumption by Function

Function Name	<u>Calls</u>	Total Time	Self Time*	Total Time Plot (dark band = self time)
LS_Algorithm	1	181.935 s	0.377 s	
Power_Method	1	94.735 s	5.717 s	
Q_u_compute	12717	89.018 s	4.378 s	
Conjugate_Gradient	219	86.267 s	2.215 s	
A_u_compute	7957	82.393 s	7.321 s	
adjTransformation	20893	82.302 s	82.302 s	
Transformation	29071	79.532 s	79.532 s	
RHS_compute	219	1.659 s	0.093 s	I

Time Consumption by Function



Schedule

October	Post processing framework✓ Database generation		
November	✓ MATLAB implementation of iterative recursive least squares algorithm		
December	✓ Validate modules written so far		
February	✓ Implement power iteration method✓ Implement conjugate gradient		
By March 15	✓ Validate power iteration and conjugate gradient		
March 15 – April 15	Test on synthetic databasesExtract metrics		
April 15 – end of semester	Write final report		

References

- [1] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference, Princeton, NJ, May 2010.
- [2] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.
- [3] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.
- [4] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex case. 2013.
- [5] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces." *Frames and Bases*. Birkhäuser Boston, 2008. 1-32.
- [6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. *Numerical linear algebra*. Springer, 2008.
- [7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain." (1994).