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Problem Overview 
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Reconstructive Algorithm 
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Transformation 𝑇 𝑥 = 𝑐 

 Redundant linear transformation 

 Maps vector in ℂ𝑛 to ℂ𝑚 

– 𝑚 = 𝑅 ⋅ 𝑛 

– 𝑅 is redundancy of the Transformation 𝑇(𝑥) 

 Defined by 𝑚 vectors in ℂ𝑛 labeled 𝑓1:𝑚 such 
that: 

𝑇 𝑥 = 𝑐 =

𝑐1
𝑐2
⋮
⋮

𝑐𝑚

 and 𝑐𝑖 = 𝑥, 𝑓𝑖  



Transformation 𝑇 𝑥 = 𝑐 

 Weighted Discrete Fourier Transform 
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Transformation 𝑇 𝑥 = 𝑐 

𝑇 𝑥 =  
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For the weighted DFT 𝑓𝑘 is defined as: 
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Algorithm Initialization 
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𝑒: 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑄+  

𝑎: 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄  
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Algorithm Iteration 
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 Work in Real space 
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 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where 
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Algorithm Iteration (cont.) 

 Update 𝜆, 𝜇 

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡, 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1  

 Stopping criterion 
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Program Goals 

 Approximate signal 𝑥 for 𝑛 ∼ 10,000 

 Cannot store 𝑓1:𝑚 for large 𝑛 

 Write a Sample implementation for small 𝑛 

(~100) that stores Transformation vectors 𝑓1:𝑚 

 Write Efficient implementation that avoids this 

storage 

– Uses the transformation and its adjoint to compute 

𝑄 ⋅ 𝑢, 𝐴 ⋅ 𝑢, and 𝑏 when needed. 

 



Efficient Implementation 

𝑄 ⋅ 𝑢 = 𝑇∗ 𝑦 .∗ 𝑇 𝑢 + 𝑦 ∞ 

 

𝐴 ⋅ 𝑢 = 

𝑅𝑒 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢  .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢

𝐼𝑚 𝑇∗ 𝑟𝑒𝑎𝑙 𝑇 𝑢  .∗ 𝑐𝑜𝑛𝑗 𝑇 𝑥 𝑡 .∗ 𝑇 𝑥 𝑡 + 𝜆 + 𝜇 ⋅ 𝑢
   

 

 

𝑏 =
𝑅𝑒 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡

𝐼𝑚 𝑇∗ 𝑦 .∗ 𝑇 𝑥 𝑡 + 𝜇 ⋅ 𝑥 𝑡
 

 



Adjoint Transformation 𝑇∗(𝑐) 
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𝑤ℎ𝑒𝑟𝑒 𝑖𝑓𝑓𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑓𝑓𝑡 

 



Implementation thus far 

Write sample implementation for small data 
sets 

Write memory efficient implementation 
avoiding the storage of the transformation 
matrix. 

Write Power Method for finding the principal 
eigenpair 

Write Conjugate Gradient Method for solving the 
linear system. 

Cross-Validate Programs 



LS_Algorithm() 

Power_Method() 

Q_u_compute() 

Conjugate_Gradient() 

A_u_compute() RHS_compute() 

Transformation() Adjoint_Transformation() 



Preliminary Tests 

 Validation 

 Study of iterative solvers 

– Power Method 

– Conjugate Gradient 

 Time efficiency and memory efficiency 

 Preliminary Testing Parameters 

 Study of iterative solvers 

– 𝑅 = 8, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

– Program comparisons: 𝑛 = 100 

– Other tests: 𝑛 = 10,000 



Validation 

 Sample implementation and Efficient 

implementation can be compared for small 

problem sizes 

 

 Algorithms produce identical results off by a 

phase factor 

– Principal eigenvector used in initialization are off 

by a constant 



Output Results 𝑥  
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Iterative Solvers 

 Both the Power Method and the Conjugate 

Gradient Method require a stopping tolerance 

 

 Required # of iterations vs stopping tolerance 

was investigated 

 

 𝑛 = 10,000 
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Output vs Original Signal 

 Output, 𝑥 , of the efficient implementation is 

compared to the original signal 

 

 𝑛 = 10,000, 𝑆𝑁𝑅𝑑𝐵 = 10 𝑑𝐵 

 

 Magnitude of each element is plotted. 
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Storage Requirements 

 Memory use is important for usability on large 

data sets 

 Track memory load of stored variables using 

𝑀𝐴𝑇𝐿𝐴𝐵’s 𝑤ℎ𝑜𝑠() at the end of Recursive LS 

Algorithm iteration (𝑛 = 100) 

 Efficient implementation avoids the storage of 

Transformation vectors 

– Significantly more memory efficient 
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Time Efficiency 

 Studying the time consumption of the efficient 

implementation of 𝐿𝑆_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚()  

 𝑛 = 10,000 

 Stopping tol for P.M. and C.G. = 10−14 

 Power_Method takes very long to complete 

 Most time is spent within 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 
and 𝑎𝑑𝑗𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() 



Time Consumption by Function 



LS_Algorithm 

0% 

Power_Method 

3% 

Q_u_compute 

3% 

Conjugate_Gradient 

1% A_u_compute 

4% 

adjTransformation 

45% 

Transformation 

44% 

RHS_compute 

0% 

Time Consumption by Function 



Schedule 

October 
 Post processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least 

squares algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – 

April 15 

 Test on synthetic databases 

 Extract metrics 

April 15 – 

end of 

semester 

 Write final report 
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