

AMSC 663/664 Mid-year Report

Memory Efficient Signal
Reconstruction from
Phaseless Coefficients
of a Linear Mapping
Naveed Haghani
nhaghan1@math.umd.edu

Project Advisor:
Dr. Radu Balan
rvbalan@cscamm.umd.edu
Professor of Applied Mathematics, University of Maryland
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling
Norbert Weiner Center

1

Table of Contents
Introduction .. 2

Background ... 2

Problem Setup .. 2

Transformation ... 4

Algorithm .. 5

Initialization... 5

Iteration .. 6

Memory Efficient Implementation ... 7

Implementation .. 9

Data Creation .. 9

Principal Eigenvalue (Initialization) ... 9

Conjugate Gradient (Iteration) ... 10

Coding ... 11

Parameters .. 12

Validation .. 13

Method ... 13

Results ... 13

Testing ... 16

Preliminary Testing ... 16

Database Testing ... 22

Timeline... 24

Deliverables... 25

References .. 25

2

Introduction

Background
A recurring problem in signal processing involves signal reconstruction using only the magnitudes of the

coefficients of a linear transformation. This problem has applications in the fields of speech processing

and x-ray crystallography. In speech processing, it is common to work with a speech signal’s

spectrogram. Working with the spectrogram provides the ability to perform various audio

manipulations. The challenge then becomes to retrieve a processed signal’s discrete-time signal, as the

spectrogram does not carry in an obvious way any phase information with regards to the signal. In x-ray

crystallography, the diffraction pattern of an x-ray beam will deliver the magnitudes of a transformed

signal of electron density levels. Obtaining the desired electron density information requires the

phaseless retrieval of the original signal.

The project depicted in this paper implements and tests an iterative, recursive least squares algorithm

described in Balan[5] to perform phaseless reconstruction from the magnitudes of the coefficients of a

linear transformation. Testing is done on synthetically generated input data created using random

number generation. A random input vector is generated and passed through a transformation

algorithm. The transformed signal is then passed to the iterative, recursive least squares algorithm to

reconstruct the original signal. Following that, post processing is done on the results.

The implementation will be programmed in MATLAB. The implementation will be designed to prioritize

memory efficiency. Memory efficiency, in this regard, applies primarily to the storage of the resulting

linear system involved in reconstruction. The linear system will be on the order of .

Avoiding the costly storage of this system and deriving its contents when needed will be the primary

focus during implementation of the algorithm. Following the algorithm’s completion, the program’s

performance is studied with regards to time efficiency, accuracy, and scalability with problem size.

Problem Setup

Given an n-dimensional complex signal, , that has been passed through a redundant linear

transformation, (), the objective is to reconstruct from the element by element squared modulus

of the transformed signal. The transformed signal will be labeled as follows:

 ()

[

]

 (1)

The transformed signal lies in the dimensional complex space, where . here represents

the level of redundancy within the transformation ().

3

The element by element squared modulus of is represented by :

[

| |

| |

| |]

 (2)

 has been transformed into the real space to produce . Since it lies in the real space, does not carry

any phase information of the original signal, fitting the criterion for phaseless reconstruction.

The resulting vector will be passed into the iterative, recursive least square algorithm, but not before

adding a variable amount of Gaussian noise. The resulting input to the algorithm is labeled and is

defined by:

 (3)

Where is Gaussian noise and is a weight factor used to achieve a desired signal to noise ratio for

testing. is the vector of transformation magnitudes with simulated noise. The iterative, recursive

least squares algorithm will use the input to produce an approximation of , labeled ̂. The entire

process works as follows:

Transformation

Element by Element

Modulus

Additive Noise

Iterative, recursive

least squares

algorithm

 ̂

4

After ̂ is obtained, the estimation is passed into a post processing framework to study certain output

characteristics, namely certain trends with regards to varying signal to noise ratios in .

Transformation
The transformation used in the implementation is a weighted discrete Fourier transform. In the

transformation, each element of is first multiplied by a complex weight, . Then the discrete Fourier

transform is taken on the resulting vector. This is repeated times, each time with an independent set

of weights.

{

[

()

()

]

[

]

}

 (4)

The resulting transformation output is a composite of each of the transformations, making lie

in the complex dimensional space.

[

]

 (5)

The transformation, (), can also be defined in terms of unique frame vectors of length

labeled . In such case, the transformation would be the composite of the scalar product of

the input singal, , with each of the frame vectors:

 () [

⟨ ⟩

⟨ ⟩

⟨ ⟩

] (6)

Where the scalar product of two complex vectors, and , of length is defined as:

⟨ ⟩ ∑ ̅

(7)

For the case of the weighted discrete Fourier transform, the frame vector formulation for ()

would be:

5

{

√

[

()

()

()

]

}

 (

) () √

(8)

After is obtained from the weighted discrete Fourier transform, is obtained by taking the modulus

squared of each element of . Finally, Gaussian noise is added to to produce , the input to the

iterative, recursive least squares algorithm.

Algorithm
The reconstructive algorithm to be implemented has been introduced and described in Balan[5]. It

consists of two primary processes, the initialization and the iterative solver. The algorithm serves as a

least squares solver that is designed to minimize ‖ ̂‖ , where ̂ is the value in equation (2)

obtained from inputting the current estimation, ̂, into the preprocessing transformation.

Initialization
Initialization starts with finding the principal eigenvalue, , and its associated eigenvector, , of a

matrix defined by:

 ∑

 (9)

Where , defined earlier, is the kth frame vector of ().

Before the principal eigenpair is retrieved, the following modification is performed on :

 (10)
 ‖ ‖

This modification ensures that is positive definite, subsequently ensuring that the power method for

finding the principal eigenvector will converge.

Once this eigenpair is discovered the first estimation, ̂(), can be initialized as [5]:

 ̂() √
()

∑ |⟨ ⟩|

 (11)

6

Two additional parameters, and , are initialized as [5]:

 (12)

 After initialization, the algorithm moves on to the iterative process.

w

Iteration
Through each pass of the iterative process a linear system is solved to obtain a new approximation ̂.

The linear system is constructed in the real space. Instead of working with ̂, the algorithm works with

 [
 (̂)
 (̂)

], the composite of the real values of ̂ and the imaginary values of ̂. The linear system

which is symmetric and positive definite is defined as:

 ()

 ∑(
()) (

())

 ()

 (∑

)

 [
 ()

 ()
] [

]

(13)

(14)

(15)

 () is the composite of the real and imaginary components of the current approximation ̂(), and

 () is the composite of the real and imaginary components of the next approximation ̂().

Following that, the parameters are updated for the following iteration:

(16)

 (
)

(17)

This process is repeated until the following stopping criterion is met:

∑ | |⟨ () ⟩|

|

 (18)

7

This stopping criterion is essentially checking whether ‖ ̂‖ is below a given tolerance.

The flow of the algorithm is represented in the figure below.

A transformed vector is inputted to the algorithm. The algorithm runs through the initialization phase

then to the iterative phase. After each pass of the iterative phase, a stopping criterion is checked. If the

criterion is met, the algorithm delivers its current approximation, otherwise the iterative phase is

repeated.

Memory Efficient Implementation
The formulations described are dependent on the frame vector representation, , of the

transformation (). This is an complex matrix. For large , for example , the storage

of these frame vectors is very costly. Furthermore, the matrix required in the initialization phase is an

 complex matrix, and the matrix required in the iterative phase is a real matrix. The

storage of these matrices would also be very costly for large problem sizes.

Avoiding such large storage requirements is critical for implementation on large problem sizes.

Therefore, the variables described so far have been reformulated in terms of the transformation ()

8

instead of its associated frame vectors. Where the transformation () is required, its formulation

represented by the fast Fourier transform will be used instead of the frame vectors. This will avoid,

altogether, the storage of .

For the matrix required in the initialization phase, the matrix times a given vector can be

reformulated as:

 (()) ‖ ‖ (19)

For the matrix required in the iterative phase, the matrix-vector product of the matrix and a given

vector can be redefined as:

 [
 { ({ () { (())}} (())) () }

 { ({ () { (())}} (())) () }
] (20)

And the right hand side, , of the linear system in the iterative phase can be reformulated as:

 [
 { ((())) ()}

 { ((())) ()}
] (21)

 in the given formulations represents the associated adjoint of the transformation (). It is

implemented as:

 () ∑

√
 ̅̅ ̅̅ (())

(22)

The given formulations have no dependence on the frame vector representation of (). Furthermore,

since the formulations produce products for and , the matrices and do not require

storage either. In this case, however, the principal eigenvalue of and the linear system involving

must both be solved without their explicit formulations. This will be done using the power method for

determining the principal eigenvalue of and the conjugate gradient method for solving the linear

system involving .

9

Implementation

Data Creation

The complex input vector will be generated synthetically using random number generation. Each

element of will consist of a randomly generated normal component and a randomly generated

imaginary component. Both random numbers will be distributed normally about 0 with variance 1. ,

which is the vector length of , will be on the order of 10,000. 10 different realizations of will be

generated and saved for repeated use.

The weights used in the weighted transformation will also be synthetically generated using random

number generation. Each element of will have a random normal component and a random imaginary

component, each distributed normally about 0 with variance 1. There will be 10 different realizations of

each set ().

The noise, , added to to produce will be generated randomly as well. Each element will be

distributed normally about 0 with variance 1. There will be 10,000 different realizations of noise, .

Principal Eigenvalue (Initialization)
During the initialization stage of the iterative, recursive least squares algorithm, the principal eigenvalue

of a matrix must be calculated. To achieve this, the power method for obtaining the principal

eigenvector will be used. The power method starts with an initial approximation of the associated

eigenvector, () For the purposes of this implementation, () will be set to an array of random

numbers. Each element will be distributed normally about 0 with variance 1.

From () the algorithm will repeat as follows:

 ()
 ()

‖ ()‖

 () ()

 ‖ () ()‖

With the selection of an appropriate tolerance, this algorithm should produce an adequate

approximation for the principal eigenvector, , of the matrix . The associated eigenvalue is then

calculated for the unmodified matrix . It is calculated by the equation:

‖ ‖

‖ ‖
 ‖ ‖

10

Conjugate Gradient (Iteration)
Through each iteration of the iterative, recursive least squares algorithm, a linear system must

be solved. This would be cumbersome to solve exactly and would jeopardize the priority of memory

efficiency. Instead, the conjugate gradient method of solving linear systems will be used. The conjugate

gradient method is an iterative method for solving symmetric, positive definite linear systems, and since

 is a symmetric, strictly positive matrix whose lowest eigenvalue is bounded below by , the

conjugate gradient method can be used to solve the linear system .

The conjugate gradient method works by taking the residual of an approximate solution to a linear

system and reducing it by moving the solution along several different conjugate directions. Two vectors

 and are considered to be conjugate with respect to a matrix if they satisfy the following

condition:

For a given matrix in , there are always linearly independent conjugate directions. Traveling along

all directions produces the exact solution to the system. However, if during that time the iterations

converge to within a given tolerance of the solution, the process can be concluded at that time with a

sufficient approximation.

The algorithm will be initialized as [7]:

 () ̂()

 () ()

Where ̂() is the approximate solution at the kth iteration, () is the residual at the kth iteration, and

 () is the kth conjugate direction. ̂() is initialized to the current approximation of the iterative,

recursive least squares algorithm, represented by ().

Each iteration repeats as [7]:

⟨ () ()⟩

 () ()

 ̂() ̂() ()

 () () ()

 () () ()
⟨ () ()⟩

⟨ () ()⟩

 ‖ ()‖

11

In each iteration, the solution moves along the conjugate direction () a distance . The iterations are

repeated until the magnitude of the residual of the current approximation is less than a given tolerance.

Coding
The entire algorithm from preprocessing through post processing is implemented in MATLAB. The

iterative, recursive least squares algorithm will be programmed to run in parallel on different input

vectors. This will increase the time efficiency of the program as it runs over multiple input data sets.

To implement the discrete Fourier transform, MATLAB’s () function will be used. () implements

a fast Fourier transform. Random numbers will primarily be generated using MATLAB’s ()

command, which generates normally distributed random variates. For generating the random noise

variants however, a linear congruential generator will be implemented. The linear congruential

generator works as follows:

 ()()

Here is the modulus, is the multiplier, is the increment, and is the seed. For a given integer ,

the associated random number would equal:

Using a linear congruential generator has the advantage that if the same seed is used in different testing

implementations, then the same exact sequence of random numbers would be produced in each case.

Since there will be 10,000 different realizations of noise vectors, it will be beneficial to generate them

each time the program runs, rather than saving and loading each realization.

To preserve memory efficiency, implementing the iterative, recursive least squares algorithm is written

using the formulations described in equations (19), (20), and (21). The memory efficient algorithm has

the following function structure:

12

 () is called to perform the iterative recursive least squares algorithm. Within it, there are

calls to () and (). () uses the power method to

determine the principal eigenvector of the matrix. Within () there is a call to

 (), which performs the formulation in equation (19). () employs

the conjugate gradient method to solve the linear system described in equation (13). It includes calls to

both (), which calculates the result of equation (20), and (), which

calculates the result of equation (21). (), (), and () all

perform calls to () and () to compute their results.

Parameters
Below is a list of the various parameters required in implementation and the associated values they will

be set to.

PM stopping

tolerance

CG stopping
tolerance

13

Validation

Method
Validation for the iterative, recursive least squares implementation can be done on the individual

modules within the algorithm, including the power method implementation and the conjugate gradient

implementation. Using a smaller sample data set with on the order of 100 rather than 10,000, the

power method can be substituted with MATLAB’s () function. () will reliably deliver the principal

eigenvalue that was sought after by the power method implementation. The power method

implementation can then be run on the same sample data in order to compare the results. If the results

are comparable, the power method module will be validated.

A similar procedure can be done for the conjugate gradient implementation. On a small data set with

on the order of 100, the conjugate gradient module can be substituted with MATLAB’s ().

 () will provide the exact solution to the linear system. This exact solution can be used to

compare with the results obtained using the conjugate gradient implementation. Comparable results

would provide validation. The conjugate gradient implementation can be further validated on large data

sets as well. This is done by letting the conjugate gradient run through all possible iterations. For a

system of size , the conjugate gradient method ensures absolute convergence to the true solution

in steps. Rather than returning a result within a certain tolerance, the implementation can be made to

run through all iterations regardless. The result will serve as the true solution to validate against.

The memory efficient implementation represented by equations (19), (20), and (21) will programmed

and referred to as the efficient implementation. It will be compared against the frame vector

implementation formulated by equations (9), (14), and (15) which will be called the sample

implementation. The results of these two implementations can be compared against one another for

small, sample problem sizes of .

Results
The power method and conjugate gradient method were both programmed and validated as described.

The conjugate gradient method reliably produces results comparable to MATLAB’s () with a

slight amount of round-off error () even when the conjugate gradient method is run through all

iterations. The power method successfully produces the principal eigenvector as desired, however the

eigenvector differs from the result of MATLAB’s () in that it is consistently off by a multiplicative

complex constant. Both eigenvectors, though, are associated with the same eigenvalue, the principal

eigenvalue.

Since the initial approximation of ̂ is dependent on the principal eigenvector of , the initial

approximations of the sample implementation and the efficient implementation are off by a

multiplicative phase factor, the same phase factor by which the two eigenvectors differed. This constant

difference perpetuates through all iterations of the least squares algorithm, thus making the final results

14

of the sample implementation and the efficient implementation equivalent in magnitude but off by a

phase factor.

The results of the sample implementation and efficient implementation are compared for three data

sets with . For each testing setup, the signal to noise ratio in is set to . The plot below

shows each element of the output of both implementations plotted on the complex plane:

It can be seen that the outputs do not line up. The norm difference between the principal eigenvector

of the efficient implementation and the principal eigenvector of the sample implementation was

 . The phase difference between the eigenvectors of the two implementations was .

Shifting the output of the efficient implementation by this phase factor results in the following plot:

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

15

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4

 5
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

 1

 2

 3

 4

 5
Im{x}

 Re{x}

Sample and Efficient (phase adjusted) Algorithm Outputs

x sample

x efficient

The outputs now line up, showing that the two outputs are only off by the phase factor introduced

during the eigenvector retrieval in the initialization phase.

The same process is repeated for two more sample data sets with .

In this data set, the norm difference in the principal eigenvectors of was and the phase

difference was . After a phase shift in the output of the efficient implementation, the outputs

line up.

In this data set, the norm difference in the principal eigenvectors of was and the phase

difference was . Once more, after a phase shift in the output of the efficient implementation,

the outputs line up.

 1

 2

 3

 4
Im{x}

 Re{x}

Sample and Efficient Algorithm Outputs

x sample

x efficient

16

Testing

Preliminary Testing
A few preliminary tests are run on the resulting program to study certain aspects of its behavior. First, a

visual look was taken at the output of the efficient implementation for a problem size of

and a signal to noise ratio in of . The magnitudes of the approximation ̂ and the original signal

 are plotted alongside one another for each of the elements. A small portion of the plot is shown in

the figure below.

The approximate solution ̂ is represented in blue while the original signal is represented in black.

Below is a plot of the portion containing the point with the highest inaccuracy.

2870 2880 2890 2900 2910

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

e
{x

}

Element by Element Magnitude of x

true solution

algorithm result

17

The highest inaccuracy occurs at an index around .

Next the convergence properties of the power method and the conjugate gradient method were

studied. For a given dataset with , both methods were run for various stopping tolerances

and the number of iterations required to reach completion was recorded. The resulting output for the

power method is shown below.

3730 3740 3750 3760 3770 3780 3790
0

0.5

1

1.5

2

2.5

3

index

m
a
g

n
it
u

d
e
{x

}

Element by Element Magnitude of x

algorithm result

true solution

18

The stopping tolerance is plotted on the horizontal axis on a logarithmically decreasing scale. The power

method requires a considerable amount of iterations. For a stopping tolerance of the power

method requires about iterations. From the graph it can be concluded that the error in the power

method decays exponentially as the number of iterations is increased. In other words, increasing the

number of iterations provides diminishing returns in the accuracy of the power method.

The required iterations of the conjugate gradient method were also plotted against its stopping

tolerance. The resulting plot is shown below.

10
-20

10
-15

10
-10

10
-5

10
0

0

2000

4000

6000

8000

10000

12000

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s
Power Method iterations vs tolerance

19

The conjugate gradient method requires very few iterations and converges to high accuracy very quickly.

For a stopping tolerance of the conjugate gradient method requires iterations. This is

beneficial because the conjugate gradient method is called numerous times through the execution of

the least squares algorithm, once through each pass of the iterative phase. The trend of the error of the

conjugate gradient method is similar to that of the power method in that the error also decays

exponentially as the number of iterations is increased. However, the conjugate gradient method’s error

decays much more rapidly than the error in the power method.

One of the primary goals in writing the efficient implementation is memory efficiency. Therefore, the

memory load of the efficient implementation is compared against the memory load of the sample

implementation at corresponding parts in the algorithm. MATLAB’s () function was used to track

all the variables in a function’s workspace at a given time. () delivers the memory requirements of

each variable stored. Summing up all the load of each variable will produce to total memory load of the

program at a specific time. Both implementations were studied for a problem of size . The

memory load was checked at the end of one iteration of the iterative phase of the least squares

algorithm. A visual representation of where the load was examined is shown below.

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

2

4

6

8

10

12

14

16

stopping tolerance

#
 o

f
it

e
ra

ti
o
n

s

Conjugate Gradient iterations vs tolerance

20

The results are graphed below.

0

500000

1000000

1500000

2000000

2500000

3000000

sample algorithm efficient algorithm

2588750

25550

B
yt

e
s

Storage Requirements (n=100)

21

The sample algorithm requires significantly more storage than the efficient algorithm. At the given

point in the algorithm, the sample algorithm’s storage requirements are over 2.5 megabytes while the

efficient algorithm requires only about 25 kilobytes.

The large storage disparity between the algorithms can be attributed primarily to the sample algorithm’s

storage of the transformation frame vectors, , and the matrix defined in equation (14). is an

 matrix of complex numbers. Both the real and imaginary elements of each complex number are

stored as double precision floating point numbers, requiring bytes for each (in total for each

complex number). For and , the memory requirements for would thus be

 bytes. Similarly, is a matrix of double precision floating point

numbers. The storage requirements for in the same problem setup would be

 bytes. Avoiding this storage is what allows the efficient algorithm to run on large problem sizes

of .

Finally, the time performance of the efficient implementation of the least squares algorithm is

investigated on a problem size of . The MATLAB profiler was run on a call to

 (). The results are shown in the figure below.

“Total Time” represents the time from call to return of each function summed over all calls. “Self Time”

represents the time spent within the given function that is not spent within any other functions called

from within that given function. The right column provides a visual representation of the results. The

dark blue represents “Self Time” while the dark blue added to the light blue represents “Total Time”.

22

It can first be noted that () required 181.935 seconds to complete in this instance. Only

0.377 seconds were spent directly within (), the rest of the time was spent within

function calls. () is called once and its total time to completion is seconds, over

half the total runtime of (). Still, a vast majority of the program’s time is spent directly

within () and (). A visual representation of the relative “Self

Times” as a percentage of total algorithm runtime are shown in the pie chart below.

The pie chart shows that the time spent directly within () and ()

encompasses nearly of the runtime of (). The next most significant time consuming

function is () which only takes of of the runtime.

Database Testing
There will be 10 different sets of input data, each of which can be passed through 10 different uniquely

weighted transformations to produce a unique . The vector is generated by adding noise to . The

noise vector can be weighted by to produce a desired signal to noise ratio in .

The goal in testing will be to test each input on a multiple of signal to noise ratio levels ranging from -30

decibels to 30 decibels, in 5 decibel increments. The appropriate signal to noise ratio will be set by

adjusting in the following equation:

LS_Algorithm
0%

Power_Method
3%

Q_u_compute
3%

Conjugate_Gradient
1%

A_u_compute
4%

adjTransformation
45%

Transformation
44%

RHS_compute
0%

Time Consumption by Function

23

 [

∑ | |

 ∑ | |

] (18)

Given a certain transformed input, there are 10,000 different noise variations that can be used for each

signal to noise ratio level. This will produce 10,000 output samples for a specific input at a given signal

to noise ratio level. From this data, the mean squared error of the output can be studied in relation to

the signal to noise ratio. As well, the bias of the mean of the output and the variance of the output can

be studied against the signal to noise ratio.

24

Timeline
So far the recursive least squares algorithm has been program and validated. This includes the

implementation of the power method and the conjugate gradient method. The databases required for

testing have also been generated. Future work will involve programming the post processing framework

and running tests. An updated schedule of the progress so far is shown below. A check mark indicates a

task that has been completed.

October
 Post processing framework

 Database generation

November
 MATLAB implementation of iterative recursive least squares

algorithm

December Validate modules written so far

February
 Implement power iteration method

 Implement conjugate gradient

By March 15 Validate power iteration and conjugate gradient

March 15 – April 15
 Test on synthetic databases

 Extract metrics

April 15 – end of

semester
 Write final report

25

Deliverables
The project will produce several deliverables. They are listed below:

 Proposal presentation

 Written proposal

 Midterm presentation

 Final presentation

 Final report

 MATLAB program

 Input data

 Output data

 Output charts and graphs

References
[1] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical linear algebra. Springer, 2008.

[2] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference,

Princeton, NJ, May 2010.

[3] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase,

Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

[4] R. Balan, Reconstruction of signals from magnitudes of redundant representations. 2012.

[5] R. Balan, Reconstruction of signals from magnitudes of redundant representations: the complex

case. 2013.

[6] Christensen, Ole. "Frames in Finite-dimensional Inner Product Spaces."Frames and Bases.

Birkhäuser Boston, 2008. 1-32.

[7] Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the

agonizing pain." (1994).

