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Abstract

We study a binary classification problem with infinite time series having more than two labels

(”event” and ”nonevent” or ”trending” and ”non-trending”). We want to predict the label of the

time series given some training data set. Intuitively, the longer we wait, the longer the time series

we can observe so that the prediction is more accurate. However, in many applications, such as

predicting which topic will go popular in a social network or revealing an imminent market crash,

making a prediction as early as possible is highly valuable.Motivated by these applications, we look

into a latent source model which is a nonparametric model to predict the binary status of a time

series. Our main assumption is that these time series only have a few ways to reach the binary

status such as Twitter topic going trending online. The latent source model naturally leads to

a weighted majority voting as the classification rule without knowing the latent source structure.

In the project: 1. We will investigate the theoretical performance guarantees of the latent source

model; 2. We will implement the model by programming language C; 3. We will investigate the

strategy to estimate the values of different parameters; 4. We will test our implementation and use

the model to predict which news topics on Twitter will go viral to become trends and analyze the

results.

1 Introduction

1.1 Motivation

Detection, classification, and prediction of events in the streams of information are important and

interesting problems in science and engineering. From detecting a ”fail” in the operation system, to

predicting a huge stock index spike, to revealing whether topics in a social network will go popular,
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extracting useful information from time to time dependent data is fundamental for making decisions.

Different from the 20th century, in the big data era, we have the access to large amount of data

related to every human endeavor. Therefore, we are eager to find good ways to analyze the data and

make decisions given the data. In social network, there are massive streams of user generated date

which will reveal interesting facts, such as blogs and tweets, as well as data from portable electronic

devices. These data provides us an amazing opportunity to learn the dynamics of human behavior

in the communication online. ”How do people make decisions? Who are they influenced by? How

do ideas and behaviors spread and evolve?” These are questions that have been impossible to study

empirically at scale until recent times.

Big data presents both opportunities and challenges. Big data can reveal the hidden underlying

structure in a process of interest. On the other hand, given current computing and storage technology,

making computations over so much data at scale is challenge. Fortunately, advances in distributed

computing have made it easier than ever to exploit the structure in large amounts of data to do in-

ference at scale. In this project, we do use Mapreduce method to preprocess the big data generated

by Twitter. It is about 500G per day.

All of these examples we mentioned above share some common features. There exist some under-

lying process with specific properties or feature generating these time series such as stock index time

series. Looking into time series, we may infer many information, such as detecting anomalous events,

predicting the trends of the time series at some future point.

This is difficult to do in general. Many real-world processes defy description by simple models.

Here is an paragraph I found in Dr. Nikolov’s paper

Eugene Wigner’s article ’The Unreasonable Effectiveness of Mathematics in the Natural

Sciences’ examines why so much of physics can be neatly explained with simple mathe-

matical formulas such as f = ma or e = mc2. Meanwhile, sciences that involve human

beings rather than elementary particles have proven more resistant to elegant mathematics.

Economists suffer from physics envy over their inability to neatly model human behavior.

An informal, incomplete grammar of the English language runs over 1700 pages. Perhaps

when it comes to natural language processing and related fields, we are doomed to complex

theories that will never have the elegance of physics equations. But if that’s so, we should

stop acting as if our goal is to author extremely elegant theories, and instead embrace

complexity and make use of the best ally we have: the unreasonable effectiveness of data.

In this project, we study the problem of prediction in a complex system using large amounts of

data. Specifically, we focus on applying a latent source model to do a binary classification of time

series given the big enough training data set (sufficient historical examples). We apply this to the

problem of trending topic detection on Twitter and show that we can reliably detect trending topics

before they are detected as such by Twitter. At the same time, we aim to introduce a more general
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setting for doing inference in time series based on a large amount of historical data.

2 Classification Method

In this project, we are applying a setting for model specification and selection in supervised learn-

ing based on a latent source model. In this setting, the model is specified by a small collection of

unknown latent sources. We assume that the data were generated by the latent sources.

2.1 Weighted Majority Voting

Weighted Majority Voting model is an important model in machine learning and we apply this

model on time series in this project. Suppose we have a time series s: T→ R that we want to classify

as having either label +1 or -1. Here, each time series is represented as a function mapping T to R,

where we index time using T for convenience. We denote the sets of all time series with labels +1 and

-1 as R+ and R−.

In this project, each r ∈ R+ gives a weighted vote e−γd
(T )(r,s) on whether time series s has label

+1, where d(T )(r, s) is some measure of similarity between the two time series r and s. d(T )(r, s) is

chosen as the Euclidean distance between s and r in this project. (Similarity measure: the larger the

more similar the signals; whereas for a distance: the smaller the more similar). (T) denotes the first

T time steps of s, and the constant γ > 0 is a scaling parameter that determines the influence of each

r. Similarly, each negatively-labeled example in R− also casts a weighted vote on whether time series

s has label -1. Essentially, each example time series in the training data says ”‘The time series looks

like me”’ with certain confidence.

In this project, we use squared Euclidean distance between time series as the similarity measure:

d(T )(r, s) =
∑t

t=1(r(t)− s(t))2 = ‖r − s‖2T . Notice that this similarity measure only uses first T time

steps of example time series r. Since time series in our training data are known, we would not restrict

only the first T time steps but instead use the following similarity measure:

d(T )(r, s) = min
∆∈{−∆max,...,0,...,∆max}

T∑
t=1

(r(t+ ∆)− s(t))2 = min
∆∈{−∆max,...,0,...,∆max}

‖r ∗∆− s‖2T (1)

where we minimize over integer time shifts and the maximum time shift ∆max ≥ 0.

Finally, we sum up all of the weighted +1 votes and then all of the weighted -1 votes. The label

with the majority of overall weighted votes is declared as the label for s:

L̂(T )(s, γ) =

{
+ if

∑
r∈R+

e−γd
(T )(r,s) ≥

∑
r∈R−

e−γd
(T )(r,s)

− otherwise
(2)
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Using a larger time window size T corresponds to waiting longer before we make a prediction. We

need to trade off how long we wait and how accurate we want our prediction.

2.2 A Latent Source Model

Dr. Chen proposed the latent fource model for nonparametric time series classification. We as-

sume there are m unknown latent sources(time series) that generate observed time series. We denote

the set of all such latent sources by V and each latent source in V has a true label +1 or -1, which

corresponding trending topic or non trending topic. Let V+ ∈ V be the set of latent sources with

label +1, and V− be the set of those with label -1. The observed time series are generated from latent

sources as follows:

1. Sample a latent source V from V uniformly at random. Let L ∈ {+1,−1} be the label of V.

2. Sample integer time shift ∆ uniformly from {0, 1, ...,∆max}.
3. Output time series S to be the latent source V advanced by ∆ time steps, followed by adding noise

signal E, i.e., S(t) = V (t+ ∆) + E(t) for t ≥ 1. Entries of noise E are i.i.d. zero-mean sub-Gaussian

with parameter σ, which means that for any time index t,

E[exp(λE(t))] ≤ exp(1

2
λ2σ2) for all λ ∈ R (3)

If we know the latent sources and if noise entries E(t) were i.i.d. N (0, 1
2γ ) across t, then the maximum

a posteriori estimate for label L given an observed time series S = s is

L̂
(T )
MAP (s; γ) =

{
+1 if Λ

(T )
MAP (s; γ) ≥ 1,

−1 otherwise
(4)

where

Λ
(T )
MAP (s; γ) ,

∑
v+∈V+

∑
∆+∈D+

exp(−γ‖v+ ∗∆+ − s‖2T )∑
v−∈V−

∑
∆−∈D+

exp(−γ‖v− ∗∆− − s‖2T )
(5)

and D+ , 0, ...,∆max.

Importantly, we do not know the latent sources, nor do we know the noise distribution is i.i.d.

Gaussian. We assume that we have access to training data as in Weighted Majority Voting section.

We make a further assumption that the training data were sampled out of the latent source model

and that we have n different training time series. Denote n+ , |R+|, n− , |R−|,R , R+ ∪ R−, and

D , {−∆max, ..., 0, ...,∆max}. Then, we could approximate the MAP classifier by using training data

as a proxy for the latent sources. Specifically, replace the inner sum by a minimum in the exponent,

replace V+ and V− by R+ and R−, and replace D+ by D to obtain the ratio:

Λ(T )(s; γ) ,

∑
r+∈R+

exp(−γ(min∆+∈D ‖r+ ∗∆+ − s‖2T ))∑
r−∈R−

exp(−γ(min∆−∈D ‖r− ∗∆− − s‖2T ))
(6)

Then, it yields the weighted majority voting rule. If we didn’t replace the summations over the time

shifts with minimums and our main result for weighted majority voting to follow would still hold using
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the same proof.

In application, we may call for trading off true and false positive rates. One way to do so is

to generalize the decision rule to declare the label to be +1 if Λ(T )(s, γ) ≥ θ and then sweep over

different values of parameter θ > 0. The resulting decision rule, which we refer to as generalized

weighted majority voting is thus:

L̂
(T )
θ (s, γ) =

{
+1 if Λ(T )(s, γ) ≥ θ,
−1 otherwise

(7)

where setting θ = 1 recovers the usual weighted majority voting.

2.3 Theoretical Guarantee of Misclassification

In Dr.Chen’s paper[1], they proposed a performance guarantee for generalized weighted majority

voting. First, we define the gap between R+ and R− restricted to time length T and with maximum

time shift ∆max as:

G(T )(R+,R−,∆max) , min
r+∈R+,r−∈R−,∆∈D

||r+ ∗∆+ − r− ∗∆−||2T (8)

This quantity measures how far apart the two different classes are if we only look at length-T chunks

of each time series and allow all shifts of at most ∆max time steps in either direction.

Theorem 2.1. Let m+ , |V+| be the number of latent sources with label +1, and m− , |V−| = m−m+

be the number of latent sources with label -1. For any β > 1, under the latent source model with

n > βmlogm time series in the training data, the probability of misclassification time series S with

label L using generalized weighted majority voting L̂
(T )
θ (s, γ) satisfies the bound.

P(L̂
(T )
θ (S, γ) 6= L)

≤ (
θm+

m
+
m−
θm

)(2∆max + 1)nexp(−(γ − 4σ2γ2)G(T )(R+,R−,∆max)) +m−β+1
(9)

Given error tolerance δ ∈ (0, 1) and with choice γ ∈ (0, 1
4σ2 ), then upper bound is at most δ if

n > mlog 2m
δ , and

G(T )(R+,R−,∆max) ≥
log( θm+

m + m−
θm ) + log(2∆max + 1) + logn+ log 2

δ

γ − 4σ2γ2
(10)

This means that if we have access to a large enough pool of labeled time series, i.e., the pool has

Ω(mlogmδ ) time series, then we can subsample n = Θ(mlogmδ ) of them to use as training data. Then

with choice γ = 1
8σ2 , generalized weighted majority voting correctly classifies a new time series S with

probability at least 1− δ if

G(T )(R+,R−,∆max) = Ω(σ2(log(
θm+

m
+
m−
θm

) + log(2∆max + 1) + log
m

δ
)) (11)
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Thus, the gap between sets R+ and R− needs to grow logarithmic in the number of latent sources

m in order for weighted majority voting to classify correctly with high probability.

Notation f(n) = Ω(g(n)) is defined as g(n) = O(f(n)). f(n) = Θ(g(n)) is defined as f(n) =

O(g(n)) and g(n) = O(f(n)) which is stronger than big O.

Proof. For each time series, there exist a latent source V, shift ∆′ ∈ D, and noise signal E′ such that

S = V ∗∆′ + E′ (12)

With a training set of size n ≥ βmlogm, for each latent source V ∈ V, there exist at least one signal

in R that is generated from V.

Then, we note that R is generated from V as

R = V ∗∆′′ + E′′ (13)

where ∆ = ∆′−∆′′ ∈ D and E = E′−E′′ ∗∆. Since E′ and E′′ are i.i.d. over time and sub-Gaussian

with parameter σ, one can easily verify that E is i.i.d. over time and sub-Gaussian with parameter
√

2σ.

Now, we want to bound the probability of error of classifier. The probability of error or misclassi-

fication using the first T samples of S is given by

P(missclassification of S using its first T samples)

= P(L̂θ = −1|L = +1)P(L = +1) + P(L̂θ = +1|L = −1)P(L = −1)
(14)

where we know that P(L = +1) = m+

m . Then, we will focus on bounding P(L̂θ = −1|L = +1). By the

Markov’s inequality,

P(L̂θ = −1|L = +1) = P(
1

Λ(T )
≥ 1

θ
|L = +1) 6 θE[

1

Λ(T )
|L = +1] (15)

Now,

E[
1

Λ(T )
|L = +1] 6 max

r+∈R+,∆+∈D
E[

1

Λ(T )(r+ ∗∆+ + E; γ)
] (16)

Let r+ ∈ R and ∆+ ∈ D. Then for any time series s,

Λ(T )(s; γ) ≥
exp(−γ||r+ ∗∆+ − s||2T )∑

r−∈R−,∆−∈D exp(−γ||r− ∗∆− − s||2T )
(17)

After evaluating the above for s = r+ ∗∆+ + E, we could see that

1

Λ(T )(r+ ∗∆+ + E; γ)

≤
∑

r−∈R,∆−∈D
{exp(−γ||r+ ∗∆+ − r− ∗∆−||2T )exp(−2γ〈r+ ∗∆+ − r− ∗∆−, E〉T )}

(18)
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where we denote 〈q, q′〉T ,
∑T

t=1 q(t)q
′(t), and ||q||2T , 〈q, q〉T . Then, we could get the following

bound:

E
[

1

Λ(T )(r+ ∗∆+ + E; γ)

]

≤ E

 ∑
r−∈R,∆−∈D

{exp(−γ||r+ ∗∆+ − r− ∗∆−||2T )exp(−2γ〈r+ ∗∆+ − r− ∗∆−, E〉T )}


=

∑
r−∈R−,∆−∈D

exp(−γ||r+ ∗∆+ − r− ∗∆−||2T )
T∏
t=1

E [exp(−2γ(r+(t+ ∆+)− r−(t+ ∆−))E(t))]

≤
∑

r−∈R−,∆−∈D
exp(−γ||r+ ∗∆+ − r− ∗∆−||2T )

T∏
t=1

exp(4σ2γ2(r+(t+ ∆+)− r−(t+ ∆−))2)

=
∑

r−∈R−,∆−∈D
exp(−(γ − 4σ2γ2)||r+ ∗∆+ − r− ∗∆−||2T )

≤ (2∆max + 1)n−exp(−(γ − 4σ2γ2)G(T ))

(19)

where we use the independence of entries of E and we assume that E is zero mean Gaussian distribution.

Now, we obtain that

P(L̂θ(s; γ) = −1|L = +1) ≤ θ(2∆max + 1)n−exp(−(γ − 4σ2γ2)G(T )) (20)

Repeating a similar argument yields

P(L̂θ(s; γ) = +1|L = −1) ≤ 1

θ
(2∆max + 1)n+exp(−(γ − 4σ2γ2)G(T )) (21)

Finally, we obtain the bound as

P(misclassification of S using its first T samples)

≤ θ(2∆max + 1)
n−m+

m
exp(−(γ − 4σ2γ2)G(T )) +

1

θ
(2∆max + 1)

n+m−
m

exp(−(γ − 4σ2γ2)G(T ))

=

(
θm+

m
+
m−
mθ

)
(2∆max + 1)nexp(−(γ − 4σ2γ2)G(T ))

(22)

3 Application: Twitter Trending Topics Prediction

In this section, we consider the application of the method in section 2 toward detection of trending

topics on Twitter. We discuss the Twitter service, the collection and preprocessing of data, and the

experimental setup for the detection task.
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3.1 Overview

3.1.1 Overview of Twitter

Overview of the twitter service is from Twitter official website, papers, and wikipedia. Twitter is

a real-time messaging service and information network. Users of Twitter can post short (up to 140

characters) messages called Tweets, which are then broadcast to the users followers. Users can also

engage in conversation with one another. By default, Tweets are public, which means that anyone can

see them and potentially join a conversation on a variety of topics being discussed. Inevitably, some

topics gain relatively sudden popularity on Twitter. For example, a popular topic might reflect an

external event such as a breaking news story or an internally generated inside joke or game. Twitter

surfaces such topics in the service as a list of top ten trending topics.

3.1.2 Twitter-Related Definitions

Talking about Tweets, topics, trends and trending topics can be ambiguous, so here we make

precise our usage of these and related terms.

Definition 3.1. We define a topic to be a phrase consisting of one or more words delimited by spacing

or punctuation. A word may be any sequence of characters and need not be an actual dictionary word.

Definition 3.2. A Tweet is about a topic if it contains the topic as a substring. Tweets can be about

many topics.

Example 3.1. The following tweet by the author (handle @Zsquared) contains the string “AMSC663”

Hence, it is considered to be about the topic “AMSC663”.

“AMSC663 Project drives me crazy.”

Definition 3.3. A trending topic is a topic that is currently on the list of trending topics on Twitter.

If a topic was ever a trending topic during a period of time, we say that the topic trended during that

time period.

Definition 3.4. A trending topic will also occasionally be referred to as a trend for short.

Definition 3.5. The trend onset is the time that a topic first trended during a period of time.

Example 3.2. If the topic “government shutdown” is currently in the trending topics list on Twitter,

we say that “government shutdown” is trending, and that is a trend. The topic “government shutdown”

has a trend onset, which is the first time it was trending in a given period of time. This could, for

example, correspond to when the “shutdown” happened. After “government” is no longer trending, we

say that “government shutdown” trended.

3.1.3 Problem Statement

At any given time there are many topics being talked about on Twitter. Of these, some will trend

at some point in the future and others will not. We wish to predict which topics will trend. The earlier
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we can predict that a topic will trend, the better. Ideally, we would like to do this while maintaining

a low rate of error.

3.1.4 Proposed Solution

Our approach to detecting trending topics is as follows. First, we gather examples of topics that

trended and topics that did not trend during some period of time. Then, for each topic, we collect

Tweets about that topic and generate a time series of the activity of that topic over time. We then

use those time series as reference signals and apply the classification method we discussed in previous

sections.

Figure 1: Trending topic Emazing

3.2 Data

3.2.1 Data Collection

The classification model requires a set of reference signals corresponding to topics that trended

and a set of reference signals corresponding to topics that did not trend during a time window of

interest. These reference signals represent historical data against which we can compare our most

recent observations to do classification.

The data collection process can be summarized as follows. First, we collected 200 examples of

topics that trended at least once and 200 examples of topics that never trended on November 2013.

We then sampled Tweets from this sample window and labeled each Tweet according to the topics

mentioned therein. Finally, we constructed a reference signal for each topic based on the Tweet ac-

tivity corresponding to that topic.
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Figure 2: Non-Trending Topic panama

Proper Topic Signal Filtration

We collected a list of all trending topics on Twitter as well as the trending times and their rank in the

trending topics list on Twitter. We filtered out topics whose rank was never better than or equal to

3. In addition, we filtered out topics that did not trend for more than 30 mins. One topic cannot be

trending multiple times in one day. Such trending signal is shown in Figure 1.

For topics that were not trending, we first sampled a list of n-grams (phrases consisting of n

“words”) occurring on Twitter during the sample window for n up to 5. We filtered out n-grams

that contain any topic that trended during the sample window, using the original, unfiltered list of all

topics that trended during the sample window. Such non-trending signal is shown in Figure 2.

3.2.2 From Tweets to Signals

Per topic, we creates its time series based on a pre-processed version of the raw rate of how often

the topic was shared,i.e.,its Tweet Rate. We empirically found that how news topic become trends

tends to follow a finite number of patterns; a few examples of these patterns are shown in Figure

3. However, before processing the signal, it is obvious we need to normalize the signals to do the

comparison. In [3], Several normalization technique is proved to be efficient for time series with the

similar feature as twitter signals. We could see the normalized signal in Figure 4. The trending and

nontrending signal is easily classified even with eyes.

Baseline Normalization

Many non-trending topics have a relatively high rate and volume of Tweets, and many trending
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Figure 3: How topics become trends on Twitter. If we seperate the cluster, we could find finite

patterns that a topic signal will trend

topics have a relatively low rate and volume of Tweets. One important difference is that many

non-trending topics have a high baseline rate of activity while most trending topics are preceded by

little. For example, a non-trending topic such as “New York” is likely to have a consistent baseline of

activity because it is a common word. To emphasize the parts of the rate signal above the baseline

and de-emphasize the parts below the baseline, we define a baseline b as

b =
∑
t

ρ[t] (23)

and a baseline normalized signal ρb as

ρb[t] = (
ρ[t]

b
)β (24)

The exponent β controls how much we reward and penalize rates above and below the baseline

rate. We use β = 1 in this project.

Spike Normalization

Another difference between the rates of Tweets for trending topics and that of nontrending topics

is the number and magnitude of spikes. We emphsize such spikes, while de-emphasizing smaller spikes.

ρb,s[t] = |ρb[t]− ρb[t− 1]|α (25)

in terms of the already baseline-normalized rate ρb. The parameter α > 1 controls how much

spikes are rewarded. We use α = 1.2.

Smooth
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Tweet rates, and the aforementioned transformations thereof, tend to be noisy, especially for small

time bins. We convolve the signal with a smoothing window of size Nsmooth. Applied to the spike-

and-baseline-normalized signal ρb,s, this yields the convolved version

ρb,s,c[t] =
t∑

m=t−Nsmooth+1

ρb,s[m] (26)

Branching Processes and Logarithmic Scale

It is reasonable to think of the spread of a topic from person to person as a branching process. It

is also reasonable to measure the volume of tweets at a logarithmic scale to reveal these details. Here

we may have problems if the signal vector have zero entries. If the entries are zero, we will set them

as zero too in this Scaling step.

ρb,s,c,l[t] = log(1 + ρb,s,c[t]) (27)

Figure 4: Normalized Trending signal (blue) vs. Normalized nontrending signal (green)

3.3 Experiment

We divide the set of topics into a training set and a test set using a 50/50 split. For each topic in

the test set, we wish to predict if the topic will trend. If the topic really did trend, we wish to detect

it as early as possible relative to the true trend onset while incurring minimal error.
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3.3.1 Detection Setup

In principle, to test the detection algorithm, one would step through the signal in the entire sample

window for each topic in the test set and report the time of the first detection. In practice, we take

a shortcut to avoid looking through the entire signal based on the following observations about the

activity of topics that trended and topics that did not.

First, for topics that trended, there is little activity aside from that surrounding the true onset of

the trend. In the rare event that a detection is made very far from the true onset, it is reasonable to

assume that this corresponds to a completely different event involving that topic and we can safely

ignore it. Thus, the only part of the signal worth looking at is the signal within some time window

from the true onset of the trend.

Second, topics that did not trend exhibit relatively stationary activity. Therefore, it is reasonable to

perform detection only on a piece of the signal as an approximation to the true detection performance.

Definition 3.6. Let href be the number of hours corresponding to Nref samples. At 2 minutes per

sample, href is given by Nref/30.

For TEST topic signals that have trended, we do detection on the window spanning 2href hours

centered at the true trend onset. For topics that did not trend, we randomly choose a window of the

desired size.

3.3.2 Parameter Exploration and Trials

We explore all combinations of the following ranges of parameters, excluding parameter settings

that are incompatible (e.g. Nobs > Nref ). For each combination, we conducted 5 random trials.

• γ: 0.1, 0.5, 1.0, 5.0, 10.0

• Nobs: 10.0, 30.0, 50.0, 100.0, 120.0

• Nsmooth: 20.0, 40.0, 80.0, 120.0, 160.0, 300.0

• href : 4, 6, 10, 14, 17

• Dreq: 1, 2, 3, 4

• θ: 0.65, 1, 3

Notation Nobs corresponds the number of time bins. However, in the codes or other place, we

may use Mobs with unit minute. The size of the time bin is 5 mins in the experiment. Given user may

want to change the size of time bin, we use Mobs instead of Nobs for convenience in the software. href
is with unit hour. Href corespond the number of time bins of reference signal. Nsmooth is with unite

time bin.
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3.3.3 Evaluation

To evaluate the performance of our method, we compute the false positive rate and true positive

rate for each experiment, averaged over all trials. In the case of true detections, we compute the

detection time relative to the true onset of the trending topic.

Before presenting the results, we need to note that twitter produces a list of top ten trending

topics, while we performs detection based on a score and threshold, and do not limite the number of

topics detected as trending at any given time. For example, a topic may be detected as trending by

our model, however, since there may be some more popular topics, twitter will not add such topic on

the trending list. Despite this limitation, our model and implementation work well.

3.4 Results and Discussion

In this section, we present the results of the trend detection experiment described in last section.

We show the quality of the trend detection algorithm using ROC curves and distributions of detec-

tion time relative to the true trend onset. We analyze: 1) The effect of FPR and TPR on Relative

Detection Time; 2) The effect of Parameters on Position Along ROC Curve; 3) Effect of Parameters

on Movement Along ROC Curve.

3.4.1 The effect of FPR and TPR on Relative Detection Time

In the experiment, we run 5 trials for each parameter set. We have total 9000 parameter set for

this experiment and the experiemnt generates the distribution of parameter set on ROC space. In

Figure 6, we can see different parameter set result in the tradeoff between TPR and FPR. To simplify

our analysis, we break it into three regions: the top region, the center region, and the bottom region.

More precisely, we define the regions as follows:

Definition 3.7. (Top Region) (FPR, TPR) is in the top region if FPR > 0.25 and TPR > 0.75.

Definition 3.8. (Center Region) (FPR, TPR) is in the center region if FPR ≤ 0.25 and TPR > 0.75.

Definition 3.9. (Bottom Region) (FPR,TPR) is in the bottom region if FPR ≤ 0.25 and TPR ≤
0.75.

In the top region, we accept the possibility of frequent false detections for the sake of rarely missing

the chance to make a true detection. In the bottom region, we accept a lower chance of making a

true detection for the sake of rarely making false detections. The center region lies in between these

two extremes. Consequently, points in the top region correspond to earlier detection relative to the

true onset of a trend as detected by Twitter, points in the bottom, correspond to predominantly late

detection, and points in the center roughly balance being early and late. Figure 5-8 illustrates this.
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Figure 5: Parameter set distribution on ROC space

Figure 6: Relative Detection Time for parameter sets in top region

Figure 7: Relative Detection Time for parameter sets in center region

Figure 8: Relative Detection Time for parameter sets in bottom region
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Table 1: The effect of parameter on position along the ROC curve

< Mobs > < href > < γ > < Dreq > < θ > < Nsmooth >

top 192.31 11.59 4.82 2.49 0.73 108

center 220.73 10.45 3.38 2.52 1.00 108

bottom 214.89 11.07 1.45 3.61 2.72 118

3.4.2 Effect on Position of ROC space

In this section, we analyze the effect of each parameter on the position of ROC curve. To simplify

analysis, we again consider only the top, center and bottom regions. In table one, we could see that

θ is dramatically different in each region. Intuitively, larger θ will make more negative decisions and

our results coincide it. Besides, we could see that γ and Dreq are both very different in each region.

Our results coincide again the theoretical explanation. Larger Dreq will prevent the classifier from

making positive decisions so that Dreq is larger in bottom region. As in section 2, we know γ defines

the scaling of parameters ”‘sphere”’ of influence of each reference signal. Larger γ results in relatively

larger class ratio, and the ratio is then easily greater than θ. Mobs, href , and Nsmooth barely changes

and has no significant effect on position along the curve.

3.4.3 Effect on Movement Along ROC Curve

In this section, we have a parameter that varies to produce the ROC curve while other parameters

are fixed. We show how varying a given parameter trades off TPR for FPR by computing the discrete

derivative of FPR and TPR with respect to the parameter. For example, we use p to denote the

parameter variable and compute:

∆FPR
p,i =

FPR(pi)− FPR(pi−1)

pi − pi−1

∆TPR
p,i =

TPR(pi)− TPR(pi−1)

pi − pi−1

for each ROC curve associated with p and for i ranging from the second to the last in increasing

order. By using the parameter optimization codes, we actually use 5 trials to compute one point on

the ROC curve. Then, we compute the above respect to the variable parameter over all possible fixed

combination and then find the average < ∆FPR
p > and < ∆TPR

p >.

The results is a distribution of discrete derivatives of FPR and TPR with respect to a variable

parameter p which tells us the tradeoff between TPR and FPR. If < ∆FPR
p > and < ∆TPR

p > are

greater than zero, then an increase in p causes a movement toward to (1,1) on ROC space, and vice

versa. Sometimes, the curve moces neither toward to (0,0) nor toward to (1,1) but toward to (0,1)

or (1,0). The former represents an increase in TPR in addition to a decrease in FPR – a win-win
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Table 2: < ∆FPR
p >

Mobs href γ Dreq θ Nsmooth

top −0.0013 0.0224 0.1096 −0.0436 −0.9400 0.0020

center −0.0045 0.0134 0.058 −0.0118 −0.0546 0.0001

bottom 0.0002 0.0201 0.0002 −0.0021 −0.0002 0.0000

Table 3: < ∆TPR
p >

Mobs href γ Dreq θ Nsmooth

top −0.0002 0.0017 0.0079 −0.0147 −0.1900 0.0000

center 0.0002 0.0001 0.0265 −0.0225 −0.0118 0.0002

bottom 0.0011 0.0092 0.3558 −0.0531 −0.1050 0.0021

situation. The latter one is the worst situation.

Since the movement along the curve caused by changes in each parameter and the behavior is

not uniform, we still consider the average changes in different regions. It can also help us to choose

parameter sets given considering the tradeoff between TPR, FPR and Prediction Time.

In table 2 and 3, we can see the movement along the curve caused by changes in each parameter.

It is not surprising that θ, which has the most influence on the position along the curve, also has by

far the most influence on the movement along the curve. Similarly, a larger Dreq always moves us

down the curve, also expected.

The γ also has big influence. It always moves up the curve. If we increase Mobs, then it will move

down the curve given starting in the top region and move up the curve given starting in other regions.

The length of the reference signals in hours moves down the curve given starting in top and move up

the curve given starting in bottom region.

As we know that the parameters θ and γ has significant influence on position along ROC curve.

To better understand the effect of θ and γ, Dr.Balan suggests to compute the ∆ as following:

∆FPR
pi =

FPR(pi)− FPR(pi − δ)
δ

where δ = 0.1 for instance. Similarly, we compute ∆TPR
pi as same way.

In order to find the optimal parameter, we actually need to first choose which region we want

because of the trade off between detection time and FPR,TPR. It is the reason we do such test to an-

alyze the effect in different regions. Dr.Balan’s suggestion is more informative, and we will investigate
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the effect in the future by applying Dr.Balan’s suggestion in the future.

3.4.4 Recommended Parameter Settings

The parameter optimization need to user to input the weight of type 1 error and type 2 error.

The the parameter optimization will minimize the cost function cost = weighttype1 ∗ errortype1 +

weighttype2 ∗ errortype2. As we see, different regions in the ROC space will give us different prediction

time. Hence, user need to choose a region first and then input the weight, and user may vary some

parameters according to the sensitivity of each parameters.

Cost(FP)<<Cost(TP)

We recommend the parameter settings in the third row of Table 1, corresponding to the bottom region.

For finer tunning, we can increase href , and decrease γ, and increase $Dreq.

Cost(FP)>>Cost(TP)

We recommend the parameter settings in the first row of Table 1, corresponding to the top region.

For finer tunning, we can decrease href , γ to increase TP and decrease FP.

Cost(FP)≈Cost(TP)

We recommend the parameter in the second row of Table 1, corresponding to the center region. For

finer tunning, we can increase Nobs to increase TP and decrease FP simultaneously.

4 Implementation

In this section, we discuss the programming strategy to implement the mathematical model to

predict the trending topics. The software package including three parts: 1) Data Preprocessing 2)

Parameter Optimization 3)Streaming Predictor.

4.1 Core Detection Algorithm

In this section, we summarize the core detection algorithm used in the parameter optimization and

predictor parts. This algorithm contains the core detection logic. In the algorithm, we apply some

distance computation function which is generated from the Latent Source Model Decision Rule. At

each time step, it updates the observation s so that s contains the latest Nobs samples from the infinite

stream and computes the distances to positive and negative reference signals. A detection is declared

whenever the ratio of class probability R(s) exceeds the threshold θ for Dreq consecutive time steps.

We will discuss the performance and scalability of this algorithm in section 4.5.
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Algorithm 1 Perform oneline binary classification on the infinite stream s∞ using sets of positive

and negative reference signals R+ and R−.

procedure DETECT(s∞, R+, R−, γ, θ, Dreq)

ConsecutiveDetections← 0

loop

s← UpdateObservation(s∞, Nobs)

for r in R+ do

PosDists.APPEND(DISTTOREFERENCE(s, r))

end for

for r in R− do

NegDists.APPEND(DISTTOREFFERENCE(s, r))

end for

R = PROBCLASS(PosDists, γ)/PROBCLASS(NegDists, γ)

if R > θ then

if ConsecutiveDetections > Dreq then

DetectionT ime← CURRENTTIME()

return DetectionT ime

else

ConsecutiveDetections← ConsecutiveDetections+ 1

end if

else

ConsecutiveDetections← 0

end if

end loop
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4.2 Data Preprocessing

4.2.1 Overview

The raw Twitter data is formatted in JSON and is around 600MB per day. The big size makes

the data preprocessing very time consuming because we have I/O bound for a single computer. We

proposed two solutions:

• Apply distributed computing algorithm. The data are divided and stored in different clusters,

so we can read the whole data parallely. We apply MapReduce programming model to design

our own MapReduce codes.

• Since the twitter raw data is enriched(well organized), we inspect the format manually and

consider each piece of twitter data as a string without robust JSON parser which is slow.

4.2.2 MapReduce

MapReduce is a programming model for processing large data sets with a parallel, distributed

algorithm on clusters. Our MapReduce is implemented by Python. The Map() is a procedure that

performs filtering and sorting. In our case, it uses robust JSON parser to read all JSON data and

generate and sorted “hashtag:Time:Count” . The Reduce() is a procedure that performs a summary

operation (such as counting the number of students in each queue, yielding name frequencies). In

our case, it constructs the hashtag signal. It put the count into every time bin. The “MapReduce

System” (also called “infrastructure” or “framework”) orchestrates by marshalling the distributed

servers, running the various tasks in parallel, managing all communications and data transfers between

the various parts of the system, and providing for redundancy and fault tolerance.

• Advantages: Read big data parallely and Construct the topic signal very fast

• Disadvantanges: We do need distributed systems and cannot run it on our own computer.

4.2.3 Non-Distributed MapReduce

Since MapReduce need the infrastructure Hadoop, we design and implement a Non-Distributed

MapReduce in C. It can contruct the topic signal very fast by only using my own laptop. We chose

to implement Map() without a fully robust JSON parser because it is very slow. We were able to

inspect the format of the JSON manually and determine that we can parse it as a string which is tens

of times faster. The output is of the form: < hashtag >,< timevalue >.

Reduce() will reduce the sorted mapped data in the form < hashtag >,< time > by granulating

the tweet times into < interval > (in minutes) sized bins between < start > and < end > and out-

putting the results into < hashtag > named files in < dir name > directory where each line contains

a bin count.
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First strategy: we choose to read the whole file generated by Map() into the memory and

then construct a job queue mastered by one thread. A job is a struct contains < hashtag > and

< pointer array >. The pointer array contains all pointer pointing to the different time information

of the hashtag.The master thread will pass 1000 jobs into each thread, and once the thread finish

computing, it will output the hashtag file.

Second strategy: since the data is a stream of sorted hashtags and subsorted time values. We

can parse the stream without reading it all into memory, which is not efficient. We only have to

allocate enough memory to store the values of one hashtag before dumping it to a file. It proves that

the second strategy is faster than first strategy at least for one moneth twitter raw data.

4.2.4 Nature Language Filtering

In spite of MapReduce, we also write a short script python codes to convert unicode encoded

strings into actual unicode and then to ASCII equivalent, because our raw twitter data is from South

America. The script use the unicode module to find ASCII equivalents of unicode characters and

lowercase so that the final result is in pure ASCII. This is beneficial because it reduces the number of

unique hashtags solely based off accented characters and such.

4.3 Parameter Optimization

As we see the experiment section, we brute force all the possible parameter sets given users input

the parameters. This program takes advantage of multithreading. There were a few options we had

on how to use multithreading. We chose to make each parameter set be multithreaded. Each thread

gets a fair share of test signals to compute against reference signals and the main threads joins them

and combines the results. This was optimal because it is not too little, but not too much work for

each thread. Too much work per thread would result in the senario that one thread has to wait for

other thread. Too little work would result in much overhead. The parameter optimization record the

probability of early detection, expected early detection time, expected late detection time for each

parameter set.

4.4 Streaming Predictor

User input the weight of errors and then predictor will choose the optimal parameter from the

parameter file generated by parameter optimization part. Predictor takes as input an incoming signal

file and compares against the reference signals using the core detection algorithm. It outputs the

detect time if detected and either TP, FP, TN, or FN.

We also commented an important part in the codes. In last paragraph, the predictor actually

works for classification, not prediction. The commented part simulate the prediction process. We
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truncate the whole test signal as current signal and historical signal, so the predictor can start to

detect at the current state and normalize the current state by using historical signal.

4.5 Utilities

The most important utility function is arraylist.h. It contains the detection functions and nor-

malization functions. arraylist.h uses X Macroing to easily create different arraylist types. All of

these utility functions are #define′d which is basically forcing them as inline. Since the compiler

ultimately decides which functions to inline anyway, we can only guareentee inline by abusing the pre-

processor. This gives us performace increase because we reduce (just about all) the time on function

call overhead. Our efficient use of the preprocessor in conjuction with the −Ofast and −ffast−math
compiler flags speed up our execution time by well over a factor of 10 at the cost of barely any extra

memory usage and only about an extra second of compile time. We choose to use an arraylist as the

underlying data structure representing the signals because we only need to append to, copy, and index

into the signal and implementations of arraylists are generally efficient at that. This was a better

choice than a hashtable, and tree because we do not ever search the signal for a specific value, which

would be O(n) for an unsorted arraylist. All of the operations we do are O(1) (constant time) for the

arraylist implementation, so it’s the obvious choice of data structure to represent the signals.

4.6 Validation

For preprocessing part, we have two packages to validate each other. The distributed MapReduce

algorithm uses robust JSON parser to generate the signals and the non distributed C algorithm read

JSON as string to generate the signals. We could generate exactly the same signals. The preprocessing

is validated.

For parameter optimization and predictor, the first validation strategy is to use the python codes I

wrote to run the same data sets and compare whether they can generate the same results. The second

validation strategy is to implement the equation(5) instead of equation(6) to validate the codes. Our

codes only use minimum distance as your see in equation(6), but the theoretical model is supposed to

sum all the distance together between test signal and all possible reference signals. The genereate the

same results so that the codes are validated. The third strategy is to input synthetic signals print out

some intermedian results on screen and compare them with the validation python codes. Therefore,

the whole software is validated by these strategies.

In the codes, we also include many error condition to remind us if we are running the wrong data

set or wrong parameter sets.
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4.7 Complexity Analysis

To understand how well our implementation is, we analyze the complexity of our parameter opti-

mization codes and predictor codes. Our core detection algorithm is shown in algorithm 1. Therefore,

most of our theoretical analysis depends on the algorithm.

4.7.1 Background

In the project, the topic signal has one month length. Given the time bin is 5mins, we can easily

see the signal has around 8640 time bins. In this project, we collect 200 trending signals and 200 non

trending signals. As we mentioned, all reference signal have same length depending on href , where

unit of href is in hours. The length of the test signal is fixed in the parameter optimization as 2href ,

and is fixed as one month length in predictor. We make a decision every time when we compute the

distance between one piece of test signal with length Mobs, unit in minutes, and all possible pieces of

all reference signals. If we could have a consecutive Dreq positive decision, then we stop the detection

procedure. Therefore, the worst case is we never satisfy the stop critier and finally give a negative

decision. Given the worst case, per decision making, we need to do Nobs(href −Nobs)(‖R+‖+ ‖R−‖)
comparisons between elements of the test signal and elements of reference signals.

4.7.2 Parameter Optimization

Because we could run the parameter optimization offline, we don’t do much complexity analysis

on this part. We still apply parallellization on programming parameter optimization. To understand

the parallellization senario, we make a simple example here and explain how we test the real complexity.

First, we randomly split the 200 trending topic into 100 test signals and 100 traning signals. Sim-

ilarly, we have 100 non trending training signals and 100 test non trending signals. Second, if we have

5 slave threads, the master thread will pass 20 test signals to each thread. Finally, once the master

thread get a parameter set, each thread will do the computation and make 20 decisions for the 20 test

signal. The slave threads will pass the results back to master thread and master thread combine the

results to output True Positive Rate and False Positive Rate for this parameter set. This procedure

is called one trial. For each parameter set, user could input the number of trials. In my test, we have

5 random trials for each parameter set, which means we randomly split the 200 signals 5 times and

repeat the procedure above every time.

In this senario, the total time bin comparisions for one thread is equal to 20 ∗Nobs ∗ (href −Nobs +

1) ∗ 100 ∗ 5. Since our parameter optimization brute force all possible combinations of these 6 param-

eters(we have 9000 parameter sets in the test), we just increase the number of parameter sets and

timing the program. As we expected in Figure 9, time linearly grows. For example, when we have

only one parameter set, we measure the time. Then, when we have 2 parameter sets, which means
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the program will brute force 2 parameter sets, we measure the time.

Intuitively, if we increase the number of test signals, then our TPR and FPR would be more ac-

curate and the time won’t grow linearly because of the parallellization. Parallellization speed up the

decision making for each parameter, so it speed up the whole program when it have to brute force

thousands of parameter sets.

Figure 9: Complexity of Parameter Optimization

4.7.3 Predictor

Predictor will test the online stream in twitter topic signals, so it’s complexity is very important.

Fortunately, our predictor can make a decision by using 30 seconds in the worst case. The predictor is

programmed according to the core detection algorithm 1. However, to reduce the number of shifts in

equation (6), we only makes updates from one time bin to another, instead of computing all possible

combiantions of distances in equation (6) at every time bin. If we implement latter methods, we have

to do Nobs(Nref −Nobs + 1) shifts while the former method only need (Nref −Nobs + 1) shifts. Next,

we would explain how we test the predictor complexity.
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First, we can analyze the complexity of the detection theoretically. Given the core detection algo-

rithm, the number of comparisions(operations) is Nobs(href −Nobs + 1) if we cover all possible shifts.

Then, we make some tests and the results corresponds to the theoretical analysis. In Figure 10, we

fixed the href , and changes Nobs = Mobs/5 . We can see that the worst case is when Mobs = 1
2href . In

Figure 11, we fixed the Mobs = 250 and changes the href . It is linear as expected.

Also, Dr.Balan suggests another way to speed up the distance computation between two signals.

In the algorithm 1, we will update the test signal if we didn’t make a positive decision. Every time we

update the test signal chuck, my implementation will compute all distances from the current chunk in

test signal to all possible chunks of reference signals. Computationally, every time we update the test

signal, we need to do O(Nobs(Nref −Nobs + 1)(‖R+‖+ ‖R−‖)) computations. Instead, we could first

time compute all distances from current chuck on test signal to chunks of reference signals. Then, we

update those distances with the boundary terms every time we update the test signal. Computationall,

we only need to do O(Nobs + (Nobs − 1))(‖R+‖+ ‖R−‖)) computations. This method indicates larger

Nobs will save more computataions. However, this method need more memory. For each reference

signal, we need allocate (Nref −Nobs + 1) arrays with size Nobs. Larger test signal chunk will lead to

more memory allocation and access time.

Figure 10: Complexity of Predictor(fixed href = 5h
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Figure 11: Complexity of Predictor(fixed Mobs = 250mins

5 Further Work

Our final goal is to use this model to predict a protest on street. In the streaming predictor, we

add another threshold regarding to the number of tweets around the detected spike. It can prevent

from detecting some local spike which does not correspond to the event. We need to make a good es-

timate of the threshold and update the estimate overtime, hence, the model can predict some protests.

Computationally, we could use a more sophisticated algorithm instead of our core detection algo-

rithm. For instance, Rakthanmanono have shown a way to efficiently search over trillions of time series

subsequences. Since our probability based metric involves exponential decay based on the distance

between signals, most reference signals that are far away from the observation can safely be ignored.

Thus, instead of computing the distance to all reference signals, which could become costly, we can

operate on only a very samll fraction of them without significantly affecting the outcome.
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6 Project Schedule and Milestones

Oct 1,2013 - Oct 31,2013

Learn Programming language: Python and C

Accomplished

Nov 1,2013 - Nov 30,2013

Write codes to classify data as different topics

Accomplished

Dec 1,2013 - Dec 30,2013

Write normalization codes

Accomplished

Jan 1,2014 - Jan 31,2014

Write parameter optimization codes

Accomplished

Feb 1,2014 - Feb 28,2014

Write streaming predictor codes

Accomplished

Mar 1,2014 - Mar 31,2014

Write Validation Codes

Accomplished

April 1,2014 - April 30,2014

Testing the implementation

Accomplished

May 1,2014 - May 13,2014

Write Documentation

Accomplished

7 Deliverables

The whole software include three packages:

• Preprocessing: map.c; convert.py; reduce.c; timebin.c; queue.h; timebin.c
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• Parameter Optimization: para opt.c

• Predictor: predict.c

• Utilities: arraylist.h; norm.c; norm dir.c; makefile; graph multiple dir.py; plot rates.py; graph signals.py;

graph signal picking set.py; plot regions detection times.py;

• Validation: map.py; reduce.py; get array.py; post process.py; libzzutil1.c; libzzutil.so; test.py
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