

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Task Assignment in a Human-Autonomous Image Labeling System

Addison Bohannon Applied Math, Statistics, & Scientific Computation

Advisors:

Vernon Lawhern Army Research Laboratory Brian Sadler Army Research Laboratory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

December 9, 2015

Outline

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

1 Problem

2 Approach

- Branch and Bound
- Bounding Function

3 Results

- Accuracy
- Time Complexity
- Computational Efficiency

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

4 Updates

5 Supplement

Human-Autonomous Image Labeling System OSD Autonomy Research Pilot Initiative, Army Research Laboratory

Task Assignment in a Human-Autonomous Image Labeling System A. Bohannon AGENTS Problem http://mmspg.epfl.ch/ Approach Sajda et al 2010 Branch and Bound Bounding Function ASSIGNMENT FUSION Results Accuracy Time Complexity Computational Efficiency Updates Supplement http://www.image-net.org/ http://www.goarmy.com/ References

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Iterative Task Assignment System

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Problem Statement

- Assignment Problem How to optimally assign homogeneous binary classification tasks amongst diverse agents?
- 2 Joint Classification Problem How to dynamically combine multiple labels from noisy agents without supervised knowledge?

Generalized Assignment Problem (GAP) Morales and Romeijn [2004]; Kundakcioglu and Alizamir [2008]

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

$$Z = \max_{\mathbf{x}} \sum_{i \in I} \sum_{j \in J} v_{ji} x_{ji} \qquad (1)$$

$$1 \sum_{i \in I} c_{ji} x_{ji} \le b_j, \ j \in J$$

$$2 \sum_{j \in J} x_{ji} = 1, i \in I$$

3
$$x_{ji} \in \{0, 1\}$$

4
$$c_{ji}, b_{ji} \in \mathbb{Z}_+$$

5
$$v_{ji} = g(r_j, s_j) \ge 0$$

- n number of tasks
- *m* number of agents
- x_{ji} assignment of task i to agent j
- v_{ji} assignment value of task *i* to agent *j*
- c_{ji} assignment cost of task *i* to agent *j*
- b_j budget for agent j
- $\blacksquare r_j \text{reliability of agent } j$
- *s_i* classification confidence of task *i*

Branch and Bound Algorithm

Fisher [2004]; Morales and Romeijn [2004]; Kundakcioglu and Alizamir [2008]

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity

Computational Efficiency

Updates

Supplement

References

Pseudo-code: Branch and Bound Data: v.c.b **Result**: x, Z $Z = Z_0$, queue = p_0 ; while queue $\neq \emptyset$ do 1. Select $p \in queue$ 2. Branch on p 3. for j = 1, ..., m do Bound *p*_i end 4. if $Z_i > Z$ then if x_i is feasible then $x = x_i, Z = Z_i$ else add p_i to queue end end end

Task Assignment in a Human-Autonomous Image Labeling

Lagrangian Relaxation Fisher [2004]: Fisher *et al.* [1986]: Boyd and Vandenberghe [2004]

We relax the semi-assignment constraint, [2], in (1):

$$L^{a}(\lambda) = \max_{\mathbf{x}} \left(\sum_{i \in I} \sum_{j \in J} v_{ji} x_{ji} + \sum_{i \in I} \lambda_{i} \left(1 - \sum_{j \in J} x_{ji} \right) \right)$$
(2)

System A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

$$(i \in I \ j \in J) \quad i \in I \quad (j \in J \ j \in J))$$

$$1 \sum_{i \in I} c_{ji} x_{ji} \leq b_j, \ j \in J$$

$$2 \ x_{ji} \in \{0, 1\}$$

$$3 \ c_{ji}, b_{ji} \in \mathbb{Z}_+$$
which yields *m* distinct 0-1 knapsack problems for fixed λ :

$$L_{j}^{a}(\lambda) = \max_{\mathbf{x}} \left(\sum_{i \in I} (v_{ji} - \lambda_{i}) x_{ji} \right), \ j \in J, \ s.t. \ [1, 2, 3],$$
(3)

and the dual problem provides a bounding function:

$$Z_{Da} = \min_{\lambda} L^{a}(\lambda) = \min_{\lambda} \left(\sum_{j \in J} L_{j}^{a}(\lambda) + \sum_{i \in I} \lambda_{i} \right) \ge Z.$$
(4)

Sub-gradient Method Fisher [2004]; Boyd and Vandenberghe [2004]

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Although Z_{Da} is not everywhere differentiable, a sub-gradient descent method can be implemented. A subgradient of a function, *f* at t_0 is a vector, ν , such that

$$f(t) \le f(t_0) + \nu(t - t_0), \ \forall \ t.$$
 (5)

$$\mathcal{L}^{a}(\lambda^{k}) = \max_{\mathbf{x}} \left(\sum_{i \in I} \sum_{j \in J} v_{ji} x_{ji} + \sum_{i \in I} \lambda_{i}^{k} \left(1 - \sum_{j \in J} x_{ji} \right) \right)$$

at λ_k , and we can use the following iterative step for the sub-gradient descent algorithm:

$$\lambda_i^{k+1} = \lambda_i^k - \alpha_k \boldsymbol{g}_i^k. \tag{6}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sub-gradient Method

Fisher [2004]; Boyd and Vandenberghe [2004]

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity

Computational Efficiency

Updates

Supplement

References

Algorithm: Subgradient Method **Data**: $\mathbf{v}_i = (v_{i1}, \dots, v_{in})^T$, $\mathbf{c}_i = (c_{i1}, \dots, c_{in})^T$, b_i , λ^0 Result: x.Z k = 0: while convergence condition is not met do for i = 1, ..., m do $[\mathbf{x}_i, Z_i] = knapsack(\mathbf{v}_i - \lambda^k, \mathbf{c}_i, b_i);$ end for i = 1, ..., n do $\lambda_{i}^{k+1} = \lambda_{i}^{k} - \alpha_{k} (1 - \sum \mathbf{x}_{ji});$ i∈.I

end

$$k = k + 1, \ Z = \sum_j Z_j + \sum_i \lambda_i^k;$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

end

0-1 Knapsack Problem

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

The 0-1 knapsack problem,

(7)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$1 \sum_{i \in I} c_{ji} x_{ji} \leq b_j$$

2
$$x_{ji} \in \{0, 1\}$$

$$c_{ji}, b_{ji} \in \mathbb{Z}_+$$

has a pseudo-polynomial time dynamic programming algorithm.

0-1 Knapsack Problem

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Algorithm: 0-1 Knapsack Problem

Data: $\mathbf{v}_{i}^{*} = (v_{i1}^{*}, \dots, v_{in}^{*})^{T}, \mathbf{c}_{i} = (c_{i1}, \dots, c_{in})^{T}, b_{in}$ **Result:** $\mathbf{x}_i = (x_{i1}, \dots, x_{in})^T, Z_i$ $M = \{0\}^{n \times b_j}, \ S = \{0\}^{n \times b_j}, \ \mathbf{x}_i = \{0\}^n;$ for *i* = 1, . . . , *n* do for $l = 1, ..., b_i$ do $M(i, l) = \max(M(i - 1, j), M(i - 1, j - c_i(i)) + v_i^*(i));$ if $M(i-1, j-c_i(i)) + v_i^*(i) > M(i-1, j)$ then S(i, l) = 1;end end end for i = n, ..., 1 do if S(i, K) then $x_i(i) = 1, K = K - c_i(i);$ end end $Z_i = M(n, b_i);$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

0-1 Knapsack Problem

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

M =

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Let
$$\mathbf{v}_j^* = (4, 3, 2, 1)$$
, $\mathbf{c}_j = (2, 1, 3, 1)$, and $b_j = 5$.

Agent Capacity

Task		1	2	3	4	5
	1	0	4	4	4	4
	2	3	4	7	7	7
	3	3	4	7	7	7
	4	3	4	7	8	8

$$S =$$

Agent Capacity

Task		1	2	3	4	5
	1	0	1	1	1	1
	2	1	0	1	1	1
	3	0	0	0	0	0
	4	0	0	0	1	1

A D > A P > A D > A D >

ъ

Validation

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Problem

- Randomized problems of sizes from Fisher *et al.* [1986]
- Compare against MATLAB integer programming application
 - NP-hard problem (no "analytical" solution)
 - Compare target function values, Z
 - MATLAB uses Branch and Bound (with plane cutting techniques, integer relaxation)

Implementation

- MATLAB R2015b
- Personal Laptop (8GB, Intel Core i7-4510U, 2.6 GHz, Windows 10-64)

Validation Set-up

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Problem size derived from Fisher *et al.* [1986]
 Randomized v, c, b to facilitate feasible problems

Agents (m)	Tasks (n)	Problems
3	10	100
3	20	100
5	20	100
5	50	100
10	75	100
8	100	100
12	150	100
17	200	100

Accuracy of Methods

Ν

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy

Time Complexity Computational Efficiency

Updates

Supplement

References

Method	Feasible Solutions (%)
Greedy	100
Sub-gradient	100
/lultiplier Adjustment	100

A D > A P > A D > A D >

æ

Accuracy of Methods

Figure: Target function values, Z, for each method compared against target function value of MATLAB solution. Relative error reported to account for problem size.

Computational Efficiency

Updates

Supplement

References

 $F_{subgradient} = 60.29, F_{multiplier} = 173.75, F_{MATLAB} = 49.03$

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity

Computational Efficiency

Updates

Supplement

References

<ロト < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป > < ป

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy

Time Complexity

Computational Efficiency

Updates

Supplement

References

Method	Time Complexity ($O((m \times n)^p)$)
Greedy	0.75
Sub-gradient	1.0
Multiplier Adjustment	0.96
MATLAB	0.19

イロト 不得 トイヨト イヨト

э.

Tightness of Bound

Schedule (with Milestones*) - AMSC 663

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Develop Assignment Module (15 OCT - 4 DEC)

Implement branch and bound algorithm (6 NOV)*

- Validate branch and bound algorithm (25 NOV)*
- Implement greedy search algorithm
- Mid-year Review (14 DEC)*

Schedule (with Milestones*) - AMSC 664

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Build Image Labeling System (25 JAN - 26 FEB)

- Build agent classes
- Develop message-passing framework
- Integrate all components into a system (26 FEB)*

- Test Image Labeling System (26 FEB 15 APR)
 - Testing (1 APR)*
 - Performance analysis of test results
- Conclusion (15 APR 1 MAY)
 - Final Presentation and Results (6 MAY)*

Deliverables

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

- Supplement
- References

Software

- Image Labeling System (fusion module, assignment module, agent classes)
- Execution script

Data

- Office Object Database
- Office Object RSVP Database

Analysis

- Performance analysis of test results
- Implications for human-autonomous systems

Greedy Method

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Efficient implementation of the Branch and Bound algorithm requires a feasible solution to provide a lower bound for solutions:

$$Z_{\text{feasible}} \leq Z \leq Z_{Da}.$$
 (8)

A tight lower bound requires fewer problems to be enqueued.

Pseudo-code: Greedy Search Data: v, c, b Result: x.Z $\mathbf{x} = bound(\mathbf{v}, \mathbf{c}, \mathbf{b});$ if x is feasible then $Z = \mathbf{v}^T \mathbf{x}$. return: else $I_0 = \{i \in I | \sum x_{ji} = 1\};$ i∈.I for $i \in I_0$ do $x_{ii} = 0 \forall i \in J;$ 1. sort(v_{ii}) 2. assign $x_{ii} \forall i \in J, i \in I_0$; if x is feasible then $Z = \mathbf{v}^T \mathbf{x}$. return: end end end

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multiplier Adjustment Method Fisher et al. [1986]

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy

Time Complexity Computational

Efficiency Updates

Supplement

References

1. Find (\mathbf{x}^0, Z^0) to (3) s.t. $\sum_{i} x_{ji} \le 1$ 2. if x⁰ is feasible then return: end 3. while $Z^k < Z^{k-1}$ and \mathbf{x}^k is not feasible do for $i \in \{i \in I | \sum x_{ji} = 0\}$ and $j \in J$ do Calculate, δ_{ii} , least decrease in λ_i for $x_{ii} = 1$ end for $i^* \in \{i \in I | \sum_i x_{ji}^k = 0 \text{ and } \min_2 \delta_{ji} > 0\}$ do $\lambda_{i^*} = \lambda_{i^*} - \min_2 \delta_{ii^*}$; if possible then Find (\mathbf{x}^k, Z^k) to (3) s.t. $\sum_i x_{ji}^k \leq 1$; continue; end end end

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Task Assignment in a Human-Autonomous Image Labeling System

A. Bohannon

Problem

Approach

Branch and Bound Bounding Function

Results

Accuracy Time Complexity Computational Efficiency

Updates

Supplement

References

Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

Marshall L. Fisher, R. Jaikumar, and Luk N. Van Wassenhove. A Multiplier Adjustment Method for the Generalized Assignment Problem. *Management Science*, 32(9):1095–1103, September 1986.

Marshall L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming Problems. *Management Science*, 50(12_supplement):1861–1871, December 2004.

O. Erhun Kundakcioglu and Saed Alizamir. Generalized assignment problem Generalized Assignment Problem. In Christodoulos A. Floudas and Panos M. Pardalos, editors, *Encyclopedia of Optimization*, pages 1153–1162. Springer US, 2008.

Dolores Romero Morales and H. Edwin Romeijn. The Generalized Assignment Problem and Extensions. In Ding-Zhu Du and Panos M. Pardalos, editors, *Handbook of Combinatorial Optimization*, pages 259–311. Springer US, 2004.

Ralph Otten. Lecture 13: The knapsack problem.