
AMSC 663 Mid-year Report:

Task Assignment in a Human-Autonomous Image

Labeling System

Addison Bohannon

December 14, 2015

Advisors:

Vernon J. Lawhern
Human Research and Engineering Directorate

US Army Research Laboratory
Aberdeen Proving Ground, MD 21005 USA

vernon.j.lawhern.civ@mail.mil

Brian M. Sadler
Computational and Information Sciences Directorate

US Army Research Laboratory
Adelphi Laboratory Center, MD 20783 USA

brian.m.sadler6.civ@mail.mil

Abstract

We want to design a human-autonomous system which can efficiently and accurately classify
a database of images as interesting or not interesting. The system will iteratively distribute
images for binary classification amongst multiple heterogeneous agents according to the Gen-
eralized Assignment Problem, and use the Spectral Meta-Learner, to combine multiple binary
classification results in a principled manner. From the results, we hope to draw conclusions
about the circumstances under which sensitive tasks can and should be delegated to autonomous
technology in an optimal manner.

1 Introduction

Suppose that we wanted to sort a large database of images according to a simple binary classification
such as interesting or not interesting. The defense and intelligence communities have this exact
requirement. The sorting of satellite imagery requires trained professionals to scan images for
indicators of valuable intelligence, triaging images for later thorough analysis. This is a costly and
tedious task for humans. Certainly, there are means to reduce the workload for these intelligence
analysts in the age of computer vision.

Sajda, et al. explore this very problem in [14]. They used computer vision algorithms to
complement the efforts of a human performing image triage, sorting images as “interesting” or
not. The group sought to synchronize the efforts of a single human performing Rapid Serial Visual
Presentation (RSVP) with a single computer vision system. 1 Exploiting the singular ability
of humans to quickly understand the “gist” of an image, the human agent quickly scanned the
images. Images which elicited interesting responses through the RSVP paradigm were routed to
the computer vision algorithm, which excels at object recognition. In essence, the system could
intelligently sort the images according to the human analysis, and determine the source of the
humans interest through the far quicker and more accurate object recognition skills of computer
vision. Sajda, et al. additionally implemented this system in reverse, pruning the image database
first through computer vision algorithms searching the images for predetermined interesting objects
and routing the reduced database to the human for confirmation. Either method, autonomous
technology as a mechanism for inference or as a filter, proved a viable complement to the single
image analyst.

These results imply a more general approach to leveraging autonomous technology to support
human efforts; however, when considering tasks with implications as serious as our national security,
perhaps we should not entirely exclude humans from the decision loop. An obvious concern might
be a lack of sensitivity of a computer vision algorithm. What if a valuable image were deemed
not valuable and thus never seen by a human analyst? Just as likely is that a human is unusually
inaccurate on a given day? Here, Ipierotis, et al. present a sensible recommendation: seek additional
independent classifications from other agents when the classification outcomes of tasks have a non-
negligible probability of error [6]. If one computer vision algorithm deems an image as interesting,
confirm with another computer vision algorithm – or better yet, confirm with as many distinct
agents as feasible. This implies that in order to reduce the workload for the human imagery
analyst while increasing the overall accuracy of image labels, multiple autonomous and human
agents must make independent classifications until a confident meta-classification is achieved.

Such a system is depicted in Figure 1; however, it begs two principal questions: how should
images be distributed amongst the agents in such a system, and how should multiple labels for a
single image be combined to make a decision about that image?

1.1 Problem

Let us simplify and formalize this system in order to formulate a clear problem statement. Figure 2,
the Iterative Task Assignment System (ITAS), conceptualizes a system with n heterogeneous tasks
and m heterogeneous agents. Let T be the set of tasks. Then, an agent performs the following
binary decision: Y : T → {−1, 1}. Denote I = {1, . . . , n} as the index of tasks and J = {1, . . . ,m}

1RSVP is a Brain-Computer Interface paradigm in which subjects passively view images at high rates of speed
(2-10 Hz) while an electroencephalogram (EEG) measures surface potentials of brain activity. Using the oddball
paradigm, novel stimuli, or interesting images, generate a neural signature in the EEG recordings which can be
recognized through machine learning methods.

1

Figure 1: The image labeling system. An imaging sensor populates the
database of images. An assignment node distributes images to agents in
parallel. The agents perform binary classification – interesting or not inter-
esting, and the results are consolidated at a fusion node. At this point, the
confidence in the image classification label is used to threshold images for
completion or routing back to the image database for re-assignment. Here,
agents can be computer vision algorithms, RSVP subjects, or self-paced
image analysts.

as the index of agents. Each task has an associated score parameter, 0 ≤ si ≤ 1, which reflects the
current confidence in the meta-label of that task, and each agent has a reliability, rj , which reflects
the agent’s accuracy and a budget, bj , which limits the workload for an agent on each iteration.
The assignment of a task i ∈ I to an agent j ∈ J will have an associated value, vji = f(si, rj) ≥ 0
and cost, cji, which could reflect the time or resources required for task completion.

Accordingly, we want to determine:

1. Assignment Problem – How do we optimally assign images in each iteration in order to balance
value and workload?

2. Joint Classification Problem – How do we infer the label of a task given a set of labels from
multiple agents?

1.1.1 Task Assignment

This task assignment problem, where we are looking for the optimal assignment policy over all
tasks and agents, {xji}i∈I,∈J , can be mapped onto the Generalized Assignment Problem (GAP) as
follows [8, 10]:

Z = max
x

∑
i∈I

∑
j∈J

vjixji (1)

1.
∑
i∈I

cjixji ≤ bj , j ∈ J

2.
∑
j∈J

xji = 1, i ∈ I

3. xji ∈ {0, 1}

2

Figure 2: Iterative Task Assignment System. ITAS is a simplification of
the image labeling system. Here, heterogeneous tasks, with an extrinsic
confidence score, si, are assigned in parallel from a centralized node to
heterogeneous agents, with the following intrinsic parameters: reliability,
rj , and budget, bj . Additionally, each assignment has a cost, cji. The
classification results are consolidated into a single joint classification at the
fusion node, and the images are classified if the confidence in the meta-
label exceeds a pre-set threshold, otherwise images are routed back to the
database for re-assignment.

4. cji, bji ∈ Z+

5. vji = g(rj , sj) ≥ 0

GAP is a NP-hard problem, but the decision problem is NP-complete [4, 10]. Solving GAP is
at least as difficult as any problem in NP and has no known polynomial time solution algorithm,
but verifying that a solution is feasible is computable in polynomial time [9]. This ability to verify
solutions allows exact solution methods which seek to exhaustively search the solution space for
a global maximum by confirming all possible solutions and keeping the global optimum. As the
GAP is combinatorial, computational complexity of even the best exact methods can be prohibitive;
therefore, commonly used exact methods do not evaluate the target function at all feasible solutions
but rather use a heuristic to reduce the feasible set of solutions during the search [3, 8, 10].

1.1.2 Joint Classification

Given m agents which independently produce binary classifications on n tasks, we want to infer the
label of each task without knowledge of the true labels of any of the tasks. The joint classification
problem seeks to minimize the probability of error by finding a mapping, f , from a set of the
independent classification labels for a task i from m agents, {ŷji}j∈J , to a meta-label, ȳi, such that
the probability over all tasks of the meta-label being incorrect is minimized:

arg min
f

∑
i∈I

P(f(ŷ1i, . . . , ŷmi) 6= yi) (2)

1. f : {ŷji}j∈J → ȳi

2. ŷji, ȳi, yi ∈ {−1, 1}
The classification labels of all agents for all tasks can be captured in a matrix, A ∈ {−1, 1}m×n,

in which the rows correspond to agents and the columns correspond to tasks, see Figure 3.

3

Figure 3: The classification outcome matrix, A, captures the meta-data
across all agents and tasks. The green box indicates entry Aji which coin-
cides with ŷji the outcome of agent j classifying task i. The red rectangle
comprises the label set, {ŷji}j∈J , for a task, i. The blue rectangle highlights
a row vector of the label set for an agent j, referred to as aj ∈ {−1, 1}n in
(12).

Approaches to the problem of joint classification fall into one of three categories: supervised,
unsupervised, and semi-supervised. Supervised methods rely on ground-truth knowledge of a por-
tion of the task labels in order to learn an optimal operation, f . Unsupervised methods such as
our problem, typically infer meta-lables according to majority vote or averages. A third class of
semi-supervised methods combine elements of both. [6, 12].

1.2 Relevant Work

Much of the related work to this problem deals with optimal crowd-sourcing, in which binary
classification tasks are distributed in parallel to numerous agents at low-cost. In practice, on
services such as Amazon Mechanical Turk, the responses of agents can be completely random, and
it is desirable to learn a reliable binary classification for numerous tasks from the labels of noisy
labelers [6]. Like our problem, it requires the assignment of binary classification tasks to labelers
of unknown reliability and the need for joint classification of repeated labels from different agents
for the same task.

In a very simplistic model, Karger, et al. explore the optimal crowd-sourcing problem within
a framework of homogeneous agents and homogeneous tasks without supervised knowledge of any
task labels. In this special case, no assignment strategy can do better than random assignment,
and their approach instead focuses on a belief propagation method for inferring agent performance
to perform the joint classification [7].

4

Ho, et al. developed an adaptive task assignment method for crowd-sourcing problems, framing
the problem in very similar terms to our problem formulation [5]. They approached the assignment
of heterogeneous binary tasks to heterogeneous agents within the GAP framework. Unlike in our
approach, they did not constrain the joint classification to be unsupervised. Instead, they proposed
an exploration-exploitation method in which additional agents were recruited to infer the difficulty
of tasks, and a subset of known tasks were assigned to infer the agent accuracy, similar to a training
session.

Solving GAP with the Branch and Bound algorithm (B&B) is well-established in the literature
[8, 10]. We followed the Lagrangian Relaxation (LR) implementation of Fisher, et al. in [3, 4].

The problem of fully unsupervised joint classification highlights the particular benefits of the
Spectral Meta-Learner (SML) introduced by Parisi, et al. [12]. SML provides a fully unsupervised
method for not only joint classification but also estimating the accuracy of agents. In [12], the
method is only applied in post-hoc analysis, but in our system, we will apply it adaptively, using
the estimation of agent accuracy to make further task assignments.

2 Approach

2.1 Branch and Bound Algorithm

B&B is a divide and conquer optimization approach with a bounding function, search strategy,
and branching strategy. The algorithm searches branches, or sub-problems of the overall problem
and calculates bounds on the sub-problems according to a heuristic method. Always, a feasible
solution is maintained as a lower bound for the optimal solution. This incumbent optimal solution
is compared to the upper bound of all sub-problems. For a maximization problem, if the upper
bound for a given sub-problem is less than the incumbent optimal solution, then the algorithm can
phantom these sub-problems and all subsidiary sub-problems. Otherwise, each sub-problem which
could potentially contain the optimal solution branches into further sub-problems for search. The
algorithm iterates until the solution space is exhausted, and a global optimum is found.

We implemented B&B to solve GAP for the assignment module. GAP offers an intuitive branch
strategy; each task assignment, i ∈ I, can possibly be assigned to any one agent, j ∈ J . This allows
a systematic search though each of the n tasks and branching at each task to create m sub-problems
(see Figure 4). For each explored sub-problem, if the upper bound is greater than the incumbent
solution, the sub-problem and its upper bound are stored in a running queue. The search strategy
consists of selecting the candidate sub-problem from the running queue with the greatest upper
bound. For the bounding function, we will use LR of the semi-assignment constraints [3, 4]. B&B
pseudo-code is shown in Algorithm 1 [2, 4].

5

Figure 4: The B&B Algorithm for GAP. The initial candidate problem has
no tasks assigned (the grey node). From this problem, the first task can be
assigned to each of the m agents, creating m branches. Likewise, for tasks
i = 2, . . . , n, each task can be assigned to one of the m agents. For each of
those sub-problems, an upper bound is calculated and stored if it exceeds
the incumbent optimal feasible solution.

Data: Target function, f : {0, 1}m×n → R; Bounding function,
g : {0, 1}m×k → [{0, 1}m×n,R], 0 ≤ k < n

Result: xopt ∈ {0, 1}m×n; f(xopt) ∈ R
incumbent = 0; live = {(p0 = ∅, UB(p0) = 0)};
while live 6= ∅ do

Select best candidate sub-problem, p = arg max
pi∈live

UB(pi); live = live \ {p};

for j = 1, . . . ,m do

Generate sub-problem, pj ∈ {0, 1}m×(k+1), by assigning task k + 1 to agent j;
[X(pj), UB(pj)] := g(pj);
if UB(pj) > incumbent then

if X(pj) is feasible then
incumbent = f(X(pj)); xopt = X(pj); go to end;

else
live = live ∪ {(pj , UB(pj))};

end

end

end

end
Algorithm 1: Branch and Bound

If all m×n sub-problems are explored, B&B would be a strictly combinatorial search algorithm.
The computational savings comes from sub-problems which are not enqueued. If the upper bound
is less than the incumbent optimal solution, the problem is not enqueued for later search. For each
sub-problem (xji = 1, i ∈ I, j ∈ J) which is not enqueued, m× (n− i) sub-problems do not require
computation of the bounding function. This highlights the importance of a tight bound from the
bounding function and also a feasible solution to help phantom sub-problems throughout B&B.

6

2.1.1 Lagrangian Relaxation

We used LR for the bounding function in our B%B. It has been demonstrated to provide a suffi-
ciently tight bound for B&B for binary integer problems of our problem size [3, 4, 13].

Considering the set of constraints on GAP, we faced a choice of which constraint subset to relax.
One obvious choice is to relax the integer constraint on x (constraint [3] in (1)). This results in a
conventional linear problem:

Lz = max
x

∑
i∈I

∑
j∈J

vjixji (3)

subject to [1-2,4-5] of (1). And in fact, this is the method used by MATLAB and branch and
cut algorithms. The non-integer solutions indeed bound Z, but we had yet other options such as
relaxing the capacity constraints (constraint [1] in (1)). We introduced Lagrange multipliers, λj ,
to dualize the capacity constraints to yield:

Lc(λ) = max
x

∑
i∈I

∑
j∈J

vjixji +
∑
j∈J

λj

(
bj −

∑
i∈I

cjixji

) (4)

subject to [2-5] of (1). The problem has reduced constraints, but we have not made it remarkably
easier to solve. Therefore, we introduced Lagrange multipliers, λi, to dualize the semi-assignment
constraints (constraint 2 in (1)), which results in the following problem:

La(λ) = max
x

∑
i∈I

∑
j∈J

vjixji +
∑
i∈I

λi

1−
∑
j∈J

xji

 (5)

subject to [1,3-5] of (1). Notice that the problem now simplifies tom distinct 0-1 knapsack problems,
which can be independently solved for fixed λ:

Laj (λ) = max
x

(∑
i∈I

(vji − λi)xji

)
, j ∈ J. (6)

subject to [1,3-5] of (1). The dual Lagrangian problem with respect to (6) can be formulated as

ZDa = min
λ
La(λ) = min

λ

∑
j∈J

Laj (λ) +
∑
i∈I

λi

 . (7)

subject to [1,3-5] of (1).
Fisher et al show decreased computational cost with (5) over (4) [4]. Additionally, Morales et

al prove the following inequality which shows that the bound from (5) is tighter than the bound
for (4) and (3) [3]:

Z ≤ minLa(λ) ≤ minLc(λ) = minLz, (8)

where Z is the solution to the primal problem, (1). Therefore, we have a problem formulation,
ZDa, of reduced difficulty and computational cost which provides a superior bound.

7

2.1.2 Subgradient Method

In order to solve ZDa, we used a sub-gradient descent algorithm. La(λ) (5) is a relatively tractable
optimization problem with the exception of not being everywhere differentiable, which precludes
the exclusive use of gradient based optimization methods [3]. This problem can be overcome with
the use of sub-gradient methods. A sub-gradient of a function, f at t0 is a vector, ν, such that

f(t) ≤ f(t0) + ν(t− t0), ∀ t. (9)

Fortunately, La(λ), is sub-differentiable everywhere, and as with gradient based methods, the
optimal solution to La(λ) occurs when zero is a sub-gradient of La(λ) [1, 3]. Thus, we can iteratively
update the Lagrange multipliers along the sub-gradient to find a zero sub-gradient of La(λ). For

gki = 1−
∑
j

xji, i ∈ I is a sub-gradient of (5),

La(λ) = max
x

∑
i∈I

∑
j∈J

vjixji +
∑
i∈I

λi

1−
∑
j∈J

xji

at λk, and we can use the following iterative step for the sub-gradient descent algorithm:

λk+1
i = λki − αkgki . (10)

Here, α must satisfy lim
k→∞

αk = 0 and lim
n→∞

n∑
k=1

αk = ∞. Under these conditions of the step-

size, this iterative procedure guarantees convergence [1, 3]. Our sub-gradient algorithm is shown
in Algorithm 2. It implements a two-step procedure in which during each iteration, the optimal
assignment, x, is updated according to (5) for fixed λk, and then, the Lagrange multipliers are
updated according to (10). Convergence is checked prior to each iteration for either sufficiently
small gradient, ‖gk‖2 < ε, or sufficiently small change in the target value, |La(λk)− La(λk−1)| < δ
for ε, δ > 0.

Data: vj = (vj1, . . . , vjn)T , cj = (cj1, . . . , cjn)T , bj , λ
0

Result: x, Z
k = 0;
while convergence condition is not met do

for j = 1, . . . ,m do
[xj , Zj] = knapsack(vj − λk, cj , bj);

end
for i = 1, . . . , n do

λk+1
i = λki − αk(1−

∑
j∈J

xji);

end

k = k + 1, Z =
∑
j

Zj +
∑
i

λki ;

end
Algorithm 2: Sub-gradient Method

2.1.3 Multiplier Adjustment Method

In [4], Fisher, et al. present another approach to solving the dual problem, ZDa: the multiplier
adjustment method. Similar to a steepest descent method, we search the solution space for the

8

single canonical direction in which the smallest decrease in one of the Lagrange multipliers, λi,
will result in an assignment for a currently unassigned task. Whereas the steps of the sub-gradient
descent method often result in large jumps across the solution space–or alternatively, many small
steps–these measured descent steps result in a smoother path toward the optimal solution. The
multiplier adjustment method remains the standard for comparison of heuristic solution techniques
for GAP [8, 10].

We followed the algorithm proposed in [4] for implementation of the multiplier adjustment
method. See Algorithm 3 for pseudo-code.

9

Data: λi = max2 vji, xji = 0, ∀ j ∈ J, i ∈ I
Result: x, Z
for j ∈ J do

% Assign tasks with value greater than the multiplier according to the knapsack problem
I+j = {i ∈ I|vji − λi > 0};
[xj,I+j

, Zj] = knapsack({vji − λi}i∈I+j , {cji}i∈I+j , bj);
end
while do

% Assign unassigned tasks with a value equal to the multiplier to capable agents

Ī = {i ∈ I|
∑
j∈J

xji = 0}; I0j = {i ∈ Ī|vji = λi}; J0
i = {j ∈ J |i ∈ I0j }; b̄j = bj −

∑
i∈I

cjixji;

x = arg max
x

∑
j∈J0

i

∑
i∈I0j

vjixji, such that
∑
j∈J0

i

xji ≤ 1, i ∈ Ī,
∑
i∈I0j

cjixji ≤ b̄j , j ∈ J ,

xji ∈ {0, 1}, cji, bji ∈ Z+, j ∈ J0
i , i ∈ I0j ;

if x is feasible then
return; % Assignment is optimal in GAP

end

for i = {i ∈ I|
∑
j∈J

xji = 0} do

% For unassigned tasks, find the least decrease in the multiplier to assign task
for j ∈ J do

δji = Zj(u)− vji + λi − knapsack({vjl − λl}l∈I|l 6=i, {cjl}l∈I|l 6=i, bj);
end

end

I0 = {i ∈ I|
∑
j∈J

xji = 0, min2(δ1i, . . . , δmi) > 0};

if I0 = ∅ then
return; % No more optimal assignment exists

else
% Attempt to assign tasks with minimal decrease in multiplier required for the task
to be assigned. If assignment is more optimal, then continue, else select another task.
for i∗ ∈ I0 do

j∗ = arg min(δ1i∗ , . . . , δmi∗); xj∗i∗ = 1;
[xj∗,i∈I|i 6=i∗ , Zj∗] = knapsack({vj∗i − λi}i∈I|i 6=i∗ , {cj∗i}i∈I|i 6=i∗ , bj∗);

I0 = I0 \ {i∗};
if
∑
i∈I

xji ≤ 1 ∀j ∈ J then

return to start of while loop;
else

revert x and try another i∗;
end

end

end

end
Algorithm 3: Multiplier Adjustment Method

10

2.1.4 Knapsack Algorithm

Decomposing the GAP into simpler sub-problems which have efficient solution algorithms makes
B&B feasible. Solution of the 0-1 knapsack problem makes-up the core component of both the
sub-gradient method and the multiplier adjustment method, which must solve multiple knapsack
problems at every iteration. Fortunately, the 0-1 knapsack problem can be solved by a pseudo-
polynomial time dynamic programming algorithm. It is known as the knapsack problem because
it can be easily visualized as having n items of unique weights and values with a knapsack of fixed
weight capacity. The problem is to determine which items if packed will maximize the value in
the knapsack. The dynamic programming approach leverages the fact that to determine whether
an item is optimally packed for a given capacity, it helps to know the optimal packing list for a
problem of a lower capacity.

The knapsack problem is a known NP-complete problem, and for reasonable size, it facilitates
efficient solution. The complexity of the dynamic programming algorithm is linear in the number of
tasks, O(nbj), and only grows in complexity with respect to the order of bj . Since bj is of sufficiently
low order for many problems, the dynamic programming algorithm provides a computationally
efficient method for solving the knapsack problem. The solution algorithm is shown in Algorithm
4 [11].

Data: vj = (vj1, . . . , vjn)T , cj = (cj1, . . . , cjn)T , bj
Result: xj = (xj1, . . . , xjn)T , Zj
M = {0}n×bj , S = {0}n×bj ,xj = {0}n;
for i = 1, . . . , n do

for l = 1, . . . , bj do
M(i, l) = max(M(i− 1, j),M(i− 1, j − cj(i)) + vj(i));
if M(i− 1, j − cj(i)) + vj(i)) > M(i− 1, j) then

S(i, l) = 1;
end

end

end
for i = n, . . . , 1 do

if S(i,K) then
xj(i) = 1,K = K − cj(i);

end

end
Zj = M(n, bj) ;

Algorithm 4: Knapsack Problem

2.1.5 Greedy Search

Efficient implementation of B&B requires a feasible solution to provide a lower bound for solutions:

Zfeasible ≤ Z ≤ ZDa. (11)

A tight lower bound requires fewer problems to be enqueued during iterations of the B&B. Algo-
rithm 5 shows the greedy search procedure implemented in our B&B. The procedure is based on
step (3) in [4].

11

Data: v, c,b
Result: x, Z
x = bound(v, c,b);
if x is feasible then

Z = vTx, return;
else

I0 = {i ∈ I|
∑
j∈J

xji = 1};

for i ∈ I0 do
xji = 0 ∀ j ∈ J ;
1. sort(vji)
2. assign xji ∀ j ∈ J, i ∈ I0;
if x is feasible then

Z = vTx, return;
end

end

end
Algorithm 5: Greedy Search

This procedure proved to be remarkably effective (see Figure 5); however, it is entirely heuristic
and not guaranteed to produce a feasible solution. It will fail to scale appropriately with larger, more
difficult problems. Currently, we make a single pass to un-assign a single task and attempt to find a
feasible solution. B&B begins even if this does not yield a feasible solution. For implementation as
a stand-alone method for difficult problems, it would require successive iterations of un-assigning
two tasks, then three, and so on, until finding a feasible solution. This would be an unprincipled
and inefficient search for large problems. Rather, the greedy method works best as a seed for B&B.

2.2 Spectral Meta-Learner

Under reasonable assumptions – independent and identically distributed task classification and
conditionally independent classification from agents – the work of Parisi, et al., allows us to develop
an unsupervised weighting of agents according to the balanced accuracy, πj = 1

2(ψj + ηj), of
each of the m agents [12]. Here, ψ is sensitivity, ψj = P (ŷji = 1|yi = 1), and ηj is specificity,
ηj = P (ŷji = −1|yi = −1).

Consider the sample covariance matrix of predicted labels over n tasks.

Q̂ =
1

m− 1

∑
j∈J

(aj − ā)T (aj − ā), (12)

where aj is the jth row of A (See Figure 3). As shown in [12], as n → ∞, the sample covariance

matrix, Q̂ ∈ Rm×m will approach:

Qji = lim
n→∞

Q̂ji =

{
1− µ2j i = j

(1− b2)(2πi − 1)(2πj − 1) o.w.
. (13)

where µj = E[aj]. This implies that the covariance matrix will be nearly rank one, Q ≈ κuuT , and
further that uj ∝ (2πj − 1). The entries of the principal eigenvector will be proportional to the
balanced accuracy of the corresponding agent!

12

Although we do not have the knowledge at hand to find Q analytically, we can use the sample
covariance matrix as an estimate and simplify the problem of finding the principal eigenvector of
Q to finding the principal eigenvector of a well-estimated sample covariance matrix, Q̂.

Further developed in [12], in a maximum likelihood formulation, the most likely label for a task,
ȳi, is

ȳi = sign

 m∑
j=1

ŷji

(
log

(
ψjηj

(1− ψj)(1− ηj)

)
+ log

(
ψj(1− ψj)
ηj(1− ηj)

)) , (14)

and upon a Taylor series expansion of ȳi about (ψj , ηj) = (1/2, 1/2), we have

ȳi ≈ sign

 m∑
j=1

ŷji · (2πj − 1)

 ≈ sign

 m∑
j=1

ŷji · uj

 . (15)

This means that the best mapping, f , to jointly classify a task in a maximum likelihood formu-
lation is a weighted linear combination of agent classification labels where the weights correspond
to the accuracy of each agent. Moreover, the relative reliability of each agent can be inferred from
u.

3 Implementation

Building a stable iterative system will require minimizing the time complexity of the assignment
and fusion modules. The time complexity of B&B can be prohibitive for an assignment problem
with too many agents and images. This requires carefully selecting the optimization technique used
to provide the bounding function and solve the dual problem, (7): the sub-gradient or multiplier
adjustment method.

3.1 Resources

All software was developed in MATLAB R2015b. Validation of the task assignment module ran on
a Windows-based laptop computer with an Intel Core i7 2.6 GHz processor and 8GB RAM. The
testing will be run on a Unix-based desktop computer with 16 Intel Core i5 2.0 GHz processors
and 100GB RAM.

3.2 Validation

Since the fusion module has been developed and validated during previous work, only the assign-
ment module requires validation. Without a known polynomial time algorithm for confirming that
an assignment solution is the globally optimal solution, we use the internal MATLAB mixed inte-
ger programming function (intlinprog()) in the Optimization Toolbox as the known solution for
validation results 2. Additionally, as the maximum target value, Z, is not necessarily unique with
respect to assignments, x, comparisons are made according to the target value.

In [4], the results of multiple implementations of B&B were compared for various GAP problems.
We will adopt these problem sizes for validation. For each unique problem size, 100 unique problems
were generated with randomly generated assignment values, v, assignment costs, c, and agent

2MATLAB uses B&B with the integer constraint relaxed. Additionally, before starting B&B, ten iterations of
cutting plane methods are attempted in order to reduce the size of the feasible set. This is time-consuming and
computationally expensive, but reduces the growth in computation time for large problems.

13

budgets, b to accommodate feasible problems 3. A summary of validation problem sizes is shown
in Table 1.

Agents (m) Tasks (n) Problems

3 10 100

3 20 100

5 20 100

5 520 100

10 75 100

8 100 100

12 150 100

17 200 100

Table 1: Problem sizes of GAP for validation of B&B algorithm implemen-
tation.

We have implemented three distinct methods for solving GAP. The first is the greedy method,
Algorithm 5, which does not incorporate B&B. Both the sub-gradient and multiplier adjustment
methods implement B&B with ZDa. We cannot verify that our methods achieved the global optimal
solution, but we can verify that solutions satisfy the constraints of (1). Indeed, all three methods
found feasible solutions for all problems (see Table 2).

Method Feasible Solutions

Greedy 100

Sub-gradient 100

Multiplier Adjustment 100

Table 2: Percent (out of 800 problems) of feasible solutions to GAP vali-
dation problems returned by implemented methods.

With feasibility of solutions established, we can next compare the target value, Z, of the MAT-
LAB solution against the greedy, sub-gradient, and multiplier adjustment solutions. Here, we
measured accuracy in terms of relative error in order to account for the problem size. Results are
depicted in Figure 5. Maximum relative error for all three methods is about 3%, and non-zero error
occurred on less than 10% of problems. MATLAB achieved the minimum error on all problems.

Beyond accuracy, we would like to compare the speed of all three methods relative to MATLAB’s
implementation. Primarily, we are concerned with the time complexity of the two implementations
of B&B since the greedy method is not robust enough for use in the ITAS. In order to analyze time
complexity, we conducted a one-way analysis of variance (ANOVA) in which the factor is problem
size.

This analysis requires the assumptions that data within a given problem size is independent
and identically distributed (IID), error within problem sizes is normally distributed, and variance
across problem sizes is homogeneous. The first assumption is easily satisfied by our problem set-up;
however, the latter require further consideration. The combinatorial nature of B&B will necessarily
create a heavy-tailed effect in the data since some problems will require the algorithm to enqueue
and bound many orders of magnitude more sub-problems. This effect will also result in growth of

3Problems generated according to: vji ∈ R ∼ unif(0, 1), cji ∈ Z+ ∼ unif(1, 10), and bj ∈ Z+ ∼
unif(n

m
max

i
cji,

2n

m
×max

i
cji).

14

Figure 5: Histogram of the relative error of target value, Z, for greedy,
sub-gradient, and multiplier adjustment methods.

variance with problem size; however, these problems will be infrequent, and if treated as outliers,
the data should easily satisfy the second and third assumptions. Using a log-log scale also helped
to minimize the effects of outliers.

As shown in Figure 6, the sub-gradient and multiplier adjustment methods grow linearly with
respect to the problem size, O((m×n)1.0) and O((m×n)0.96) respectively, and MATLAB’s imple-
mentation of B&B grows sub-linearly, O((m×n)0.19), almost independent of the problem size. Note
that the sub-gradient and multiplier adjustment methods compute solutions considerably faster for
small problem sizes as compared to the MATLAB implementation. These differences result from
the plane cutting methods implemented by MATLAB. Much of the computation time for MAT-
LAB’s algorithm is committed to ten iterations of plane cuts to reduce the size of the feasible set.
For small problems, these iterations take longer than the resultant B&B but result in sub-linear
time complexity over evaluated problem sizes.

Overall, these results indicate that the bulk of the time complexity of the solution of integer
linear problems such as GAP, (1), results from B&B. The multiplier adjustment method solves the
same dual problem, LDa (7), as the sub-gradient method for each problem enqueued. In fact, the
multiplier adjustment method solves that problem considerably quicker (see Figure 7); however,
this is not manifested in the time complexity of the full B&B, in which the multiplier adjustment
method and sub-gradient method have the same time complexity. Although MATLAB implements
B&B with a similar bounding function, Lz (3), its computational time grows sub-linearly. As shown
with the sub-gradient and multiplier adjustment methods, a difference in computational complexity
of the bounding function will not dominate the resultant time complexity of B&B. Moreover, the
bound provided by Lz is inferior to the bound provided by La. It must be that the reduced feasible
set from which B&B searches results in the reduced time complexity.

15

Figure 6: Problem size versus computational time (loge − loge) for solving
GAP. The computation time for the sub-gradient and multiplier adjustment
methods grow linearly, O((m×n)1.0) and O((m×n)0.96) respectively, and
MATLAB’s computation time grows sub-linearly, O((m × n)0.19). The F-
statistic for the three methods are 60.29, 173.8, and 49.03 respectively. The
horizontal red line in the box-plots is the median of the data. The top and
bottom of the box reflect the 75th and 25th percentile respectively. The
red “+” represent outliers (greater than 2.7 standard deviations from the
mean). Two medians are significantly different if their notch intervals do
not overlap.

Figure 7: Problem size versus computational time (loge − loge) for solv-
ing the Dual Lagrangian, (7). The computation time for the sub-gradient
method grows much faster, O((m× n)0.98), than that of the multiplier ad-
justment method, O((m× n)0.77). The F-statistic for the two methods are
58.87 and 343.3 respectively.

16

The difference in accuracy between the multiplier adjustment method and sub-gradient method
implementations of B&B are minimal, but the time complexity of the multiplier adjustment method
as a bounding function is considerably better. Additionally, the sub-gradient method enqueued sig-
nificantly more problems (see Figure 8), and as a result, yielded far more outliers in computational
time. These computational time outliers could be catastrophic for ITAS. Based on the validation re-
sults, for relevant problem sizes of ITAS, O(103), the multiplier adjustment method implementation
of B&B will satisfy both accuracy and speed requirements.

Figure 8: Problem size versus problems enqueued. The multiplier adjust-
ment method enqueued significantly fewer sub-problems during B&B as a
result of a more effective bound. The number of problems enqueued by the
sub-gradient method grows linearly with problem size, O((m×n)0.96), while
the number of problems enqueued by the multiplier adjustment method is
independent of problem size for the validation problems.

3.3 Testing

In order to test the system, we will use the off-line classification results of computer vision algorithms
and RSVP subjects on a common image database. These off-line results will be used to simulate
on-line performance of the system. Since this system should attempt to match the accuracy of
assigning all images to all agents while decreasing the overall number of task assignments, we will
compare the system run time and accuracy of the system versus assignment of all images to all
agents.

17

3.4 Databases

For testing, we will use the Office Object Image Database, maintained by the Translational Neu-
roscience Branch of the Army Research Laboratory. The Office Object Image Database comprises
a collection of images of office objects in natural and synthetic environments which pose object
detection and recognition issues for both humans and computer vision. For instance, objects may
be partly occluded and thus difficult for computer vision to recognize, but also objects may be
un-centered in the image which makes detection during RSVP very difficult. Experimental data
has been collected on RSVP subjects prompted to look for a particular office object such as a desk.
Computer vision results will be collected similarly, requiring a binary response from computer vision
algorithms based on the presence of a prompted office object.

3.5 Deliverables

• Software

– Image Labeling System (fusion module, assignment module, agent classes)

– Execution script

• Data

– Office Object Image Database

– Office Object RSVP Database

• Analysis

– Performance analysis of test results

– Implications for human-autonomous systems

3.6 Schedule

• Revise and update project plan (20 DEC - 24 JAN)

• Build Image Labeling System (25 JAN - 26 FEB)

– Build agent classes

– Develop message-passing framework

– Integrate all components into a system (26 FEB)*

• Test Image Labeling System (26 FEB - 15 APR)

– Testing (1 APR)*

– Performance analysis of test results

• Conclusion (15 APR - 1 MAY)

– Final Presentation and Results (6 MAY)*

(* Denotes a milestone)

18

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[2] Jens Clausen. Branch and bound algorithms-principles and examples. 1999.

[3] Marshall L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming
Problems. Management Science, 50(12 supplement):1861–1871, December 2004.

[4] Marshall L. Fisher, R. Jaikumar, and Luk N. Van Wassenhove. A Multiplier Adjustment
Method for the Generalized Assignment Problem. Management Science, 32(9):1095–1103,
September 1986.

[5] Chien-ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive Task Assignment for
Crowdsourced Classification.

[6] Panagiotis G. Ipeirotis, Foster Provost, Victor S. Sheng, and Jing Wang. Repeated labeling
using multiple noisy labelers. Data Mining and Knowledge Discovery, 28(2):402–441, March
2013.

[7] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-Optimal Task Allocation for
Reliable Crowdsourcing Systems. Operations Research, 62(1):1–24, February 2014.

[8] O. Erhun Kundakcioglu and Saed Alizamir. Generalized assignment problem Generalized As-
signment Problem. In Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia
of Optimization, pages 1153–1162. Springer US, 2008.

[9] Jan V Leeuwen, AR Meyer, M Nival, et al. Handbook of theoretical computer science: algo-
rithms and complexity. MIT Press, 1990.

[10] Dolores Romero Morales and H. Edwin Romeijn. The Generalized Assignment Problem and
Extensions. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial
Optimization, pages 259–311. Springer US, 2004.

[11] Ralph Otten. Lecture 13: The knapsack problem.

[12] Fabio Parisi, Francesco Strino, Boaz Nadler, and Yuval Kluger. Ranking and combining
multiple predictors without labeled data. Proceedings of the National Academy of Sciences,
111(4):1253–1258, January 2014.

[13] G. Terry Ross and Richard M. Soland. A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming, 8(1):91–103, December 1975.

[14] P. Sajda, E. Pohlmeyer, Jun Wang, L.C. Parra, C. Christoforou, J. Dmochowski, B. Hanna,
C. Bahlmann, M.K. Singh, and Shih-Fu Chang. In a Blink of an Eye and a Switch of a
Transistor: Cortically Coupled Computer Vision. Proceedings of the IEEE, 98(3):462–478,
March 2010.

19

