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Abstract

We want to design a human-autonomous system which can efficiently and accurately classify
a database of images as interesting or not interesting. The system will iteratively distribute im-
ages for binary classification amongst multiple hetergeneous agents according to the Generalized
Assignment Problem, and use the Spectral Meta-Learner, to combine multiple binary classifi-
cation results in a principled manner. From the results, we hope to draw conclusions about the
circumstances under which sensitive tasks can and should be delegated to autonomous technol-
ogy in an optimal manner.



1 Introduction

Suppose that we wanted to sort a large database of images according to a simple binary classification
such as interesting or not interesting. The defense and intelligence communities have this exact
requirement. The sorting of satellite imagery requires trained professionals to scan images for
indicators of valuable intelligence, triaging images for later thorough analysis. This is a costly and
tedious task for humans. Certainly, there are means to reduce the workload for those intelligent
analysts in the age of computer vision. However, when considering tasks with implications as
serious as our national security, perhaps we cannot exclude humans from the decision loop.

Sajda, et al. explore this very problem in [11]. They used computer vision algorithms to
complement the efforts of a human performing image triage, sorting images as “interesting” or
not. The group sought to synchronize the efforts of a single human performing Rapid Serial Visual
Presentation (RSVP) with a single computer vision system. 1

Exploiting the singular ability of humans to quickly understand the “gist” of an image, the
human agent quickly scanned the images. Images which elicited interesting responses through the
RSVP paradigm were routed to the computer vision algorithm, which excels at object recognition.
In essence, the system could intelligently sort the images according to the human analysis, and
determine the source of the humans interest through the far quicker and more accurate object
recognition skills of computer vision. Sajda, et al. additionally implemented this system in reverse,
pruning the image database first through computer vision algorithms searching the images for
predetermined interesting objects and routing the reduced database to the human for confirmation.
Either method, autonomous technology as a mechanism for inference or as a filter, proved a viable
complement to the single image analyst, and the results imply a more general approach to leveraging
autonomous technology to support human efforts.

An obvious concern might be a lack of sensitivity of a computer vision algorithm. What if a
valuable image were deemed not valuable and thus never seen by a human analyst? Here, Ipierotis,
et al. present a sensible recommendation: seek additional independent classifications from other
agents when the classification outcomes of tasks have a non-negligible probability of error [5]. If one
computer vision algorithm deems an image as interesting, confirm with another computer vision
algorithm – or better yet, confirm with as many distinct agents as feasible. This implies that in
order to reduce the workload for the human imagery analyst, multiple autonomous agents must
make independent classifications, requiring the human agents input only after the joint classification
of autonomous agents does not provide a confident meta-classification.

Such a system is depicted in Figure 1; however, it begs two principal questions: how should
images be distributed amongst the agents in such a system, and how should multiple labels for a
single image be combined to make a decision about that image?

1.1 Problem

Let us simplify and formalize this system in order to formulate a clear problem statement. Figure
2 conceptualizes a system with n heterogeneous tasks and m heterogeneous agents. Let T be the
set of tasks. Then an agent performs the following binary decision: Y : T → {−1, 1}. Denote
I = {1, . . . , n} as the index of tasks and J = {1, . . . ,m} as the index of agents. The assignment
of a task i ∈ I to an agent j ∈ J will have an associated value, vij = f(si, rj) ≥ 0. Each task has
an associated score parameter, 0 ≤ si ≤ 1, which reflects the current confidence in the meta-label

1RSVP is a Brain-Computer Interface paradigm in which subjects wear an electroencephalogram (EEG) and
passively view images at high rates of speed (2-5 Hz). Using the oddball paradigm, novel stimuli, or interesting images,
generate a neural signature in the EEG recordings which can be recognized through machine learning methods.
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Figure 1: The image labeling system. An imaging sensor populates the
database of images. An assignment node distributes images to agents in
parallel. The agents perform binary classification – interesting or not inter-
esting, and the results are consolidated at a fusion node. At this point, the
confidence in the image classification label is used to threshold images for
completion or routing back to the image database for re-assignment. Here,
agents can be computer vision algorithms, RSVP subjects, or self-paced
image analysts.

of that task. Each agent has a reliability, rj , which reflects the agents accuracy, a cost, cij , which
could reflect the time or resources required for task completion and may depend on the task, and
a budget, bj , which limits the workload for an agent on each iteration.

Accordingly, we want to determine:

1. Assignment Problem – How do we optimally assign images in each iteration in order to max-
imize value?

2. Joint Classification Problem – How do we infer the label of a task given a set of labels from
multiple agents?

1.1.1 Task Assignment

The task assignment problem can be mapped onto the generalized assignment problem (GAP) as
follows, where we are looking for the optimal assignment, captured by, xij , the assignment of task
i to agent j [8, 7]:

G = min
x

∑
i∈I

∑
j∈J
−vijxij (1)

1.
∑
i∈I

cijxij ≤ bj , j ∈ J

2.
∑
j∈J

xij = 1, i ∈ I

3. xij ∈ {0, 1}
4. vij = g(rj , sj) ≥ 0
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Figure 2: This iterative task assignment system is a simplification of the
image labeling system. Here, heterogeneous tasks, with an extrinsic confi-
dence score, si, are assigned in parallel from a centralized node to hetero-
geneous agents, with the following intrinsic parameters: reliability, rj , and
budget, bj . Additionally, each assignment has a cost, cij . The classification
results are consolidated into a single joint classification at the fusion node,
and the images are classified if the confidence in the meta-label exceeds
a pre-set threshold, otherwise images are routed back to the database for
re-assignment.

GAP is a NP-hard binary integer problem with two classes of solutions – exact and heuristic.
Exact methods seek to exhaustively search the solution space for a global minimum; however, the
most successful exact methods do not evaluate the target function at all feasible solutions, but
rather use a heuristic to limit the feasible solutions for search. As the GAP is combinatorial,
computational complexity of even the best exact methods can be prohibitive. For that reason,
researchers often apply heuristic methods [7, 8].

A proven exact method for solving the GAP is the Branch and Bound algorithm (B&B). B&B
is a divide and conquer optimization approach with a bounding function, search strategy, and
branching strategy. The algorithm searches branches, or sub-problems of the overall problem and
calculates bounds on the sub-problems according to heuristic methods. If the bounds are sub-
optimal, or above the current optimal solution, then the algorithm can prune these sub-problems
and search elsewhere. Otherwise, this sub-problem branches into further sub-problems for search.
The algorithm iterates until the problem space is exhausted, and a global optimum is achieved. See
Algorithm 1 for B&B pseudo-code.

1.1.2 Joint Classification

Given m agents which independently produce binary classifications on n tasks, the joint classifica-
tion problem asks how do we obtain an improved estimate of the label of each task without direct
knowledge of the agent performance probabilities and without knowledge of the true labels of any
of the tasks? We seek to minimize the probability of error by finding a mapping, f , from a set of
the independent classification labels from m agents to a meta-label such that the probability over
all tasks of the meta-label being incorrect is minimized:

arg min
f

∑
i∈I

P(f(ŷi1, . . . , ŷim) 6= yi) (2)

1. f : {ŷij}j∈J → ȳi
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2. ŷij , ȳi, yi ∈ {−1, 1}
The classificaiton labels of all agents for all tasks can be captured in a matrix, A ∈ {−1, 1}m×n,

in which the rows correspond to agents and the columns correspond to tasks, see Figure 3.

Figure 3: The classification outcome matrix, A, captures the meta-data
across all agents and tasks. The green box indicates entry Aij which coin-
cides with ŷij the outcome of agent j classifying task i. The red rectanble
comprises the label set, {ŷij}j∈J , for a task, i. The blue rectangle highlights
a row vector of the label set for an agent j, referred to as aj ∈ {−1, 1}n in
(9).

Approaches to the problem of joint classification fall into one of three categories: supervised,
unsupervised, and semi-supervised. Supervised methods rely on ground-truth knowledge of a por-
tion of the task labels in order to learn an optimal operation, f , and semi-supervised methods
have access to a source of ground-truth knowledge for task labels so that it can be attained when
appropriate. For unsupervised methods such as our problem, labels are typically inferred according
to majority vote or averages [5, 9].

1.2 Relevant Work

Much of the related work to this problem deals with optimal crowdsourcing, in which binary
classification tasks are distributed in parallel to numerous agents at low-cost. In practice, on
services such as Amazon Mechanical Turk, the responses of agents can be completely random, and
it is desirable to learn a reliable binary classification for numerous tasks from the labels of noisy
labelers [5]. Like our problem, it requires the assignment of binary classification tasks to noisy
labelers and the need for joint classification of repeated labels from different agents for the same
task.
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In a very simplistic model, Karger, et al. explore the optimal crowdsourcing problem within
a framework of homogeneous agents and homogeneous tasks without supervised knowledge of any
task labels. In this special case, no assignment strategy can do better than random assignment,
and they instead develop a belief propagation method for inferring agent performance to perform
the joint classification [6].

Ho, et al. developed an adaptive task assignment method for crowdsourcing problems, framing
the problem in very similar terms to our problem formulation [4]. They approached the assignment
of heterogeneous binary tasks to heterogeneous agents within the GAP framework. Unlike in our
approach, they did not constrain the joint classification to be unsupervised. Instead, they proposed
an exploration-exploitation method in which additional agents were recruited to infer the difficulty
of tasks, and a subset of known tasks were assigned to infer the agent accuracy, similar to a training
session.

The question of joint classification without supervised knowledge of agent performance proba-
bilities or true labels for any images highlights the particular benefits of the Spectral Meta-Learner
(SML) introduced by Parisi, et al. [9]. SML provides a fully unsupervised method for not only
joint classification but also estimating the accuracy of agents; however, in [9], the method is only
applied in post-hoc analysis. In our system, we will apply it adaptively, using the estimation of
agent accuracy to make further task assignments.

Solving GAP with B&B is well-established in the literature. We will follow the Lagrangian
Relaxation (LR) implementation of Fisher, et al. in [2, 3]. Considering the scale of our problem,
dualizing the semi-assignment constraint and using the Lagrange multiplier adjustment method
heuristic as in [3] will likely provide better computational efficiency than subgradient methods
either of the dual problems.

2 Approach

2.1 Branch and Bound Algorithm

We will implement B&B at the assignment module to solve the generalized assignment problem. For
the bounding function, we will use LR of the semi-assignment constraints with either subgradient
methods [2] or multiplier adjustment methods [3]. For the search strategy, a best first search will
be used. B&B pseudo-algorithm is shown in Algorithm 1 [1].
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Algorithm 1: Branch and Bound

Data: S ⊂ {0, 1}m×n, g : S → R
Result: xopt ∈ {0, 1}m×n
I :=∞; LB(p0) := g(p0); B := {(p0, LB(p0))} ;
while B 6= ∅ do

Select p ∈ B; B := B\{p}; branch on p for 1, . . . , k ;
for i = 1, . . . , k do

LB(pi) := g(pi) ;
if LB(pi) < I then

if LB(pi) = f(X) then
I = f(X); xopt = X; go to end;

else
B := B ∪ {(pi, LB(pi))};

end

end

end

end

2.1.1 Lagrangian Relaxation

The crux of an efficient solution to GAP using B&B is having a sufficiently tight bounding function.
For this purpose, we will use LR, which has been demonstrated to provide a sufficiently tight bound
for B&B for binary integer problems of our problem size [2, 3, 10].

Considering the set of constraints on GAP, we face a choice of which constraint subset to relax.
One option is to relax the capacity constraints (constraint 1 in (1)) as described in [2]:

Lc(λ) = minimize

∑
i∈I

∑
j∈J
−vijxij +

∑
j∈J

λj
∑
i∈I

(cijxij − bj)

 (3)

1.
m∑
j=1

xij = 1, i ∈ I

2. xij ∈ {0, 1}
3. λj ≥ 0, j ∈ J

The problem is now easier owing to the reduced number of hard constraints, but more than
this improvement, we want to leverage the intrinsic structure of the problem and relax constraints
which will yield a substantially easier problem. As shown in [3], another option is to relax the
semi-assignment constraints (constraint 2 in (1)):

La(λ) = minimize

∑
i∈I

∑
j∈J
−vijxij +

∑
i∈I

λi
∑
j∈J

1− xij

 (4)

1.
∑
i∈I

cijxij ≤ bj , j ∈ J

2. xij ∈ {0, 1}
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Notice that the problem now simplifies to m knapsack problems, a well-studied combinatorial
optimization problem:

Laj (λ) = minimize

(∑
i∈I

(−vij + λi) xij

)
, j ∈ J. (5)

In [3], Fisher et al show decreased time complexity with (4) over (3). Additionally, Morales et
al prove the following inequality which shows that the bound from (4) is tighter than the bound
from (3) [8]:

maxLc(λ) ≤ maxLa(λ) ≤ G. (6)

where G is the solution to the primal problem.

2.1.2 Subgradient Method

Let Z = max
λ

La(λ). Z is a relatively tractable optimization problem with the exception of not

being everywhere differentiable, which precludes the exclusive use of gradient based optimization
methods [2]. This problem can be overcome with the use of subgradient methods. A subgradient
of La(λ) at λ0 is a vector, ν, such that

La(λ) ≤ La(λ0) + ν(λ− λ0), ∀ λ. (7)

Fortunately, Z, is sub-differentiable everywhere, and as with gradient based methods, the opti-
mal solution to Z occurs when 0 is a subgradient of La(λ) [2], and we can take iterative steps along
subgradients to find a 0 subgradient according to the following iteration rule from [2]:

λk+1 = λk +
α(UB(Z)− La(λk))

‖~1− xk‖2
(~1− xk), (8)

where ~1 = (1, . . . , 1)T , (~1 − xk) is the subgradient, 0 < α ≤ 2, UB(·) is a heuristic upper bound,
and C, x, and b are vectorized components of (4). This iterative procedure guarantees convergence
to max

λ
La(λ) [2].

2.1.3 Multiplier Adjustment Method

Another approach to solving Z is the multiplier adjustment method, a heuristic technique. In
the multiplier adjustment method, we are searching the solution space similar to a steepest de-
scent method; however, we only search the solution in constrained directions, changing a small,
fixed subset of the Lagrangian multipliers, λi, one at a time. This greatly increases the speed
and decreases the computational cost of each gradient step, as we can simply find the maximum
directional derivative at each iteration [2]. The multiplier adjustment method is not guaranteed to
find a global optimum of the dual problem, Z; however, practice, it converges considerably quicker
than subgradient methods, without sacrificing accuracy [3].

We will follow the algorithm proposed in [3] for implementation of the multiplier adjustment
method (see Algorithm 2 for pseudo-code).
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Algorithm 2: Multiplier Adjustment Method

Data: vi(λ) = (λi − vi1, . . . , λi − vim), xj = (x1j , . . . , xnj), x = (x1, . . . , xm)
Result: Z
uj = min2 vi(0); xij = 0; I+j = {i ∈ I|λi − vij > 0} ;

x = arg min
x

∑
i∈I+j

(λi − vij) xij ,
∑
i∈I+j

cijxij ≤ bj , xij ∈ {0, 1}, i ∈ I+j ;

while do

Ī = {i ∈ I|
∑
j∈J

xij = 0}; I0j = {i ∈ I|λi − vij = 0}; J0
i = {j ∈ J |i ∈ I0j };

b̄j = bj −
∑
i∈I

cijxij ;

x = arg min
x

∑
j∈J0

i

∑
i∈I0j

−vijxij ,
∑
j∈J0

i

xij = 1, i ∈ Ī,
∑
i∈I0j

cijxij ≤ b̄j , j ∈ J , xij ∈ {0, 1},

j ∈ J0
i , i ∈ I0j ;

if
∑
j∈J

xij = 1, i ∈ I then

return ;
end

for i = {i ∈ I|
∑
j∈J

xij = 0} do

for j ∈ J do

δij = Zj(u) + vij − λi + min
∑

l∈I|l 6=i

(λl − vlj)xlj ,
∑

l∈I|l 6=i

cljxlj ≤ bj − cij , xlj = {0, 1},

l ∈ I/{i} ;

I0 = {i ∈ I|
∑
j∈J

xij = 0,min
2

(δi1, . . . , δim) > 0} ;

end

end
if J0 = ∅ then

return;
else

Choose i∗ ∈ I0; j∗ = arg min(δi∗1, . . . , δi∗m); xi∗j∗ = 1 ;

min
∑

i∈I|i 6=i∗

(λi − vij)xil,
∑

i∈I|i 6=i∗

cijxij ≤ bi − ci∗j , xij = {0, 1}, i ∈ I/{i∗}) ;

I0 − I0/{i∗} ;

end

end

2.2 Spectral Meta-Learner

Under reasonable assumptions – independent and identically distributed task classification and
conditionally independent classification from agents – the work of Parisi, et al., allows us to develop
an unsupervised weighting of agents according to the balanced accuracy, πj = 1

2(ψj + ηj), of each
of the m agents as in [9]. Here, ψ is sensitivity, ψj = P (ŷij = 1|yi = 1), and ηj is specificity,
ηj = P (ŷij = −1|yi = −1).
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Consider the sample covariance matrix of predicted labels over n tasks.

Q̂ =
1

m− 1

∑
j∈J

(aj − ā)T (aj − ā), (9)

where aj is the row of A (See Figure 3). As shown in [9], in the limit, as n → ∞, the sample

covariance matrix, Q̂ ∈ Rm×m will approach:

Qij = lim
n→∞

Q̂ij =

{
1− µ2j i = j

(1− b2)(2πi − 1)(2πj − 1) o.w.
. (10)

This implies that the covariance matrix will be nearly rank one, Q ≈ λvvT , and further that
vj ∝ (2πj − 1). The entries of the principal eigenvector will be proportional to the balanced
accuracy of the corresponding agent!

Although, we do not have the knowledge at hand to find Q analytically, we can use the sample
covariance matrix as an estimate and simplify the problem of finding the principal eigenvector of
Q to finding the principal eigenvector of a well-estimated sample covariance matrix, Q̂.

Further developed in [9], in a maximum likelihood formulation, the most likely label for a task,
ȳi, is

ȳi = sign

 m∑
j=1

ŷij

(
log

(
ψjηj

(1− ψj)(1− ηj)

)
+ log

(
ψj(1− ψj)
ηj(1− ηj)

)) , (11)

and upon a Taylor series expansion of ȳi about (ψj , ηj) = (1/2, 1/2), we have

ȳi ≈ sign

 m∑
j=1

ŷij · (2πj − 1)

 ≈ sign

 m∑
j=1

ŷij · vj

 . (12)

This means that the best mapping, f , to jointly classify a task in a maximum likelihood formu-
lation is a weighted linear combination of agent classification labels where the weights correspond
to the accuracy of each agent. Moreover, the accuracy of each agent can be estimated by calculating
the principal eigenvector of the sample covariance matrix.

3 Implementation

Building a functioning on-line system will require minimizing the time and space complexity of the
assignment module and implementing a robust message-passing system between assignment, fusion,
and agent objects. The time complexity of B&B can be prohibitive for an assignment problem with
too many agents and images. This requires exploring the optimization technique used to solve
the LR problem, (4). Subgradient methods provide a more principled optimization technique but
incur a greater cost in complexity. Multiplier reduction methods provide an approximation of the
optimal solution but offer savings in time.

3.1 Resources

All software will be developed in MATLAB R2015b. Validation of the task assignment module will
be run on a Windows-based laptop computer with an Intel Core i7 2.6 GHz processor and 8GB
RAM. The testing will be run on a Unix-based desktop computer with 16 Intel Core i5 2.0 GHz
processors and 100GB RAM.
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3.2 Validation

Since the fusion module has been developed and validated during previous work, only the assignment
module will require validation. Our developed code will be compared against the internal MATLAB
mixed integer programming function (intlinprog()) in the Optimization Toolbox. Using known
image confidence and agent reliability, we can verify that the application will yield equivalent
assignment solutions by comparing the the optimal values of G.

3.3 Testing

In order to test the system, we will use the off-line classification results of computer vision algorithms
and RSVP subjects on a common image database. These off-line results will be used to simulate
on-line performance of the system. Since this system should attempt to match the accuracy of
assigning all images to all agents while decreasing the overall number of task assignments, we will
compare the system run time and accuracy of the system versus assignment of all images to all
agents.

3.4 Databases

For testing, we will use the classification on a common image database, the Office Object Database,
maintained by the Translational Neuroscience Branch of the Army Research Laboratory. The
Office Object Database comprises a collection of images of office objects in natural and synthetic
environments which pose object detection and recognition issues for both humans and computer
vision. For instance, objects may be partly occluded and thus difficult for computer vision to
recognize, but also objects may be un-centered in the image which makes detection during RSVP
very difficult. Experimental data has been collected on RSVP subjects prompted to look for a
particular office object such as a desk. Computer vision results will be collected similarly, requiring
a binary response from computer vision algorithms based on the presence of a prompted office
object.

3.5 Deliverables

• Software

– Image Labeling System (fusion module, assignment module, agent classes)

– Execution script

• Data

– Office Object Database

– Office Object RSVP Database

• Analysis

– Performance analysis of test results

– Implications for human-autonomous systems

3.6 Schedule

• Develop Assignment Module (15 OCT - 4 DEC)

– Implement branch and bound algorithm (6 NOV)*

– Validate branch and bound algorithm (25 NOV)*

10



– Implement greedy search algorithm

– Mid-year Review (4 DEC)*

• Build Image Labeling System (25 JAN - 26 FEB)

– Build agent classes

– Develop message-passing framework

– Integrate all components into a system (26 FEB)*

• Test Image Labeling System (26 FEB - 15 APR)

– Testing (1 APR)*

– Performance analysis of test results

• Conclusion (15 APR - 1 MAY)

– Final Presentation and Results (6 MAY)*

(* Denotes a milestone)
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