Mid-year Report: Lagrangian Analysis of Two- and ThreeDimensional Oceanic Flows from Eulerian
Velocity Data
David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

Mid-year Report: Lagrangian Analysis of Twoand Three-Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell
Second-year Ph.D. student, Applied Math and Scientific Computing

Project Advisor: Kayo Ide Department of Atmospheric and Oceanic Science Center for Scientific Computation and Mathematical Modeling Earth System Science Interdisciplinary Center Institute for Physical Science and Technology

December 8th, 2015

Project Overview

- Project goal: Create tools for Lagrangian analysis of oceanic flow (2D or 3D), given only velocity data on spatio-temporal grid (e.g. from model output)
- Track vast network of particles through flow, use trajectories to bring out underlying Lagrangian coherent structures, as well as stable and unstable manifolds separating these structures
- Test tools on velocity output from Chesapeake Bay model

Project Overview

Mid-year Report: Lagrangian Analysis of Two- and Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation Results

Schedule
References

Example: Kuroshio current, northwest Pacific Ocean

- Red indicates faster-moving regions, blue slower
- Thin yellow lines represent stable and unstable manifolds

2003-05-02 12:00:00.000000 UTC

Figure: Coherent structures in the Kuroshio current [1]

Project Overview

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Velocity field $\boldsymbol{u}\left(x_{i}, y_{j}, z_{k}, t_{l}\right)=(u, v, w)$ given at discrete points in space and time
- Want to compute particle trajectory $\boldsymbol{X}\left(\boldsymbol{X}_{0}, t\right)$ given initial position $X_{0} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}
- Two numerical tasks: interpolation and time integration
- Interpolation: Particle velocities $\boldsymbol{u}\left(\boldsymbol{X}\left(\boldsymbol{X}_{0}, t\right)\right)$ must be interpolated from grid velocities $\boldsymbol{u}_{i, j, k, l}$
- Integration: Velocity must be integrated in time to obtain position as time evolves:

$$
\boldsymbol{X}\left(\boldsymbol{X}_{0}, t\right)=\int_{0}^{t} \boldsymbol{u}\left(\boldsymbol{X}\left(\boldsymbol{X}_{0}, t^{\prime}\right), t^{\prime}\right) d t^{\prime}
$$

Project Overview

Mid-year
Report:
Lagrangian
Analysis of
Two- and Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms
and Imple-
mentation
Results
Schedule
References

- Given trajectories, two main tools for Lagrangian analysis: M-function and largest finite-time Lyapunov exponent (FTLE)
- M-function: distance traveled by particle within some fixed time interval (e.g. τ forward and backward from current time):

$$
M_{\boldsymbol{u}, \tau}\left(\boldsymbol{X}_{0}, t\right)=\int_{t-\tau}^{t+\tau}\left(\sum_{i=1}^{2 \text { or } 3}\left(\frac{d X_{i}\left(X_{0}, t^{\prime}\right)}{d t^{\prime}}\right)^{2}\right)^{\frac{1}{2}} d t^{\prime}
$$

- Coloring by M-function brings out boundaries between coherent structures moving at different speeds

Project Overview

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms
and Imple-
mentation
Results
Schedule
References

- Given trajectories, two main tools for Lagrangian analysis: M-function and largest finite-time Lyapunov exponent (FTLE)
- FTLE: exponential growth rate along maximal growth axis of an infinitesimal parcel of fluid:

$$
\left.\lambda(t)=\frac{1}{2 t} \ln \left(\rho\left(L^{T} L\right)\right\}\right)
$$

where ρ denotes the spectral radius and $L(t)=\frac{\partial \boldsymbol{X}\left(\boldsymbol{X}_{0}, t\right)}{\partial \boldsymbol{X}_{0}}$.

- Coloring by FTLE highlights bifurcation regions in flow

Implementation Basics

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview

Algorithms and Implementation

Results
Schedule
References

- Store particle positions in column vectors Xp, Yp, Zp
- Basic principle: vectorize all operations (all particles at once rather than looping through them)
- Input velocity data in Arakawa C-grid format (u given at east and west sides of grid box, v at north and south, w at top and bottom):

Figure: Arakawa c-grid box [5]

2D Interpolation Algorithms

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Compare two methods for 2D spatial interpolation: piecewise bilinear and piecewise bicubic functions (splines)
- Bilinear: Within each grid box, fit function of form $p(x, y)=\sum_{i, j=0}^{1} a_{i j} x^{i} y^{j}=a_{00}+a_{10} x+a_{01} y+a_{11} x y$ to four corner values of u
- Bicubic: Fit function of form $p(x, y)=\sum_{i, j=0}^{3} a_{i j} x^{i} y^{j}$ to four corner values of u and estimates of its derivatives u_{x}, u_{y}, and $u_{x y}$
- Bicubic should be slower but more accurate

Bilinear Interpolation

Mid-year
Report: Lagrangian Analysis of Two- and ThreeDimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview

Algorithms and Implementation

Results
Schedule
References

- Approximate $u(x, y)$ on $\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]$ by

$$
p(x, y)=a_{00}+a_{10} x+a_{01} y+a_{11} x y
$$

- Explicit formula:

$$
\begin{aligned}
p(x, y) & =w_{y}\left(w_{x} u_{i, j}+\left(1-w_{x}\right) u_{i+1, j}\right) \\
& +\left(1-w_{y}\right)\left(w_{x} u_{i, j+1}+\left(1-w_{x}\right) u_{i+1, j+1}\right)
\end{aligned}
$$

with weights

$$
\begin{aligned}
& w_{x}=\frac{x_{i+1}-x}{x_{i+1}-x_{i}} \\
& w_{y}=\frac{y_{j+1}-y}{y_{j+1}-y_{j}}
\end{aligned}
$$

Bicubic Interpolation

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional
Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Approximate $u(x, y)$ on $[0,1]^{2}$ by

$$
p(x, y)=\sum_{i, j=0}^{3} a_{i j} x^{i} y^{j}
$$

- Find $a_{i j}$'s by matching function to known values $u(0,0), u(0,1), u(1,0), u(1,1)$ and finite difference approximations for partial derivatives u_{x}, u_{y}, and $u_{x y}$ at corners
- Sixteen parameters, sixteen unknowns
- Scale inputs from grid box to $[0,1]^{2}$, solve, scale back

Bicubic Interpolation

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Second-order centered finite difference approximations for interior grid points:

$$
\begin{aligned}
\left(u_{x}\right)_{i, j} & \approx \frac{1}{2 \Delta x}\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
u_{i-1, j} \\
u_{i, j} \\
u_{i+1, j}
\end{array}\right]=\frac{u_{i+1, j}-u_{i-1, j}}{2 \Delta x} \\
\left(u_{y}\right)_{i, j} & \approx\left[\begin{array}{lll}
u_{i, j-1} & u_{i, j} & u_{i, j+1}
\end{array}\right] \cdot \frac{1}{2 \Delta y}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\frac{u_{i, j+1}-u_{i, j-1}}{2 \Delta y} \\
\left(u_{x y}\right)_{i, j} & \approx \frac{1}{2 \Delta x}\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
u_{i-1, j-1} & u_{i-1, j} & u_{i-1, j+1} \\
u_{i, j-1} & u_{i, j} & u_{i, j+1} \\
u_{i+1, j-1} & u_{i+1, j} & u_{i+1, j+1}
\end{array}\right] \cdot \frac{1}{2 \Delta y}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& =\frac{u_{i+1, j+1}-u_{i+1, j-1}-u_{i-1, j+1}+u_{i-1, j-1}}{4 \Delta x \Delta y}
\end{aligned}
$$

Bicubic Interpolation

Mid-year
Report:
Lagrangian
Analysis of
Two- and Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Second-order one-sided finite difference approximations for boundary grid points:

$$
\begin{aligned}
&\left(u_{x}\right)_{1, j} \approx \frac{1}{2 \Delta x}\left[\begin{array}{lll}
-3 & 4 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1, j} \\
u_{2, j} \\
u_{3, j}
\end{array}\right] \\
&\left(u_{x y}\right)_{1, j} \approx \frac{1}{2 \Delta x}\left[\begin{array}{lll}
-3 & 4 & -1
\end{array}\right] \cdot\left[\begin{array}{lll}
u_{1, j-1} & u_{1, j} & u_{1, j+1} \\
u_{2, j-1} & u_{2, j} & u_{2, j+1} \\
u_{3, j-1} & u_{3, j} & u_{3, j+1}
\end{array}\right] \cdot \frac{1}{2 \Delta y}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
&\left(u_{x y}\right)_{1,1} \approx \frac{1}{2 \Delta x}\left[\begin{array}{lll}
-3 & 4 & -1
\end{array}\right] \cdot\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right] \cdot \frac{1}{2 \Delta y}\left[\begin{array}{c}
-3 \\
4 \\
-1
\end{array}\right] \\
&= \frac{9 u_{1,1}-12 u_{1,2}+3 u_{1,3}-12 u_{2,1}+16 u_{2,2}-4 u_{2,3}+3 u_{3,1}-4 u_{3,2}+u_{3,3}}{4 \Delta x \Delta y}
\end{aligned}
$$

...and likewise for other boundary points

Bicubic Interpolation

Mid-year
Report:
Lagrangian
Analysis of
Two- and Three-
Dimensional Oceanic Flows from Eulerian Velocity Data David Russell

Overview

Algorithms and Implementation

- Determine $a_{i j}$ from these values via

$$
\left[\begin{array}{l}
a 00 \\
a 10 \\
a 20 \\
a 30 \\
a 01 \\
a 11 \\
a 21 \\
a 31 \\
a 02 \\
a 12 \\
a 22 \\
a 32 \\
a 3 \\
a 13 \\
a 23 \\
a 33
\end{array}\right]=\left[\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 & -2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 3 & 0 & 0 & -2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & 1 & 1 & 0 & 0 \\
-3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -3 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & -1 & 0 \\
9 & -9 & -9 & 9 & 6 & 3 & -6 & -3 & 6 & -6 & 3 & -3 & 4 & 2 & 2 & 1 \\
-6 & 6 & 6 & -6 & -3 & -3 & 3 & 3 & -4 & 4 & -2 & 2 & -2 & -2 & -1 & -1 \\
2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
-6 & 6 & 6 & -6 & -4 & -2 & 4 & 2 & -3 & 3 & -3 & 3 & -2 & -1 & -2 & -1 \\
4 & -4 & -4 & 4 & 2 & 2 & -2 & -2 & 2 & -2 & 2 & -2 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
0
\end{array}\right]
$$

[^0]- Equations were hard-coded to allow for simultaneous operation on all particles

Vertical and Temporal Interpolation

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview

Algorithms and Implementation

Results
Schedule
References

- For simplicity, treat these as one-dimensional interpolation problems to follow two-dimensional problem
- Again, compare two methods for each: piecewise linear (faster) and piecewise cubic (more accurate)
- Linear: given $z \in\left[z_{k}, z_{k+1}\right]$ and 2D-interpolated values $u_{k}=u\left(x, y, z_{k}\right)$ and $u_{k+1}=u\left(x, y, z_{k+1}\right)$, approximate $u(x, y, z)$ by

$$
p(z)=w \cdot u_{k}+(1-w) \cdot u_{k+1}
$$

where

$$
w=\frac{z_{k+1}-z}{z_{k+1}-z_{k}}
$$

Vertical and Temporal Interpolation

Mid-year Report: Lagrangian Analysis of Two- and ThreeDimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview

Algorithms and Implementation

Results
Schedule
References

- Cubic: given $z \in\left[z_{k}, z_{k+1}\right]$, interpolate cubic polynomial through four points $u_{k-1}=u\left(x, y, z_{k-1}\right), u_{k}=u\left(x, y, z_{k}\right)$, $u_{k+1}=u\left(x, y, z_{k+1}\right), u_{k+2}=u\left(x, y, z_{k+2}\right)$
- Lagrange form:

$$
\begin{aligned}
p(z) & =\frac{\left(z-z_{k}\right)\left(z-z_{k+1}\right)\left(z-z_{k+2}\right)}{\left(z_{k-1}-z_{k}\right)\left(z_{k-1}-z_{k+1}\right)\left(z_{k-1}-z_{k+2}\right)} u_{k-1} \\
& +\frac{\left(z-z_{k-1}\right)\left(z-z_{k+1}\right)\left(z-z_{k+2}\right)}{\left(z_{k}-z_{k-1}\right)\left(z_{k}-z_{k+1}\right)\left(z_{k}-z_{k+2}\right)} u_{k} \\
& +\frac{\left(z-z_{k-1}\right)\left(z-z_{k}\right)\left(z-z_{k+2}\right)}{\left(z_{k+1}-z_{k-1}\right)\left(z_{k+1}-z_{k}\right)\left(z_{k+1}-z_{k+2}\right)} u_{k+1} \\
& +\frac{\left(z-z_{k-1}\right)\left(z-z_{k}\right)\left(z-z_{k+1}\right)}{\left(z_{k+2}-z_{k-1}\right)\left(z_{k+2}-z_{k}\right)\left(z_{k+2}-z_{k+1}\right)} u_{k+2}
\end{aligned}
$$

Time Integration

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview

Algorithms and Implementation

Results
Schedule
References

- Runge-Kutta fourth order for now (simple, explicit, relatively accurate)
- Eventually will implement Milne-Hamming multistep predictor-corrector scheme in accordance with ROMS standard:

$$
\begin{aligned}
& \hat{\mathbf{X}}_{n+1}=\mathbf{X}_{n-3}+\frac{4 \Delta t}{3}\left(2 \mathbf{u}\left(\mathbf{X}_{n}, t_{n}\right)-\mathbf{u}\left(\mathbf{X}_{n-1}, t_{n-1}\right)+\mathbf{u}\left(\mathbf{X}_{n-2}, t_{n-2}\right)\right) \\
& \mathbf{X}_{n+1}=\frac{9}{8} \mathbf{X}_{n}-\frac{1}{8} \mathbf{X}_{n-2}+\frac{3 \Delta t}{8}\left(\mathbf{u}\left(\hat{\mathbf{X}}_{n+1}, t_{n+1}\right)+2 \mathbf{u}\left(\mathbf{X}_{n}, t_{n}\right)+\mathbf{u}\left(\mathbf{X}_{n-1}, t_{n-1}\right)\right)
\end{aligned}
$$

2D Interpolation Accuracy

Mid-year
Report: Lagrangian Analysis of
Two- and Three-

- To validate and check accuracy of 2D interpolation algorithms, applied them to analytic function

$$
u(x, y)=e^{y} \sin x \text { on }[0,1]^{2}
$$

- Approximation theory in 1D:
- n th-order interpolating polynomial p through $x_{0}, x_{1}, \ldots, x_{n}$ satisfies

$$
\begin{aligned}
u(x)-p(x) & =\frac{u^{n+1}(\xi)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \\
& \Longrightarrow\|u-p\|_{\infty}=O\left(h^{n+1}\right)
\end{aligned}
$$

for some $\xi \in \operatorname{int}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, assuming $u \in C^{n+1}$

- Splines: also $O\left(h^{n+1}\right)$, also assuming sufficiently high-order derivative approximations used?
- Also $\|u-p\|_{\infty}=O\left(h^{n+1}\right)$ in 2D?

Bicubic vs. Bilinear Accuracy for $u(x, y)=e^{y} \sin x$

Mid-year
Report: Lagrangian Analysis of Two- and ThreeDimensional Oceanic Flows from Eulerian Velocity Data

Algorithms and Implementation

Results
Schedule
References

- Order of accuracy estimates $\left(\|u-p\|_{2}=O\left(h^{q}\right)\right)$:

Bilinear	Bicubic
$q \approx 3.0029$	$q \approx 4.3569$

Bicubic vs. Bilinear Times for $u(x, y)=e^{y} \sin x$

Mid-year
Report:
Lagrangian
Analysis of
Two- and Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

Test Problem: Unforced, Undamped Duffing Oscillator

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional
Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms
and Imple-
mentation
Results
Schedule
References

- Unforced, undamped Duffing oscillator

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=x-x^{3}
\end{aligned}
$$

- Has exact solutions in terms of Jacobi elliptic functions

Computed Trajectories for Duffing Oscillator (RK4)

Mid-year
Report: Lagrangian Analysis of Two- and ThreeDimensional Oceanic Flows from Eulerian Velocity Data

Overview

Algorithms and Implementation

Results
Schedule
References

- Stable and unstable manifolds form figure-eight around fixed points
- Still need to validate against exact solution

M-Function for Duffing oscillator

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Slower regions in blue, faster in red (integrated from $t=0$ to $t=6$)
- Blue line is stable manifold (particles slowing down as they approach fixed point at center)

M-Function for Duffing oscillator (integrated backwards in time)

Mid-year Report: Lagrangian Analysis of
Two- and ThreeDimensional Oceanic Flows from Eulerian Velocity Data

David Russell

Overview
Algorithms and Implementation

Results
Schedule
References

- Slower regions in blue, faster in red (integrated from $t=0$ to $t=6$)
- Blue line is unstable manifold (particles slowing down as they approach fixed point)

Schedule

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms
and Imple-
mentation
Results
Schedule
References

First semester:

- First half: October - Mid-November
- Project proposal presentation and paper (done)
- 2D and 3D interpolation
- Need to implement cubic interpolation in vertical and time
- Second half: Mid-November - December
- 2D trajectory implementation and validation
- Need to validate against analytical solutions to Duffing oscillator
- Need to validate on forced and rotating Duffing oscillator
- M function implementation and validation
- Mid-year report and presentation

Schedule

Mid-year
Report:
Lagrangian
Analysis of
Two- and
Three-
Dimensional
Oceanic Flows
from Eulerian
Velocity Data
David Russell

Overview
Algorithms
and Imple-
mentation
Results
Schedule
References

- Second Semester
- First half: January - February
- 3D trajectory implementation and validation
- FTLE implementation
- Second half: March - April
- Application to ROMS dataset
- Visualizations and further analysis
- Final presentation and paper

References I

[1] Mendoza, C. \& Mancho, A. M. (2010). Hidden geometry of ocean flows. Physical Review Letters, 105 (038501), pp. 1-4.
[2] Bicubic Interpolation. (n.d.). In Wikipedia. Retrieved October 5, 2015 from https://en.wikipedia.org/wiki/Bicubic_interpolation.
[3] Mancho, A. M., Wiggins S., Curbelo J. \& Mendoza, C. (2013). Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 18, pp. 3530-3557.
[4] Duffing Map. (n.d.). In Wikipedia. Retrieved October 5, 2015 from https://en.wikipedia.org/wiki/Duffing_map.

References II

Mid-year
Report: Lagrangian Analysis of Two- and Three-
[5] [Online image of Arakawa C-grid box]. Retrieved October 5, 2015 from
http://mitgcm.org/sealion/online_documents/node45.html.
[6] Shadden, S. C., Lekien, F. \& Marsden, J. (2005). Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, pp. 271-304.

[^0]: $$
 \begin{aligned}
 & u(1,0) \\
 & u(0,1)
 \end{aligned}
 $$

 $$
 u(1,1)
 $$

 $$
 \begin{aligned}
 & x_{x}(0,0 \\
 & u_{x}(1,0
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & u_{x}(1,0 \\
 & x_{x}(0,1
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & u_{x}(0,1 \\
 & u_{x}(1,1
 \end{aligned}
 $$

 $$
 u_{y}(0,0
 $$

 $$
 u_{y}(1,0
 $$

 $$
 \begin{aligned}
 & u_{y}(0,1 \\
 & u_{y}(1,1
 \end{aligned}
 $$

 $$
 u_{x y}(0,0
 $$

 $$
 \begin{aligned}
 & u_{x y}(1,0 \\
 & u_{x y}(0,1 \\
 & u_{x y}(1,1
 \end{aligned}
 $$

