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Introduction

Atmospheric flows have various coherent structures, such
as fronts, jet streams, and hurricanes

Clouds often provide a ready means of visually tracking
these flows
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Introduction

The oceans have no
built-in “tracers” to track
the flow, so their structure
remains largely hidden

Grid-based computer
models can generate
velocity data at certain
discrete points in space
and time, but these data
alone do not reveal
coherent structures in the
flow
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Introduction

To better visualize the underlying structures, we can lay
down a network of particles and track them as they move
through the flow

Using certain quantitative analysis tools to color the
particles, we can clearly delineate coherent structures, as
well as the manifolds (boundaries) that separate them

We can also use these tools as a launching point for a
deeper investigation of the mixing and transport properties
of a given flow
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Introduction

Example: Kuroshio current, northwest Pacific Ocean

Red indicates faster-moving regions, blue slower
Thin yellowish lines represent stable and unstable
manifolds
Coherent structures clearly visible
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Introduction

This approach entails a shift from an “Eulerian” to a
“Lagrangian” perspective:

Eulerian: Track fluid velocity from a fixed point in space
(e.g. an observing station)
Lagrangrian: Track fluid velocity following a tiny parcel of
fluid as it moves through the flow
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Introduction

Our goals for this project are:

Given a two- or three-dimensional velocity dataset in this
Eulerian form, convert it to a Lagrangian form by
calculating trajectories for a large number of particles laid
out in a lattice
Design tools to visualize and analyze the flow structures
based on this Lagrangian data
Apply these tools to a flow field from a computer model of
the Chesapeake Bay, see what we can learn about its
transport and mixing properties
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Approach

XXX (XXX 0, t) is (2D or 3D) position of particle at time t that
began at position XXX 0

uuu(xxx , t) is velocity field at position xxx at time t

2D: uuu(xxx , t) = (u(x , y , t), v(x , y , t))
3D: uuu(xxx , t) = (u(x , y , z , t), v(x , y , z , t),w(x , y , z , t))

These quantities must be related by dXXX
dt (XXX 0, t) = uuu(XXX 0, t)

In practice, however, model only gives uuu at discrete grid
points, say (xi , yj , zk , tl) in 3D

Particles travel between grid points (in time and space), so
we need a way to interpolate uuu to these non-grid points
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Velocity Interpolation

Horizontal spatial interpolation: Bilinear interpolation
(simplest method)

Approximate velocity within each
grid box by a function of the form
f (x , y) = c1 + c2x + c3y + c4xy
(four constants determined by
known values at corners)

Not very accurate (first-order), not
smooth, but fast
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Velocity Interpolation

Horizontal spatial interpolation: Bicubic interpolation
(higher-order method)

Approximate by a function of the
form f (x , y) =

∑3
i=0

∑3
j=0 cijx

iy j

16 unknowns, so we also need
approximations of fx , fy , and fxy at
the corners (can get these using
centered difference approximations)

Smoother and more accurate, but
slower
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Velocity Interpolation

Vertical spatial interpolation (for 3D)

Low-order method: Interpolate linearly from horizontal
interpolation
Higher-order method: Use cubic polynomial passing
through four nearest points?

Time interpolation

Low-order method: Interpolate linearly from spatial
interpolation
High-order method: Use cubic polynomial passing through
four nearest points?
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Time Integration

After interpolating uuu to a desired particle position, we
must evolve this position in time by solving the system

dX

dt
= u(X ,Y , t)

dY

dt
= v(X ,Y , t)

or

dX

dt
= u(X ,Y ,Z , t)

dY

dt
= v(X ,Y ,Z , t)

dZ

dt
= w(X ,Y ,Z , t)

Low-order method: Forward Euler (first-order)

High-order method: 4th-order predictor-corrector using
Milne for predictor and Hamming for corrector

RK4 also a simpler higher-order option
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Lagrangian Analysis Tools

Once we have our particle trajectories, we can calculate
some useful functions for analyzing the flow

M-function: Calculates the arc length of a given trajectory
over a prescribed time period (forward and backward by
time τ):

Muuu,τ (XXX ∗
0, t

∗) =

∫ t∗+τ

t∗−τ

(
2 or 3∑
i=1

(
dXi (t)

dt

)2
) 1

2

dt

M-function proportional to average speed near time t∗, so
if we color particles by M-function, different colors will
indicate different flow speeds



Lagrangian
Analysis of
Two- and

Three-
Dimensional

Oceanic Flows
from Eulerian
Velocity Data

David Russell

Introduction

Approach and
Algorithms

Implementation

Validation

Application

Schedule

Deliverables

Bibliography

Lagrangian Analysis Tools

Finite-Time Lyapunov Exponent (FTLE): Measures the
degree to which two nearby trajectories diverge over time

if δXXX 0 represents an infinitesimal displacement between
two nearby particles, then for certain directions, |δXXX 0| will
grow or shrink exponentially in time, i.e.
|δXXX (t)| ≈ eλt |δXXX 0|
(Maximum) FTLE is defined as the largest such growth
rate λ

FTLE grows large when flow bifurcates, so coloring by
FTLE should also reveal coherent structures



Lagrangian
Analysis of
Two- and

Three-
Dimensional

Oceanic Flows
from Eulerian
Velocity Data

David Russell

Introduction

Approach and
Algorithms

Implementation

Validation

Application

Schedule

Deliverables

Bibliography

Finite-Time Lyapunov Exponent
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Finite-Time Lyapunov Exponent

To calculate the FTLE at a given time t, let L = ∂XXX (t)
∂XXX 0

be
the transition matrix (Jacobian of position with respect to
initial position)

FTLE is given by

λ ≈ 1

t
ln (largest singular value of L)

=
1

2t
ln
(

largest eigenvalue of LTL
)

So to calculate λ, we need to approximate L as well as
find the eigenvalues of a 2x2 or 3x3 matrix
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Finite-Time Lyapunov Exponent

To approximate L at time t, we begin by placing particles
very close to given particle in each coordinate direction (4
for 2D, 6 for 3D) at specified starting time

We find their positions at time t by calculating trajectories

Using these final positions, we can approximate L using
finite differences, e.g. in the 2D case we have

L ≈


∆Xx (t)

∆X0

∆Xy (t)
∆Y0

∆Yx (t)
∆X0

∆Yy (t)
∆Y0


where ∆Xx(t) is the final x-separation of particles that
started out separated in only the x-direction, etc.
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Finite-Time Lyapunov Exponents

To calculate the eigenvalues of the 2x2 or 3x3 matrix L,
we must solve its characteristic equation

2D: The characteristic equation is quadratic, so we can
simply use the quadratic formula

3D: The characteristic equation is cubic, so we must write
a cubic solver (based on Newton’s method?)
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Implementation

Software: MATLAB

Hardware: MacBook Pro laptop (mid-2014), 2.6 GHz Intel
Core i5, 8 GB RAM (can access Deepthought2 HPC
cluster on campus if necessary)

Circa 800,000 particles to track, so trajectory
computations will get very expensive

However, each trajectory is independent, so all calculations
can be done in parallel

Can investigate accuracy vs. speed tradeoff for
interpolation and integration algorithms
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Validation

Validate our tools by testing them on a few dynamical
systems with well known phase portraits (stable and
unstable manifolds, typical trajectories, etc.)

Evaluate velocity for each of these systems on a fine
enough grid, then feed this velocity data into our
Lagrangian routines

Routines should reproduce the known phase portraits
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Test Problems

Forced and unforced Duffing oscillator

dx

dt
= y

dy

dt
= x − x3 + ε sin t

(set ε = 0 for unforced)
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Test Problems

Three-variable Lorenz equations

dx

dt
= σ(y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz
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Test Problems

Hill’s spherical vortex

ψ = −3

4
Ur2

(
1− r2

a2

)
sin2 θ

ur =
1

r2 sin θ

∂ψ

∂θ

uθ = − 1

r sin θ

∂ψ

∂r
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Application

Apply tools to velocity
data for the Chesapeake
Bay

Data is output from a
ROMS (Regional Ocean
Modeling System) model
of the bay

Tools must be able to
handle ROMS
specifications
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Regional Ocean Modeling System

ROMS is a free-surface,
terrain-following, primitive
equations ocean model
that can be adapted to
various regions

Chesapeake ROMS uses
curvilinear coordinates
tailored to geography

All algorithms will be
applied in this coordinate
system
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Regional Ocean Modeling System

Grid type is so-called Arakawa C-grid (u, v , and w
evaluated on different faces of each grid box)

This means u, v , and w will be interpolated relative to
different grids

Boundary conditions: no-slip (uuu = 0 at boundary) or
free-slip (uuu · n̂nn = 0 at boundary)



Lagrangian
Analysis of
Two- and

Three-
Dimensional

Oceanic Flows
from Eulerian
Velocity Data

David Russell

Introduction

Approach and
Algorithms

Implementation

Validation

Application

Schedule

Deliverables

Bibliography

Application

Expect M-function and FTLE data to reveal coherent
structures in Chesapeake Bay dataset

Use Chesapeake ROMS data as one more validation test
(test everything against results of another researcher in
group)

Time permitting, use Lagrangian tools to quantitatively
investigate transport and mixing processes, e. g.:

What percentage of the water entering the bay from
rivers/ocean also exits through the rivers/ocean within a
certain timeframe?
Can we observe and quantify dynamic effects of Coriolis
force, density differences between ocean and fresh water,
etc.
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Expected Visualization Results
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Schedule

First Semester
First half: October - Mid-November

Project proposal presentation and paper
2D and 3D interpolation

Second half: Mid-November - December

2D trajectory implementation and validation
M function implementation and validation
Mid-year report and presentation

Second Semester
First half: January - February

3D trajectory implementation and validation
FTLE implementation

Second half: March - April

Visualizations and further analysis
Final presentation and paper
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Deliverables

Code

Routines that lay down particle lattice and calculate
trajectories from velocity data
Routines that calculate M-function and FTLE based on
trajectories

Results

Series of visualizations (images, movies, graphs) based on
these functions, for Chesapeake Bay data and test
problems
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Deliverables

Reports

Project proposal and presentation
Mid-year progress report and presentation
Final paper and presentation

Databases

Chesapeake Bay ROMS dataset
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