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1 Abstract

This project aims to effectively reconstruct an MRI signal using Fourier frames via nonuniform spiral sam-
pling. We begin by describing the theoretical framework of a Fourier frame on the Paley-Wiener space
PW

B(0,R)
. We then invoke Beurling’s theorem to prove that we can choose points along interleaving

Archimedean spirals in the spectral domain to construct a Fourier frame for PW
B(0,R)

. We use frame

notation to extend the result to the signal space of a rectangular image, forming a reconstruction algorithm
that results in an overdetermined linear system. We implement two different algorithms to solve the least-
squares approximation in order to recover the spatial components of the MRI signal. Preliminary results
from a synthetic data set are presented.

2 Background

MRI signal reconstruction from spectral sampling is a common problem in the field of signal processing.
Formally stated, image reconstruction is an inversion problem: given frequency information, we want to
recover the spatial components of the image. MRI reconstruction in particular desires both speed and
accuracy, but often the former is neglected. Previous results have shown that sampling on interleaving spirals
in the spectral domain makes for much faster data acquisition than rectilinear spectral sampling [6, 9]. We
desire a reconstruction scheme that makes use of this data acquisition method. The standard approach to
MRI reconstruction relies on uniform sampling of the spectral domain [12]. When sampling nonuniformly,
classic reconstruction schemes still require the samples be mapped to a uniform grid. We will show that by
sampling nonuniformly along the interleaving spirals, we can construct a Fourier frame approximant that
allows us to achieve effective MRI reconstruction comparable to that recovered from uniform sampling.

It is well-established that uniform sampling in the spectral domain of a band-limited signal can produce
perfect reconstruction, where the reconstructed signal is a scaled, delayed version of the original signal. The
Nyquist theorem states that a band-limited signal must be sampled at a rate at least twice the maximum
frequency in order to achieve this reconstruction [12]. Rectilinear sampling in the spectral domain consists
of points (λ, µ) where λ = mhλ and µ = nhµ for m,n ∈ Z and for fixed distances between coordinates hλ
and hµ that satisfy the Nyquist criterion. The typical MRI reconstruction algorithm samples rectilinearly
and then applies the Fast Fourier Transform (FFT) to recover the image [7, 12].

A standard MRI machine measures the exact spectral components of the signal. Coils generate a magnetic
field that causes the body’s particles to align with it along a magnetic vector. The charged particles rotate
about the static magnetic field B0, typically oriented in the z direction, at the Larmor frequency ω0, creating
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Figure 2.1: Magnetic dipole moment µ. Image courtesy of Alfredo Nava-Tudela.

Figure 2.2: MRI process. Clockwise from top left: a. Local magnetization M emerges from alignment with
magnetic field B0. b. With an RF pulse at the Larmor frequency, M aligns with the magnetic field B1 in
the transversal plane. c. After the pulse, M begins to realign with B0. d. Components Mlon(t) and Mtr(t)
describe M(t) at time t. Images courtesy of Alfredo Nava-Tudela.

a magnetic dipole moment µ. The Larmor frequency is proportional to the strength of the magnetic field B0

at gyromagnetic ratio γ. When the majority of the magnetic moments align with B0, a local magnetization
of the sample M is observed. A radio wave frequency (RF) is then passed through the body to disrupt the
magnetic field, forcing the particles out of equilibrium and generating a magnetic field B1 perpendicular to
B0, oscillating at frequency ω. When ω = ω0, the magnetization M moves to the transversal plane. Once the
pulse passes, M rotates around B0, eventually realigning with it. The magnetization vector M(t) is defined
by its components in the longitudinal (B0) direction Mlon(t) and the transversal (B1) direction Mtr(t) at
time t. The magnetization components Mlon(t) and Mtr(t) decay exponentially proportional to relaxation
times T1 and T2, respectively, as described by Bloch’s seminal equations [5].

When the RF pulse passes, an induced voltage S(t) is observed in the transversal plane related to the
Mtr(t) component of the magnetization. This voltage is the measured signal. When viewed in the transversal
(xy) plane, M(t) decays in a spiral. The induced voltage S(t) can be described relative to the gradient of
B0 in k-space with the observed decay pattern.

S(t) = S(k(t)) = S(kx(t), ky(t), kz(t))

=

∫ ∫ ∫
Mtr(x, y, z)e

−2πi〈(x,y,z)(kx,ky,kz)〉dxdydz

=

∫ ∫ ∫
ρ(x, y, z)e−t/T2e−2πi〈(x,y,z)(kx(t),ky(t),kz(t))〉dxdydz

Here, ρ(x, y, z) is the density of the tissue and for r = x, y, z,

kr(t) ∝
∫ t

0

δ

δr
B0(u)du
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Overall, we see that the signal S is proportional to the transversal component of the magnetization M in
magnetic gradient space, allowing for the recovery of an image of Mtr via an inverse Fourier transform of S.

S(k) ∝
∫
Mtre

−2πik·rdV

Analysis of the signal shows that the time it takes for the particles to return to homeostasis and the amount
of energy released indicate the type of tissue the pulses are moving through [4, 13].

Figure 2.3: “Carolyn’s MRI”, by ClintJCL (Flickr)

Spiral-scan echo planar imaging (SEPI) designs magnetic gradients to sample S at points in k-space
that form Archimedean spirals [9]. Typically, S is sampled 256 times, but the design is constrained by the
relaxation time T2. We will show that with added constraints as dictated by Beurling, we can recover images
such as Figure 2.3 with comparable quality from samples along interleaving Archimedean spirals.

3 Theoretical Approach

The Paley-Wiener space PWE is defined as

PWE = {ϕ ∈ L2(R̂d) : supp ϕ∨ ⊆ E},

where R̂d is the domain of the Fourier transforms of signals in d-dimensional Euclidean space, and L2(R̂d)
is the space of finite energy signals on R̂d with E ⊆ Rd compact. The Fourier transform of a signal f(x) is

defined as F : L2(Rd) → L2(R̂d) such that F(f)(ω) =
∫∞
−∞ f(x)e−2πix·ωdx. ϕ∨ denotes the inverse Fourier

transform of ϕ and supp ϕ∨ denotes the support of ϕ∨ [3].
In a separable Hilbert space H, a frame is defined as a sequence {xn : n ∈ Zd} ⊆ H for which there exist

A,B > 0 such that

∀y ∈ H, A||y||2 ≤
∑
n

|〈y, xn〉|2 ≤ B||y||2.

Let Λ ⊆ R̂d be a sequence and let E ⊆ Rd be compact. Define the sequence {eλ1E : λ ∈ Λ} ⊆ L2(Rd),
where eλ(x) = e−2πix·λ. In particular, note that (eλ1E)∧ ∈ PWE and L2(E) = (PWE)∨. The sequence
{eλ1E} is a frame for L2(E), where we write L2(E) ⊆ L2(Rd) because (PWE)∨ ⊆ L2(Rd), if and only if
there exist 0 < A ≤ B <∞ such that

∀f ∈ L2(E), A||f ||2L2(E) ≤
∑
λ∈Λ

|〈f, eλ1E〉L2(E)|2 ≤ B||f ||2L2(E)
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where 〈f, eλ1E〉L2(E) =
∫
E
f(x)e−2πix·λdx = f̂(λ). We can further say that the sequence (eλ1E)∧ is a frame

for PWE if {eλ1E} is a frame for L2(E). We call such a sequence a Fourier frame for PWE [1, 3].
A set Λ is uniformly discrete if there exists r > 0 such that

∀λ, γ ∈ Λ, |λ− γ| ≥ r.

When E is the closed ball B(0, R) ⊂ Rd centered at 0 with radius R, Beurling’s theorem tells us the following

[3]: Let Λ ⊆ R̂d be uniformly discrete and let dist(ξ,Λ) = infλ∈Λ

√∑d
i=1 |ξi − λi|2 denote the Euclidean

distance between the point ξ and the set Λ. Define

ρ = ρ(Λ) = sup
ξ∈R̂d

dist(ξ,Λ).

If Rρ < 1
4 , then Λ is a Fourier frame for PW

B(0,R)
⊆ L2(R̂d).

Define L : L2(E) → `2(Λ) of a Bessel map such that f → {f̂(λ) : λ ∈ Λ}. Let L∗ be its adjoint, and
define the frame operator

S = L∗L : L2(E)→ L2(E)

such that f → S(f) =
∑
λ∈Λ f̂(λ)eλ1E . If {eλ1E} is a frame for L2(E), then

f = SS−1f =
∑
λ∈Λ

(S−1f)∧(λ)eλ1E . (1)

From this we can conclude that every finite energy signal f ∈ L2(E) can be represented as

f(x) =
∑
λ∈Λ

aλ(f)eλ1E (2)

in L2(Rd), where aλ(f) = (S−1f)∧(λ) and
∑
λ∈Λ |aλ(f)|2 is finite.

Given the representation in (2), we must now choose a sequence ΛR ∈ R̂d such that ΛR is a Fourier frame
for PW

B(0,R)
. Let c,R > 0, and let {Ak : k = 0, 1, ...,m− 1} denote a finite set of interleaving Archimedean

spirals of the form
Ak = {cθe2πi(θ−(k/m)) : θ ≥ 0}.

Let B = ∪m−1
k=0 Ak. We will construct a uniformly discrete set ΛR ⊆ B that will form a Fourier frame for

PW
B(0,R)

.

First, choose m such that cR
m < 1/2. For any given ξ0 ∈ R̂2, we will write it as ξ0 = r0e

2πiθ0 where r0 ≥ 0
and θ0 ∈ [0, 1). Then either 0 ≤ r0 < cθ0 < c or there exists n0 ∈ N ∪ {0} for which

c(n0 + θ0) ≤ r0 < c(n0 + 1 + θ0).

In the second case, we can find k ∈ {0, · · · ,m− 1} such that

c(n0 + θ0 +
k

m
) ≤ r0 < c(n0 + θ0 +

k + 1

m
),

which implies

dist(ξ0, B) ≤ c

2m
.

Next, choose δ > 0 such that Rρ < 1/4, where ρ = (c/2m)+δ. For each k, we choose a uniformly discrete
set of points Λk along the spiral Ak, where the curve distance between consecutive points is less than 2δ,
beginning within 2δ of the origin. This rule guarantees that the distance from any point on the spiral Ak to
Λk is less than δ. Finally, set ΛR = ∪m−1

k=0 Λk. By the triangle inequality,

∀ξ ∈ R̂2, dist(ξ,ΛR) ≤ dist(ξ,B) + dist(B,ΛR)

≤ c

2m
+ δ = ρ.

Recall that by our choices of δ and m, we have that Rρ < 1/4, thus Beurling’s theorem tells us ΛR is a
Fourier frame for PW

B(0,R)
.
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4 Problem

We shall extend the results in Section 3 to the signal space of a generic rectangular image f : R2 → R in
a space E ⊆ R2 [3]. Consider the image f ∈ L2(E), taken to be zero outside of E. Let χ1 = {�1

k, pk ∈
�1
k ∀k}

B−1
k=0 be a refined tagged partition of E. We approximate f using the piecewise constant function

fχ1
due to lack of access to real MRI data. This approximation incurs an error ε between the true, smooth

image f and the image fχ1
. However, for any choice of ε, we can refine χ1 such that ||f − fχ1

|| < ε, thus fχ1

is a reasonable approximation of f . For a high-resolution image, the pixels act as the partition χ1. Under
this partition, the image has the representation

fχ1 =

B−1∑
k=0

f(pk)1�1
k

(3)

and the equivalent spectral representation

f̂χ1 =

B−1∑
k=0

f(pk)1̂�1
k
. (4)

Let χ2 = {�2
j , qj ∈ �2

j ∀j}
N1N2−1
j=0 be a coarse tagged partition of E such that fχ2

is piecewise constant.
χ2 is designed such that for each qj ∈ χ2, there is a corresponding pk ∈ χ1. Ideally, we would recover fχ2

from the spectral information f̂ from the MRI machine. Computationally, we reconstruct fχ2
given f̂χ1

, the

approximation of f̂ .
We restrict our view of the spectral domain to the square Ω ⊆ R̂2, where the frame contribution outside

the square is negligible. From our theoretical results, we can choose a set of points Λ ⊆ R̂2 along a set
of interleaving spirals that gives rise to a Fourier frame for L2(E). Within the restricted domain Ω, we
choose M ≥ N1N2 points αi = (λi, µi) for i = 0, 1, ...,M − 1 on the interleaving spirals such that the αi are
nonuniform in the square. Let Λ = {αi}. We extend this tiling to the entire spectral domain by utilizing the
periodic extension Λ +KZ2, giving rise to a frame {eαi}αi∈Λ for PWE , where E = [− 1

2 ,
1
2 ]2. By specifying

the points αi ∈ Λ ∩ Ω, the MRI machine gives us access to {f̂χ1
(αi), i = 0, 1, ...,M − 1}, the approximation

of {f̂(αi)}, where we compute

f̂χ1
(αi) =

B−1∑
k=0

f(pk)1̂�1
k
(αi). (5)

Let

g =

N1N2−1∑
j=0

cj1�2
j

(6)

be an image formed over the coarse partition χ2. Given the spectral information f̂χ1
(αi), we wish to find

the image over the coarse partition that matches the frequency information of the high-resolution image at
the points on the frame. To that end, we want to find cj that solve

min
c

M−1∑
i=0

|f̂χ1
(αi)− ĝ(αi)|2. (7)

We then compare the actual recovered image g to the ideal recovered image fχ2
formed by local averaging

over the high-resolution image fχ1
.

Let Hj(αi) = 1̂�2
j
(αi). As the characteristic functions are separable by dimension, this is equivalent to

Hj(αi) = Hj(λi, µi) = 1̂−2
xj

(λi)1̂−2
yj

(µi), where

Hj(αi) = Hj(λi, µi) =
1

N1

1

N2
sinc

(
1

N1
λi

)
sinc

(
1

N2
µi

)
e−2πI(Tnλi+Tmµi) (8)
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We define sinc(x) as the standard sinc(x) = sinπx
πx , with sinc(0)=1, and (Tn, Tm) as the coordinates of

the center of the current square, with Tn = − 1
2 + 2n+1

2N1
for n ∈ {0, ..., N1 − 1} and Tm = − 1

2 + 2m+1
2N2

for
m ∈ {0, ..., N2 − 1}. This gives

ĝ(αi) =

N1N2−1∑
j=0

cjHj(αi). (9)

To minimize |f̂χ1(αi)− ĝ(αi)|2, we set

f̂χ1
(αi) =

N1N2−1∑
j=0

cjHj(αi). (10)

Let
F̂ = [f̂χ1

(α0) f̂χ1
(α1) ... f̂χ1

(αM−1)]T

and
F = [c0 c1 ... cN1N2−1]T.

Define H such that [H]i,j = Hj(αi), and (10) becomes

F̂ = HF. (11)

Recall that for effective reconstruction, we must have M ≥ N1N2, thus we will find the least squares
approximation of the overdetermined system in (11). The matrix equation (11) contains M ≥ N1N2 points

in the spectral domain and N1N2 points in the spatial domain. F̂ is a length-M vector, F is a length-N1N2

vector, and H is size M × N1N2. In the following section, we will show that this matrix representation is
equivalent to the frame reconstruction scheme.

5 Frame Reconstruction

The goal of this project is to use nonuniform sampling on interleaving spirals to define a Fourier frame in R̂2

from which we can reconstruct an image f . Due to the lack of access to real MRI data, we use the spectral
information over the fine partition χ1 to recover the spatial components of our image f over a coarse partition
χ2. We create a synthetic data set using high-resolution images.

Given a high resolution image fχ1
, generally of size 512 × 512, we form fχ2

, an N1 ×N2 approximant,
by averaging every d1 × d2 pixels of fχ1 , where d1 and d2 are the reduction factors in each dimension.
The N1 ×N2 approximant fχ2 is the optimal available image at that resolution. We take this as our ideal

reconstruction, from which the error is computed. From the high-resolution image fχ1 , we sample f̂χ1(αi) as
defined in (5) for i = 0, 1, ...,M − 1 (with M ≥ N1N2) on a union of Archimedean spirals within the square
Ω (Figure 5.1).

Beurling’s theorem allows us to develop a reconstruction scheme using the set of points Λ = {αi}. The
frame definition gives rise to a mapping H of N1N2 points to M points, thus H is the matrix representation
of the Bessel map L : `2({0, 1, ..., N1N2 − 1}) → `2({0, 1, ...,M − 1}), H∗ is its adjoint L∗, and H∗H is
equivalent to the frame operator S = L∗L. The frame reconstruction scheme is

g = (S−1L∗)Lg. (12)

Setting Lg = f̂χ1
, the reconstructed image g takes the form

g = S−1L∗f̂χ1
. (13)

Applying the construction in Section 4 yields the overdetermined system in (11). In frame terminology,
the least-squares approximation

F = (H∗H)−1H∗F̂, (14)

where H∗ := H
T

, is equivalent to (12).
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Figure 5.1: Problem overview. Top: High-resolution image fχ1
from which synthetic data is formed. Bottom

left: Sampling along interleaving spirals in the spectral domain of the high-resolution image. Bottom right:
Downsampled version of the high-resolution image that serves as the ideal reconstruction.

6 Computational Approach

We wish to recover g by constructing F̂ and H as described Section 4. We consider both the LDL decompo-
sition, a variant on Cholesky decomposition, and the conjugate gradient method to solve the system

H∗HF = H∗F̂. (15)

To reduce the storage overhead, we also implement the transpose reduction algorithm.

6.1 Transpose Reduction

Transpose reduction computes H∗H directly as a sum of vector products instead of inefficiently storing H
and then computing H∗H [3, 8]. Define Vi = (H0(αi), ...,HN1N2−1(αi))

∗ such that

H =


H0(α0) · · · HN1N2−1(α0)
H0(α1) · · · HN1N2−1(α1)

...
...

...
H0(αM−1) · · · HN1N2−1(αM−1)

 =


V ∗0
V ∗1
...

V ∗M−1

 .
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Note that

H∗H =


∑M−1
i=0 H0(αi)H0(αi) · · ·

∑M−1
i=0 H0(αi)HN1N2−1(αi)

...∑M−1
i=0 HN1N2−1(αi)H0(αi) · · ·

∑M−1
i=0 HN1N2−1(αi)HN1N2−1(αi)



=

M−1∑
i=0

 H0(αi)H0(αi) · · · H0(αi)HN1N2−1(αi)
...

HN1N2−1(αi)H0(αi) · · · HN1N2−1(αi)HN1N2−1(αi)



=

M−1∑
i=0


H0(αi)

H1(αi)
...

HN1N2−1(αi)

 (H0(αi) H1(αi) · · · HN1N2−1(αi))

=

M−1∑
i=0

ViV
∗
i .

Similarly,

H∗F̂ =


∑M−1
i=0 H0(αi)F̂i

...∑M−1
i=0 HN1N2−1(αi)F̂i

 =

M−1∑
i=0

F̂iVi.

To construct A = H∗H and b = H∗F̂:

1. Let V0 = (H0(α0), ...,HN1N2−1(α0))∗

2. Set A = V0V
∗
0 and b = f̂0V0

3. For j = 1 : M − 1

Set Vj = (H0(αj), ...,HN1N2−1(αj))
∗

A← A+ VjV
∗
j

b← b+ f̂jVj

This method uses a factor of N2/M less memory than the direct approach with naive storage.

6.2 Conjugate Gradient Algorithm

Given the construction of H∗H,

[H∗HF]` =

N1N2−1∑
j=0

Fj

M−1∑
i=0

H`(αi)Hj(αi),

where [H∗HF]` denotes the `th element of H∗HF. As in the Transpose Reduction algorithm, let A = H∗H

and b = H∗F̂. Then, for symmetric, positive definite A, we apply the conjugate gradient method [10] to
solve the system AF = b.

1. Choose f0. Let r0 = b−Af0. Set p0 = r0.

2. for n = 1 until convergence

γ = (rTn rn)/((Apn)T pn)

fn+1 = fn + γpn
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rn+1 = rn − γApn
if norm(rn+1) < tol, break

βn = (rTn+1rn+1)/(rTn rn)

pn+1 = rn+1 + βnpn

This algorithm requires at most N1N2 iterations to converge, but the speed of convergence depends on
the condition number of A. We also develop a modified implementation of the conjugate gradient algorithm
that uses only matrix-vector operations instead of explicitly storing A.

7 Validation

Validation is done in two parts. First, an image is reconstructed over a standard uniform (rectilinear)
sampling in the spectral domain using both reconstruction methods. Uniform reconstruction verifies correct
implementation of the reconstruction algorithms. Reconstruction along the spiral is shown for a 2x2 image
to validate the implementation of the theoretical framework presented in Section 3.

The use of a complex system to represent a real system creates an expectation of noise in the reconstruc-
tion in the form of non-zero imaginary components. Despite this, as the coefficients of the reconstruction
should be real, we expect those imaginary components to be small. Indeed, we see that increasing the number
of sampled points M significantly reduces the imaginary components to the point where their contribution is
negligible. Thus, when discussing results, we only discuss those taken from the real components of the linear
system and ignore the contribution of the imaginary components. In each result, the imaginary components
are monitored to ensure their contribution remains trivial.

7.1 Validation Methods

Results shown are evaluated using two different measures, the peak signal-to-noise ratio (PSNR) [7] and the
structural similarity index (SSIM) [11].

7.1.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is a standard measure of a reconstructed image that calculates a normalized mean-squared error
expressed in decibels (dB). Given the optimal available image fχ2 of dimension N1×N2 and the reconstructed
image g,

MSE =
1

N1N2

N1−1∑
m=0

N2−1∑
n=0

(g(m,n)− fχ2
(m,n))2

Then the PSNR, expressed in decibels (dB), is

PSNR = 10 log
max2

fχ2

MSE
(16)

where maxfχ2
is the maximum possible pixel value for fχ2

. As purely grayscale images are used for this
project, maxfχ2

= 255.

7.1.2 Structural Similarity Index (SSIM)

The structural similarity (SSIM) index is a statistical measure of similarity between two images based on
inherent structures [11]. SSIM ranges from zero to one, with a value close to one indicating a good match.
Let x and y be signals where one is assumed to be of perfect quality. The luminance of each image is
estimated by the mean intensities µx and µy. The standard deviations σx and σy are used to estimate the
signal contrast. The constants C1 and C2 are used as stabilizers for when µ2

x + µ2
y and σ2

x + σ2
y are close to

zero. The final form of the SSIM index is

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,
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7.2 Uniform Grid Reconstruction

To validate the code structure, we first reconstruct an image over a uniform grid. The grid consists of
the integers in the spectral domain ranging from [-floor(

√
M)/2, floor(

√
M)/2]2, where M is the desired

number of sampled points. In this test, the grid contains twice as many sampled points from the high-
resolution image as there are pixels in the reconstruction. Figure 7.1 shows the recovered images for both
LDL reconstruction and conjugate gradient reconstruction. The conjugate gradient method requires 10
iterations for convergence within relative tolerance 1e-8 ||H∗F̂||. Reconstruction via the real components
of the resulting coefficients produces the expected result with high PSNR of 29.12 dB and SSIM of 0.9895.
The largest imaginary component of the recovered image is 2.4. Consistently, comparison with the image
recovered by incorporating the imaginary components reveals similar PSNR and SSIM, indicating minimal
contribution from the imaginary components. In every test, the LDL decomposition and the conjugate
gradient method returned the same result, thus further tests do not distinguish between the two methods
used in the recovery.

Figure 7.1: Uniform grid reconstruction along integers in the domain [-floor(
√
M)/2, floor(

√
M)/2]2,

M = 2048 (oversampling factor of 2). Ideal reconstruction (L), reconstruction via LDL decomposition
(M), reconstruction via CG method (R), N1 = N2 = 32. PSNR: 29.12 dB, SSIM: 0.9895.

7.3 Spiral Grid Reconstruction

To validate reconstruction on the spiral, a 2x2 low-resolution image is reproduced from high-resolution images
of varying size. The frame Λ is generated from three spirals with λ = 0.01 radians and consists of the points
in Table 7.1.

Real(αi) Imag(αi)
0 0

0.0005 0.0002
0.0100 0.0006
0.0149 0.0014
0.0198 0.0025
0.0247 0.0039
0.0295 0.0056
0.0342 0.0076

Table 7.1: Frame Λ for 2x2 reconstruction test along the spiral.

The results of reconstructing the image from a 16x16 high-resolution image are shown in Figure 7.2, with
the accompanying details in Table 7.2. This example showcases a reduction by a factor of eight in each
dimension with a PSNR of 33.3959 dB and SSIM 0.9454. Average error, defined in (17), is calculated as the
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Figure 7.2: 2x2 reconstruction test along the spiral with M = 8 points in the frame (oversampling factor
of 2), θ = 0.01, m = 3 interleaving spirals. L: 16x16 high-resolution image. M: Ideal image. R: Recovered
image. N1 = N2 = 2. PSNR: 33.3959 dB, SSIM: 0.9454.

HR Image Size PSNR (dB) SSIM Avg. Err. Per Pixel
4x4 39.5274 0.9681 1.25
8x8 33.6982 0.9739 2.5

16x16 33.3959 0.9454 2.75
32x32 30.3132 0.9288 3.25
64x64 32.9457 0.9586 2.5

128x128 23.8535 0.6116 8.0
256x256 32.9457 0.9633 2.5

Table 7.2: 2x2 recovery test on the spiral grid. High-resolution images of various sizes are used to reconstruct
a 2x2 image.

mean of the 1-norm of the differences between corresponding pixels of the ideal and recovered image. The
average error per pixel stays within 4% of the ideal value.

Avg. err. per pixel =
1

N1N2

N1N2−1∑
j=0

|fχ2
(qj)− g(cj)| (17)

In total, seven tests were conducted, where a 2x2 image was reconstructed from high-resolution images
of sizes 2k × 2k for k ∈ {2, ...8}. Table 7.2 describes the results. Note that PSNR and SSIM both remain
high for most tests, indicating good recovery significantly above the noise floor. There is one anomaly in
the recovery from the 128x128 high-resolution image, but the accompanying PSNR of 23.85 dB matches the
expected PSNR of a noisy image. Similarly, the SSIM of 0.6116 indicates that while the recovery here is poor
relative to the other tests, the resulting image still shows some structure. Ultimately, the recovery seems
to be hampered by some type of noise. The source of this noise is uncertain, but it likely comes from the
structures in the high-resolution image that are changing as the size of the high-resolution image increases.

8 Testing

The frame Λ is formed using the experimental parameters c = 1, and R = 0.5
√

2
2 . It samples K ×N1 ×N2

points in the spectral domain. Unless otherwise specified, the points in the frame are chosen along m = 3
spirals.

8.1 Oversampling Factor

The effectiveness of the reconstruction on the spiral primarily depends on two parameters, the number of
points that make up the frame and the polar angle of the spiral. Beginning with a 128x128 high-resolution
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image, low-resolution images are recovered from frames of varying size while holding the spiral angle constant
at θ = 0.01 radians. For each image, the number of desired points is M = K ×N1×N2, where K ∈ N is the
oversampling factor. Table 8.4 suggests altering the parameter K has a significant impact on the recovery.

Recovered image size K PSNR (dB) SSIM Avg. Err. Per Pixel
8x8 16 17.8413 0.8035 13.9844
8x8 32 26.9622 0.9690 4.0312

16x16 8 11.8310 0.2899 17.0976
16x16 16 29.8072 0.9900 6.1992
32x32 4 8.6455 0.0131 69.5225
32x32 8 27.3753 0.9875 9.2764

Table 8.1: Oversampling factor K reconstruction test along the spiral.

Figure 8.1: Oversampling factor K reconstruction test along the spiral. High-resolution image size 128x128,
θ = 0.01, m = 3. Twice as many samples are required to reconstruct the 32x32 image.

More comprehensive testing shows an apparent plateau in the reconstruction, suggesting there is a min-
imum value of K that will adequately reconstruct the desired image for a given image size N1 ×N2. More
samples (a larger K value) are required to reconstruct a larger image with comparable PSNR and SSIM
values (Figure 8.1). The 8x8 recovery results are shown in Figure 8.2, where the angle of the spiral is held
constant and K varies between 1 and 32. The maximum imaginary component decreases to 0.53 for K = 32.
The advantage of the ability to determine the minimum number of sampled points is twofold: it allows for
acceptable error thresholding and it reduces computational time.
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Figure 8.2: Reconstruction test varying oversampling factor K, θ = 0.01, m = 3. High-resolution image size
128x128. Top: PSNR and SSIM for varying K in 8x8 low-resolution reconstruction. Bottom: Average error
per pixel and run time for varying K.

8.2 Spiral Angle

The tightness of the spiral is determined by its polar angle θ. The results of recovering an 8x8 low-resolution
image for varying θ values while holding K = 30 constant are shown in Figure 8.3. Despite comparable PSNR
values for multiple values of θ, a close examination reveals that SSIM decreases as θ increases. Similar to
the choice of oversampling factor, this suggests there is a range of acceptable values of θ that will produce
an effective reconstruction for the given set of problem parameters. If chosen effectively, the angle of the
spiral has less of an effect on the reconstruction than the number of samples in the spectral domain. This
is reflected in the number of points sampled in the restricted domain as Ω is held constant. As θ increases,
the number of sampled points M decreases, with less effective corresponding reconstructions.

8.3 Oasis Database

To test the robustness of the reconstruction, several images were reconstructed from the open-source Oasis
database. The database is provided by Washington University Alzheimer’s Disease Research Center, Dr.
Randy Buckner at the Howard Hughes Medical Institute (HHMI) at Harvard University, the Neuroinformat-
ics Research Group (NRG) at Washington University School of Medicine, and the Biomedical Informatics
Research Network (BIRN). The full data set contains 416 subjects aged 18 to 96, 100 of whom have varying
levels of Alzheimer’s disease. A subset of these individuals containing 39 subjects was used for this test. Mul-
tiple scans are provided for each subject. Here, the high-resolution images shown are averages of four scans
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Figure 8.3: Reconstruction test varying polar angle θ, m = 3. Top: PSNR and SSIM for varying θ in 8x8
low-resolution reconstruction. Bottom: Average error per pixel and number of samples for varying θ.

per subject with postprocessing applied. Among the subjects in the testing set, there are twenty-two females
and seventeen males. Nine of these subjects have very mild dementia and three subjects have mild demen-
tia. The Oasis database diagnoses every subject with any presence of dementia with probable Alzheimer’s
disease. Results for three subjects are shown in Figure 8.4. The left column displays an 80-year-old male
with very mild dementia, the center column an 80-year-old female with very mild dementia, and the right
column an 18-year-old male with no dementia. The results suggest our parameters are independent of the
image we are trying to recover.

8.4 Further Observations

Image size (N1xN2) cond(H∗H) LDL time (s) CG time (s) Num. CG iter.
2x2 4.33 9.64e-4 2.265e-3 4
4x4 11.40 1.55e-4 1.132e-3 16
8x8 24.94 4.10e-4 1.484e-2 26

16x16 51.43 2.45e-2 7.655e-3 39
32x32 103.78 6.00e-1 1.441e-1 51

Table 8.2: Method comparison for recovery of images of varying size.
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Figure 8.4: Oasis reconstruction test, K = 8, θ = 0.01, m = 3.

As noted earlier, the distinction between recovery from the LDL decomposition versus the conjugate
gradient (CG) method is neglected since the methods return the same result to machine precision. If the
reconstruction requires a less strict error threshold, the threshold in the CG method can be adjusted for
faster convergence. Ultimately, the CG method may be preferred due to its ability to handle linear systems
with large condition numbers. Table 8.2 shows that the condition number of the system doubles with each
increase in the size of the recovered image. In each case, the number of sampled points used to obtain the
recovered image also doubles, indicating there may be a correlation between the condition number of the
system and the frame size. From a timing perspective, the methods are comparable. Most of the timing
overhead in these tests comes from the formation of F̂. In a real setting, the MRI machine would collect the
data, making this construction unnecessary.

8.5 Future Work

The relationship between the condition number of the system and the frame size needs to be further explored.
The behavior in Figure 8.2 suggests that theoretical bounds can be established in the choice of parameter
values. In addition, a larger number of sampled points indicates a larger sample domain Ω. The relationship
between the oversampling factor and the corresponding size of Ω can be more firmly established. The
behavior in Figure 8.3 leaves room for exploration as to the oscillatory nature of the results. This behavior
was consistent across multiple images, suggesting that careful construction of the spiral is essential to the
reconstruction process.
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9 Conclusion

We have shown that we can effectively reconstruct an MRI image from nonuniform spectral information
sampled along a set of interleaving Archimedean spirals. The reconstruction is robust across different images
when the oversampling factorK and the polar angle θ are chosen in a reasonable range. Despite the increasing
oversampling factor, this implementation is easily parallelizable, suggesting this reconstruction method is
feasible in a real setting.

10 Milestones

• Construct a Fourier frame via sampling on interleaving spirals.

• Implement the transpose reduction algorithm.

• Implement the conjugate gradient algorithm.

• Implement the vectorized conjugate gradient algorithm.

11 Timeline

• October 2015: Code the sampling routine to form the Fourier frame. [Complete]

• November 2015: Validation on small problems. [Complete]

• December 2015: Code the transpose reduction algorithm and begin testing. [Complete]

• January 2016: Code the conjugate gradient algorithm (standard and modified). [Complete]

• February - March 2016: Error analysis/testing. [Complete]

• April 2016: Finalize results. [Complete]

12 Deliverables

• Oasis data set

• Downsampling routine

• Fourier frame sampling routine

• Conjugate gradient routine

• Main driver

• Proposal presentation and report

• Mid-year presentation and report

• Final presentation and report
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