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1 Abstract

This project aims to effectively reconstruct an MRI signal using Fourier frames. We begin by describing the
theoretical framework of a Fourier frame on the Paley-Wiener space PW

B(0,R)
. We then invoke Beurling’s

theorem to prove that we can choose points along interleaving spirals in the spectral domain to construct a
Fourier frame for PW

B(0,R)
. We use frame notation to extend these results to the signal space of a square

image, forming a reconstruction algorithm that results in an overdetermined linear system. We implement
two different algorithms to solve the least-squares approximation in order to recover the spatial components
of the MRI signal.

2 Background

MRI signal reconstruction from spectral sampling is a common problem in the field of signal processing.
Formally stated, image reconstruction is an inversion problem: given frequency information, we want to
recover the spatial components of the image. MRI reconstruction in particular desires both speed and
accuracy, but often the former is neglected. Previous results have shown that sampling on interleaving
spirals in the spectral domain makes for much faster data acquisition than rectilinear spectral sampling
[7, 5]. We desire a reconstruction scheme that makes use of this data acquisition method. The standard
approach to MRI reconstruction relies on uniform sampling of the spectral domain [10]. We will show that
by sampling nonuniformly along the interleaving spirals, we can construct a Fourier frame approximant that
allows us to achieve perfect MRI reconstruction.

It is well-established that uniform sampling in the spectral domain of a band-limited signal can produce
perfect reconstruction (Shannon’s theorem), i.e. the reconstructed signal is a scaled, delayed version of
the original signal. This result leads to the Nyquist sampling theorem, which states that to obtain perfect
reconstruction, a band-limited signal must be sampled at a rate at least twice the maximum frequency [10].
Rectilinear sampling in the spectral domain consists of points (λ, µ) where λ = mhλ and µ = nhµ for
m,n ∈ Z and for fixed distances between coordinates hλ and hµ that satisfy the Nyquist criterion. The
typical MRI reconstruction algorithm samples rectilinearly and then applies the Fast Fourier Transform to
recover the image [6, 10].

A standard MRI machine measures the exact spectral components of the signal. Coils generate a magnetic
field that causes the body’s protons to align with it along a magnetic vector. A radio wave frequency (RF)
is then passed through the body to disrupt the magnetic field, forcing the protons out of equilibrium. Once
the pulse passes, the protons realign with the magnetic field. The time it takes for the particles to return
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to homeostasis and the amount of energy released indicate the type of tissue the pulses are moving through.
Localizing the magnetic field allows for the recovery of images such as Figure 1 [4, 11].

Figure 1: “Carolyn’s MRI”, by ClintJCL (Flickr)

3 Theoretical Approach

The Paley-Wiener space PWE is defined as

PWE = {ϕ ∈ L2(R̂d) : supp ϕ∨ ⊆ E},

where R̂d is the domain of the Fourier transforms of signals in d-dimensional Euclidean space, and L2(R̂d)
is the space of finite energy signals on R̂d with E ⊆ Rd compact. The Fourier transform of a signal f(x) is

defined as F : L2(Rd) → L2(R̂d) such that F(f)(ω) =
∫∞
−∞ f(x)e−2πix·ωdx. ϕ∨ denotes the inverse Fourier

transform of ϕ and supp ϕ∨ denotes the support of ϕ∨ [3].
In a separable Hilbert space H, a frame is defined as a sequence {xn : n ∈ Zd} ⊆ H for which there exist

A,B > 0 such that

∀y ∈ H, A||y||2 ≤
∑
n

|〈y, xn〉|2 ≤ B||y||2.

Let Λ ⊆ R̂d be a sequence and let E ⊆ Rd be compact. Define the sequence {eλ1E : λ ∈ Λ} ⊆ L2(Rd),
where eλ(x) = e−2πix·λ. In particular, note that (eλ1E)∧ ∈ PWE and L2(E) = (PWE)∨. The sequence
{eλ1E} is a frame for L2(E) (where we write L2(E) ⊆ L2(Rd) because (PWE)∨ ⊆ L2(Rd)), if and only if
there exist 0 < A ≤ B <∞ such that

∀f ∈ L2(E), A||f ||2L2(E) ≤
∑
λ∈Λ

|〈f, eλ1E〉L2(E)|2 ≤ B||f ||2L2(E)

where 〈f, eλ1E〉L2(E) =
∫
E
f(x)e−2πix·λdx = f̂(λ). We can further say that the sequence (eλ1E)∧ is a frame

for PWE if {eλ1E} is a frame for L2(E). We call such a sequence a Fourier frame for PWE [1, 3].
A set Λ is uniformly discrete if there exists r > 0 such that

∀λ, γ ∈ Λ, |λ− γ| ≥ r.
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When E is the closed ball B(0, R) ⊂ Rd centered at 0 with radius R, Beurling’s theorem tells us the following

[3]: Let Λ ⊆ R̂d be uniformly discrete and let dist(ξ,Λ) = infλ∈Λ

√∑d
i=1 |ξi − λi|2 denote the Euclidean

distance between the point ξ and the set Λ. Define

ρ = ρ(Λ) = sup
ξ∈R̂d

dist(ξ,Λ).

If Rρ < 1
4 , then Λ is a Fourier frame for PW

B(0,R)
⊆ L2(R̂d).

Define L : L2(E) → `2(Λ) of a Bessel map such that f → {f̂(λ) : λ ∈ Λ}. Let L∗ be its adjoint, and
define the frame operator

S = L∗L : L2(E)→ L2(E)

such that f → S(f) =
∑
λ∈Λ f̂(λ)eλ1E . If {eλ1E} is a frame for L2(E), then

f = SS−1f =
∑
λ∈Λ

(S−1f)∧(λ)eλ1E . (1)

From this we can conclude that every finite energy signal f ∈ L2(E) can be represented as

f(x) =
∑
λ∈Λ

aλ(f)eλ1E (2)

in L2(Rd), where aλ(f) = (S−1f)∧(λ) and
∑
λ∈Λ |aλ(f)|2 is finite.

Given the representation in (2), we must now choose a sequence ΛR ∈ R̂d such that ΛR is a Fourier frame
for PW

B(0,R)
. Let c,R > 0, and let {Ak : k = 0, 1, ...,M − 1} denote a finite set of interleaving Archimedean

spirals of the form
Ak = {cθe2πi(θ−(k/M)) : θ ≥ 0}.

Let B = ∪M−1
k=1 Ak. We will construct a uniformly discrete set ΛR ⊆ B that will form a Fourier frame for

PW
B(0,R)

.

First, choose M such that cR
M < 1/2. For any given ξ0 ∈ R̂2, we will write it as ξ0 = r0e

2πiθ0 where
r0 ≥ 0 and θ0 ∈ [0, 1). Then either 0 ≤ r0 < cθ0 < c or there exists n0 ∈ N ∪ {0} for which

c(n0 + θ0) ≤ r0 < c(n0 + 1 + θ0).

In the second case, we can find k ∈ {0, · · · ,M − 1} such that

c(n0 + θ0 +
k

M
) ≤ r0 < c(n0 + θ0 +

k + 1

M
),

which implies

dist(ξ0, B) ≤ c

2M
.

Next, choose δ > 0 such that Rρ < 1/4, where ρ = (c/2M) + δ. For each k, we choose a uniformly
discrete set of points Λk along the spiral Ak, where the curve distance between consecutive points is less
than 2δ, beginning within 2δ of the origin. This rule guarantees that the distance from any point on the
spiral Ak to Λk is less than δ. Finally, set ΛR = ∪M−1

k=0 Λk. By the triangle inequality,

∀ξ ∈ R̂2, dist(ξ,ΛR) ≤ dist(ξ,B) + dist(B,ΛR)

≤ c

2M
+ δ = ρ.

Recall that by our choices of δ and M , we have that Rρ < 1/4, thus Beurling’s theorem tells us ΛR is a
Fourier frame for PW

B(0,R)
.
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4 Problem Construction

We shall extend the results in Section 3 to the signal space of a square image of size N×N in R2 [3]. Consider

the image f ∈ L2(
[
− 1

2 ,
1
2

]2
), taken to be zero outside of

[
− 1

2 ,
1
2

]2
. We assume that f is piecewise constant.

We then partition the image into subsquares of size 1
N ×

1
N , closed on the left and upper edges. To illustrate:

in any subsquare, we have point p = (x, y) ∈ (− 1
2 ,

1
2 ) +

[
m
N ,

m+1
N

)
×
[
n
N ,

n+1
N

)
where m,n = 0, 1, ..., N − 1.

Then let fm,n ∈ R be the value of f in the (m,n) subsquare. Thus, we can simply write f as a sum of the
characteristic functions of each subsquare, such that

f(p) =

N−1∑
m,n=0

fm,n1�m,n
(p), (3)

where �m,n denotes the subsquare (− 1
2 ,

1
2 ) +

[
m
N ,

m+1
N

)
×
[
n
N ,

n+1
N

)
. Since f is piecewise constant, we can

consider sampling along each dimension separately, so (3) becomes

f(x, y) =

N−1∑
m,n=0

fm,n1[m
N ,

m+1
N )(x)1[ n

N ,
n+1
N )(y). (4)

Recall that the MRI machine samples the Fourier transform in R̂2. We therefore examine the signal in
the spectral domain. Taking the Fourier transform of f(x, y) gives

f̂(λ, µ) =

N−1∑
m,n=0

fm,n1̂[m
N ,

m+1
N )(λ)1̂[ n

N ,
n+1
N )(µ). (5)

Let Hm,n(α) = Hm,n(λ, µ) = 1̂[m
N ,

m+1
N )(λ)1̂[ n

N ,
n+1
N )(µ) for convenience. Then (5) becomes

f̂(α) =

N−1∑
m,n=0

fm,nHm,n(α) (6)

We restrict our view of the spectral domain to the square
[
−K2 ,

K
2

)2
. The choice of K will be (exper-

imentally) determined based on a desired error threshold. From our earlier result (2), we need a sequence
of points to construct a Fourier frame for our space. Within this restricted domain, we choose M ≥ N2

points αi = (λi, µi) for i = 0, 1, ...,M − 1 on the interleaving spirals such that the αi are nonuniform in the
square. Let Λ = {αi}. We extend this tiling to the entire spectral domain by utilizing the periodic extension
Λ +KZ2, creating a frame F for PWE , where E = [− 1

2 ,
1
2 ]2.

For convenience, we define a lexicographical ordering of the grid points bj = (mj , nj) such that j =
0, 1, ..., N2 − 1. From (6), we now have

f̂(αi) =

N2−1∑
j=0

fbjHbj (αi). (7)

Let
F̂ = [f̂(α0) f̂(α1) ... f̂(αM−1)]T

and
F = [fb0 fb1 ... fbN2−1

]T.

Define H such that H = [Hbj (αi)]i,j , and (7) becomes

F̂ = HF. (8)

The matrix equation (8) contains M ≥ N2 points in the spectral domain and N2 points in the spatial domain.

F̂ is a length-M vector, F is a length-N2 vector, and H is size M×N2. This yields an overdetermined system.
F contains the spatial components of the image f that we wish to recover. In the following section, we will
show that this matrix representation is equivalent to the frame reconstruction scheme.

4



5 Problem

The goal of this project is to use nonuniform sampling on interleaving spirals to define a Fourier frame in
R̂d, from which we can reconstruct a low-resolution MRI image. We do not have access to real MRI data,
so we will create a synthetic data set using high-resolution images.

Figure 2: Problem overview. Top: High-resolution image f from which synthetic data is formed. Bottom
left: Sampling along interleaving spirals in the spectral domain of the high-resolution image. Bottom right:
Downsampled version of the high-resolution image that serves as the ideal reconstruction.

Given a high resolution image f , generally of size 1024 × 1024, downsample f to form fN , an N × N
approximant where N = 128 or N = 256. The N × N approximant fN is the optimal available image at
that resolution. We take this as our ideal reconstruction, from which the error will be computed. From the
original image, f , we take the DFT at the points bj to get f̂ as defined in (6). From f̂ , we sample f̂(αi) for

i = 0, 1, ...,M−1 (with M ≥ N2) on a union of Archimedean spirals within the square
[
−K2 ,

K
2

)2
(Figure 2).

Beurling’s theorem allows us to develop a reconstruction scheme using the set of points Λ = f̂(αi). The
frame definition gives rise to a mapping H of N2 points to M points, thus H is the matrix representation of
the Bessel map L : `2({0, 1, ..., N2 − 1})→ `2({0, 1, ...,M − 1}), H∗ is its adjoint L∗, and H∗H is equivalent
to the frame operator S = L∗L. The frame reconstruction scheme is

f = (S−1L∗)Lf. (9)
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Setting Lf = f̂ , our reconstructed image f̃ takes the form

f̃ = S−1L∗f̂ . (10)

Applying the construction in Section 4 yields the overdetermined system in (8). We can see that in our
frame terminology, the least-squares approximation

F = (H∗H)−1H∗F̂, (11)

where H∗ := H
T

, is equivalent to (9).
From f̃ , we will compare our reconstruction with the optimal available image fN by analyzing fN − f̃ .

6 Approach

A typical MRI image f is of size N2 = 256 × 256. Our primary concern is solving (11) by constructing F̂
and H as described Section 5. Assuming (H∗H)−1 exists, f can be reconstructed. Note that H∗H is fixed,
which cuts down on storage costs considerably.

We will consider two reconstruction algorithms that solve the system

H∗HF = H∗F̂. (12)

The first is transpose reduction, which is the direct approach but with efficient storage. The second algorithm
is the conjugate gradient method.

6.1 Transpose Reduction

This algorithm computes H∗H directly as a sum of vector products instead of inefficiently storing H and
then computing H∗H [3].

Define Vk = (H0(αk), ...,HN2−1(αk))∗ such that

H =


H0(α0) · · · HN2−1(α0)
H0(α1) · · · HN2−1(α1)

...
...

...
H0(αM−1) · · · HN2−1(αM−1)

 =


V ∗0
V ∗1
...

V ∗M−1

 .

Note that

H∗H =


∑M−1
k=0 H0(αk)H0(αk) · · ·

∑M−1
k=0 H0(αk)HN2−1(αk)

...∑M−1
k=0 HN2−1(αk)H0(αk) · · ·

∑M−1
k=0 HN2−1(αk)HN2−1(αk)



=

M−1∑
k=0

 H0(αk)H0(αk) · · · H0(αk)HN2−1(αk)
...

HN2−1(αk)H0(αk) · · · HN2−1(αk)HN2−1(αk)



=

M−1∑
k=0


H0(αk)

H1(αk)
...

HN2−1(αk)

 (H0(αk) H1(αk) · · · HN2−1(αk))

=

M−1∑
k=0

VkV
∗
k .
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Similarly,

H∗f̂ =


∑M−1
k=0 H0(αk)f̂k

...∑M−1
k=0 HN2−1(αk)f̂k

 =

M−1∑
k=0

f̂kVk.

To construct A = H∗H and b = H∗f̂ :

1. Set A to be the N2 ×N2 zero matrix.

2. For k = 0 : M − 1

Set Vk = (H0(αk), ...,HN2−1(αk))∗

A← A+ VkV
∗
k

b← b+ f̂kVk

From here, (12) can be solved directly using a QR or Cholesky decomposition. This method uses a factor
of N2/M less memory than the direct approach with naive storage. In testing, as we increase the value of
M , we expect this savings to become more apparent.

6.2 Conjugate Gradient Algorithm

Given the construction of H∗H,

[H∗Hf ]m =

N2−1∑
j=0

fj

M−1∑
k=0

Hm(αk)Hj(αk),

where [H∗Hf ]m denotes the mth element of H∗Hf . As in the Transpose Reduction algorithm, let A = H∗H

and b = H∗f̂ . Then, for symmetric, positive definite A, we apply the conjugate gradient method [8] to solve
the system Af = b.

1. Choose f0. Let r0 = b−Af0. Set p0 = r0.

2. for n = 1 until convergence

γ = (rTn rn)/((Apn)T pn)

fn+1 = fn + γpn

rn+1 = rn − γApn
if norm(rn+1) < tol, break

βn = (rTn+1rn+1)/(rTn rn)

pn+1 = rn+1 + βnpn

This algorithm generally has linear convergence, but the speed of convergence depends on the condition
number of A. We will also develop a modified implementation of the conjugate gradient algorithm that uses
only matrix-vector operations instead of explicitly storing the matrix A.

7 Validation

Validation will take the form of comparing our algorithms with already-established algorithms. Small prob-
lems (on the order of 64 × 64 pixels) can be solved directly. We can compare the results of the Transpose
Reduction algorithm with the results of the direct solution using naive storage. For larger problems, the
conjugate gradient algorithm should follow the same convergence trajectory as Matlab’s version.
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8 Testing

Testing will primarily consist of error analysis. It is important to note that frames are defined for a countably
infinite number of points that span the entirety of the spectral domain. This could result in discrepancies
when we try to recover the image using only a limited range of frequencies. One aspect of testing will be
to explore how much frequency information we need to adequately recover fN (i.e. how large our square[
−K2 ,

K
2

)2
should be). We must also test how many points αi we must sample (how large M should be

relative to N2). The final aspect of testing will be to analyze the condition number of H∗H and how it
affects the reconstruction.

We will use the peak signal-to-noise ratio (PSNR) and Structural Similarity index (SSIM) to measure
the error between the ideal reconstruction and the recovered image.

8.1 PSNR

A standard measure of a reconstructed image is the peak signal-to-noise ratio (PSNR) [6]. It is defined in
terms of the mean-squared error. Given our optimal available image fN of N×N pixels and the reconstructed
image f̃ ,

MSE =
1

N2

N−1∑
m=0

N−1∑
n=0

(f̃(m,n)− fN (m,n))2

Then the PSNR, expressed in decibels (dB), is

PSNR = 10 log
max2

fN

MSE
(13)

where maxfN is the maximum possible pixel value for fN . As we anticipate using purely grayscale images
for this project, maxfN = 255.

8.2 SSIM

The structural similarity (SSIM) index is a measure of similarity between two images [9]. Let x and y be
signals where one is assumed to be of perfect quality. The luminance of each image is estimated by the mean
intensities µx and µy. The standard deviations σx and σy are used to estimate the signal contrast. The
constants C1 and C2 are used as stabilizers for when µ2

x + µ2
y and σ2

x + σ2
y are close to zero. The final form

of the SSIM index is

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
.

8.3 Platform

The project will be run in Matlab on an Acer Aspire V5 with 6GB of RAM.

9 Milestones

• Construct a Fourier frame via sampling on interleaving spirals.

• Implement the Transpose Reduction algorithm.

• Implement the conjugate gradient algorithm.

10 Timeline

• October 2015: Code the sampling routine to form the Fourier frame.

• November 2015: Proof of concept on small problems.
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• December 2015: Code the transpose reduction algorithm and begin testing.

• January - February 2016: Code the conjugate gradient algorithm. Design and implement modified
conjugate gradient algorithm.

• February - March 2016: Error analysis/testing. Explore how much frequency information we need to
adequately recover fN . Explore condition number of H∗H and how it affects the reconstruction.

• April 2016: Finalize results.

11 Deliverables

• Synthetic data set

• Fourier frame sampling routine

• Transpose reduction routine

• Conjugate gradient routine

• Final report and error analysis
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