MRI Reconstruction via Fourier Frames on Interleaving Spirals Project Proposal

Christiana Sabett Applied Mathematics & Statistics, and Scientific Computing (AMSC) University of Maryland, College Park

Advisors: John Benedetto, Alfredo Nava-Tudela Mathematics, IPST jjb@math.umd.edu, ant@math.umd.edu

October 7, 2015

Talk Outline

- Background
- Theoretical Approach
 - Fourier Frames
 - Beurling's Theorem
- Problem Overview
- Computational Approach
- Implementation
- Validation and Testing
- Timeline
- Deliverables

MRI Reconstruction

- Common inversion problem: given frequency information, reconstruct image in the spatial domain
- Sampling on interleaving spirals make for fast data acquisition (Bourgeois et al)

"Carolyn's MRI", by ClintJCL (Flickr)

The Paley-Wiener space PW_E is defined as

$$PW_{E} = \{ \varphi \in L^{2}(\widehat{\mathbb{R}}^{d}) : \text{supp } \varphi^{\vee} \subseteq E \},\$$

where

- $\widehat{\mathbb{R}}^d$ is the spectral equivalent of \mathbb{R}^d
- $E \subseteq \mathbb{R}^d$ is compact
- $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\widehat{\mathbb{R}}^d)$ such that $\mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \cdot \omega} dx$
- $\varphi^{\vee} = \mathcal{F}^{-1}(\varphi)$

A *frame* is a sequence $\{x_n : n \in \mathbb{Z}^d\} \subseteq H$, a separable Hilbert space, for which there exist A, B > 0 such that

$$\forall y \in H, \quad A||y||^2 \leq \sum_n |\langle y, x_n \rangle|^2 \leq B||y||^2.$$

Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be a sequence and let $E \subseteq \mathbb{R}^d$ be compact. The sequence $\{e_{\lambda} : \lambda \in \Lambda\}$, where $e_{\lambda}(x) = e^{-2\pi i x \cdot \lambda}$, defines a frame for PW_E if and only if there exist $0 < A \leq B < \infty$ such that

$$\forall \varphi \in \mathcal{PW}_{\mathcal{E}}, \quad \mathcal{A} ||\varphi||_{L^{2}(\widehat{\mathbb{R}}^{d})} \leq \sum_{\lambda \in \Lambda} |\varphi(\lambda)|^{2} \leq \mathcal{B} ||\varphi||_{L^{2}(\widehat{\mathbb{R}}^{d})}.$$

We call such a sequence a *Fourier frame for* PW_E (Au-Yeung, Benedetto).

Beurling's Theorem (Beurling; Benedetto, Wu)

• Let
$$E = \overline{B(0,R)} \subset \mathbb{R}^d$$
.

• Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be uniformly discrete.

• Let dist $(\xi, \Lambda) = \inf_{\lambda \in \Lambda} \sqrt{\sum_{i=1}^{d} |\xi_i - \lambda_i|^2}$ denote the Euclidean distance between the point $\xi \in \widehat{\mathbb{R}}^d$ and the set Λ .

Define

$$\rho = \rho(\Lambda) = \sup_{\xi \in \widehat{\mathbb{R}}^d} \operatorname{dist}(\xi, \Lambda).$$

If $R\rho < \frac{1}{4}$, then Λ is a Fourier frame for $PW_{\overline{B(0,R)}} \subseteq L^2(\widehat{\mathbb{R}}^d)$.

Every finite energy signal $f \in L^2(E)$ can thus be represented as

$$f(x) = \sum_{\lambda \in \Lambda} a_{\lambda}(f) e_{\lambda} \mathbb{1}_{E}$$

Let $\{A_k : k = 0, 1, ..., M - 1\} \subseteq \widehat{\mathbb{R}}^d$ denote a finite set of interleaving Archimedean spirals of the form

$$A_k = \{ c\theta e^{2\pi i (\theta - (k/M))} : \theta \ge 0 \}.$$

- 1. Choose $\delta > 0$ such that $R\rho < 1/4$.
- 2. For each *k*, choose a uniformly discrete set Λ_k of points along A_k where the curve distance between consecutive points is less than 2δ , beginning within 2δ of the origin.

The set $\Lambda_R = \bigcup_{k=0}^{M-1} \Lambda_k \subseteq B = \bigcup_{k=1}^{M-1} A_k$ defines a Fourier frame for $PW_{B(0,R)}$ (Benedetto,Wu).

Problem Overview

The goal of this project is to use nonuniform sampling on interleaving spirals to define a Fourier frame in $\widehat{\mathbb{R}}^d$, from which we can reconstruct a low-resolution MRI image.

Images courtesy of U.S. Patent US5485086 A and "Carolyn's MRI", by ClintJCL (Flickr)

Christiana Sabett (AMSC) MRI Reconstruction via Fourier Frames on Interleaving Spirals

Computational Approach

$$f(p) = f(x, y) = \sum_{b_j=0}^{N^2-1} f_{b_j} \mathbb{1}_{\Box_{b_j}}(x, y)$$
$$\widehat{f}(\alpha) = \widehat{f}(\lambda, \mu) = \sum_{b_j=0}^{N^2-1} f_{b_j} H_{b_j}(\lambda, \mu)$$

· · · · ·

where

$$\begin{array}{lll} \mathcal{H}_{b_j}(\alpha) &=& \mathcal{H}_{b_j}(\lambda,\mu) \\ &=& \widehat{\mathbb{1}}_{\square_{b_j}}(\lambda,\mu) \end{array}$$

Computational Approach

Choose $M \ge N^2$ points $\alpha_i = (\lambda_i, \mu_i)$ on the interleaving spirals to get

$$\widehat{f}(\alpha_i) = \sum_{j=0}^{N^2 - 1} f_{b_j} H_{b_j}(\alpha_i).$$
(1)

Let

$$\widehat{\mathbb{F}} = [\widehat{f}(\alpha_0) \ \widehat{f}(\alpha_1) \ \dots \ \widehat{f}(\alpha_{M-1})]^{\mathrm{T}}$$

and

$$\mathbb{F} = [f_{b_0} \ f_{b_1} \ \dots \ f_{b_{N^2-1}}]^{\mathrm{T}}.$$

Let $\mathbb{H} = [H_{b_i}(\alpha_i)]_{i,j}$, and (1) becomes

$$\widehat{\mathbb{F}} = \mathbb{HF}.$$
(2)

We will solve the least-squares problem

$$\mathbb{F} = (\mathbb{H}^* \mathbb{H})^{-1} \mathbb{H}^* \widehat{\mathbb{F}}, \tag{3}$$

where

- \mathbb{H} is the Bessel map $\ell^2(\{0, 1, ..., N^2 1\}) \rightarrow \ell^2(\{0, 1, ..., M 1\})$
- II* is its adjoint
- $\mathbb{H}^*\mathbb{H}$ is the frame operator

We consider the following algorithms:

- Transpose reduction (direct approach with efficient storage)
- Conjugate gradient algorithm

Transpose Reduction

Let
$$A = \mathbb{H}^* \mathbb{H}$$
 and $b = \mathbb{H}^* \widehat{f}$. Define $V_j = (H_0(\alpha_j), ..., H_{N^2-1}(\alpha_j))^*$ s.t.

$$\mathbb{H} = \begin{pmatrix} H_0(\alpha_0) & \cdots & H_{N^2-1}(\alpha_0) \\ H_0(\alpha_1) & \cdots & H_{N^2-1}(\alpha_1) \\ \vdots & \vdots & \vdots \\ H_0(\alpha_{M-1}) & \cdots & H_{N^2-1}(\alpha_{M-1}) \end{pmatrix} = \begin{pmatrix} V_0^T \\ V_1^T \\ \vdots \\ V_{M-1}^T \end{pmatrix}.$$
Note that

$$A = \mathbb{H}^* \mathbb{H} = \sum_{k=0}^{M-1} \begin{pmatrix} \overline{H_0(\alpha_k)} H_0(\alpha_k) & \cdots & \overline{H_0(\alpha_k)} H_{N^2-1}(\alpha_k) \\ \vdots \\ \overline{H_{N^2-1}(\alpha_k)} H_0(\alpha_k) & \cdots & \overline{H_{N^2-1}(\alpha_k)} H_{N^2-1}(\alpha_k) \end{pmatrix}$$

$$= \sum_{k=0}^{M-1} \begin{pmatrix} \overline{H_0(\alpha_k)} \\ H_1(\alpha_k) \\ \vdots \\ \overline{H_{N^2-1}(\alpha_k)} \end{pmatrix} (H_0(\alpha_k) H_1(\alpha_k) \cdots H_{N^2-1}(\alpha_k))$$

$$= \sum_{k=0}^{M-1} V_k V_k^*.$$

Christiana Sabett (AMSC)

IRI Reconstruction via Fourier Frames on Interleaving Spirals

Transpose Reduction

$$b = \mathbb{H}^* \hat{f} = \begin{pmatrix} \sum_{k=0}^{M-1} \overline{H_0(\alpha_k)} \hat{f_k} \\ \vdots \\ \sum_{k=0}^{M-1} \frac{1}{\overline{H_{N^2-1}(\alpha_k)}} \hat{f_k} \end{pmatrix} = \sum_{k=0}^{M-1} \hat{f_k} V_k.$$

To construct $A = \mathbb{H}^*\mathbb{H}$ and $b = \mathbb{H}^*\widehat{f}$:

1. Let
$$V_j = (H_0(\alpha_0), ..., H_{N^2-1}(\alpha_0))^*$$

2. Set $A = V_j V_j^*$ and $b = \hat{f}_0 V_j$
3. For $j = 0 : M - 1$
• Set $V_j = (H_0(\alpha_j), ..., H_{N^2-1}(\alpha_j))^*$
• $A = A + V_j V_j^*$
• $b = b + \hat{f}_j V_j$

Factor of N^2/M less memory than direct approach with naive storage.

Let $A = \mathbb{H}^*\mathbb{H}$ and $b = \mathbb{H}^*\widehat{f}$. To solve Af = b for symmetric, positive definite A:

- 1. Choose f_0 . Let $r_0 = b Af_0$. Set $p_0 = r_0$.
- 2. for n = 1 until convergence

•
$$\gamma = (\mathbf{r}_n^{\mathrm{T}}\mathbf{r}_n)/((\mathbf{A}\mathbf{p}_n)^{\mathrm{T}}\mathbf{p}_n)$$

•
$$f_{n+1} = f_n + \gamma p_n$$

•
$$r_{n+1} = r_n - \gamma A p_n$$

• if $\operatorname{norm}(r_{n+1}) < \operatorname{tol}$, break

•
$$\beta_n = (r_{n+1}^{\mathrm{T}} r_{n+1})/(r_n^{\mathrm{T}} r_n)$$

•
$$p_{n+1} = r_{n+1} + \beta_n p_n$$

Generally has linear convergence, but the speed of convergence depends on the condition number of *A*.

Validation

- Small problems (on the order of 64×64 pixels) can be solved directly.
- CG algorithm should follow the same convergence trajectory as Matlab's version.

Testing will primarily consist of error analysis.

Error measures:

- Signal-to-noise ratio (SNR)
- Structural Similarity measure (SSIM) (Wang et al)

Software: Matlab. Hardware: Acer Aspire V5 (6GB RAM)

- October 2015: Code the sampling routine to form the Fourier frame.
- November 2015: Proof of concept on small problems.
- December 2015: Code the transpose reduction algorithm and begin testing.
- January 2016: Code the conjugate gradient algorithm.
- February March 2016: Error analysis/testing. Explore how much frequency information we need to adequately recover *f*. Explore condition number of IH*IH and how it affects the reconstruction.
- April 2016: Finalize results.

- Synthetic data set
- Fourier frame sampling routine
- Transpose reduction routine
- Conjugate gradient routine
- Final report and error analysis

- Au-Yeung, Enrico, and John J. Benedetto. "Generalized Fourier Frames in Terms of Balayage." Journal of Fourier Analysis and Applications 21.3 (2014): 472-508.
- Benedetto, John J., and Hui C. Wu. "Nonuniform Sampling and Spiral MRI Reconstruction." Wavelet Applications in Signal and Image Processing VIII (2000).
- Bourgeois, Marc, Frank T. A. W. Wajer, Dirk Van Ormondt, and Danielle Graveron-Demilly. "Reconstruction of MRI Images from Non-Uniform Sampling and Its Application to Intrascan Motion Correction in Functional MRI." Modern Sampling Theory (2001): 343-63.

- I. Daubechies. *Ten Lectures on Wavelets.* Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
- Wang, Z., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. "Image Quality Assessment: From Error Visibility to Structural Similarity." IEEE Transactions on Image Processing IEEE Trans. on Image Process. 13.4 (2004): 600-12.
- Benedetto, John J., Alfredo Nava-Tudela, Alex Powell, and Yang Wang. MRI Signal Reconstruction by Fourier Frames on Interleaving Spirals. Technical report. 2008.

Questions?