
Solving the Stochastic Steady-State Diffusion

Problem Using Multigrid

Tengfei Su
tengfesu@math.umd.edu

Applied Mathematics and Scientific Computing Program

Advisor: Howard Elman
elman@cs.umd.edu

Department of Computer Science

December 13, 2015

Abstract

In this project we use multigrid method to solve the stochastic steady-
state diffusion problem. We follow the stochastic finite element formulation
for the discretization of the problem, and apply a multigrid algorithm to
solve the linear system. Implementing the multigrid method to generate
low-rank approximate solutions is studied as the second part of the project.

Contents

1 Project Review 1

2 Stochastic FEM 2

3 Multigrid 3
3.1 Prolongation Operator . 4
3.2 Construction of Ā . 5
3.3 Smoother . 5
3.4 Matrix Vector Product . 6
3.5 Multigrid Solver . 6

4 Validation 8
4.1 Model Problem . 8
4.2 Convergence Performance . 8
4.3 Monte Carlo Method . 10

5 Schedule 13
5.1 Project Status . 13
5.2 Future Work . 13

6 Bibliography 14

1 Project Review

In this project, we study the stochastic steady-state diffusion equation{
−∇ · (c(x, ω)∇u(x, ω)) = f(x) in D × Ω

u(x, ω) = 0 on ∂D × Ω
(1.1)

with the stochastic coefficient c(x, ω) : D × Ω → R. Note that we are
considering the case where we have zero Dirichlet boundary condition and
the source term f is deterministic. The solution of equation (1.1) will be a
random field u(x, ω) : D × Ω→ R.

The goal of the project is to solve the diffusion equation following the
stochastic finite element method (SFEM) (Ghanem & Spanos, 2003), and
apply a multigrid algorithm (Elman & Furnival, 2007) for the Galerkin sys-
tem which is obtained from the finite element method.

In the next section we will briefly discuss the stochastic finite element
method, which has beed detailed in the proposal report.

1

2 Stochastic FEM

By introducing the Karhunen-Loève (KL) expansion (Powell & Elman, 2009),
we can write the stochastic coefficient c(x, ω) in terms of a finite collection
of random variables {ξk}mk=1 which we assume to be independent and iden-
tically distributed:

c(x, ω) = c0(x) +

m∑
k=1

√
λkck(x)ξk(ω). (2.1)

Here c0(x) is the mean function, (λk, ck(x)) is the eigen-pair of the covariance
function r(x, y). The weak form of (1.1) is then given as follows:∫

Γ
ρ(ξ)

∫
D
c(x, ξ)∇u(x, ξ)∇v(x, ξ)dxdξ =

∫
Γ
ρ(ξ)

∫
D
f(x)v(x, ξ)dxdξ (2.2)

where ρ(ξ) is the joint density function, and Γ is the joint image of {ξk}mk=1.
The finite-dimensional subspace is defined as

V h = T ⊗ S = span{φ(x)ψ(ξ), φ ∈ S, ψ ∈ T}. (2.3)

We are using the piecewise bilinear functions φ(x) for the discretization of
spatial domain, and m-dimensional orthogonal polynomials ψ(ξ) (Xiu &
Karniadakis, 2003) for the stochastic space. The total order of ψ(ξ) doesn’t
exceed p. Given the subspace, we can write the SFEM solution as a linear
combination of the basis fuctions:

uhp(x, ξ) =

N∑
j=1

M∑
s=1

ujsφj(x)ψs(ξ). (2.4)

Substituting (2.1) and (2.4) into (2.2), and taking the test function as
any basis function φi(x)ψr(ξ), we get matrix form of (2.2): find u ∈ RMN ,
such that

Au = f . (2.5)

Using the tensor product notation, we have

A = G0 ⊗K0 +

m∑
k=1

Gk ⊗Kk, (2.6)

where

G0(r, s) =

∫
Γ
ψr(ξ)ψs(ξ)ρ(ξ)dξ

Gk(r, s) =

∫
Γ
ξkψr(ξ)ψs(ξ)ρ(ξ)dξ, r, s = 1, . . . ,M

K0(i, j) =

∫
D
c0(x)∇φi(x)∇φj(x)dx

Kk(i, j) =

∫
D

√
λkck(x)∇φi(x)∇φj(x)dx, i, j = 1, . . . , N. (2.7)

2

All the G and K matrices are symmetric and have a sparse structure due
to the orthogonality of ψ(ξ) and local support of φ(x). In fact, G0 is an
identity matrix; Gk(k = 1, . . . ,m) has at most 2 non-zero entries in each
row, and all the diagonal entries are zeros. The right-hand side is a long
vector of length MN which can also be written as a tensor product

f = g0 ⊗ f0, (2.8)

where

g0(r) =

∫
Γ
ψr(ξ)ρ(ξ)dξ, r = 1, . . . ,M,

f0(i) =

∫
D
f(x)φi(x)dx, i = 1, . . . , N. (2.9)

For the implementation of SFEM, we use the IFISS and SIFISS package
(Silvester et al) to generate the Galerkin system, i.e., the G,K matrices, the
right-hand side vector f , mesh data, and other input parameters. Note that
we never form the big matrix A. The main task next will be writing the
multigrid solver for

(G0 ⊗K0 +
m∑
k=1

Gk ⊗Kk)u = f . (2.10)

3 Multigrid

The multigrid solver is a recursive version of the two-grid correction scheme
(Elman & Furnival, 2007):

Two-grid Correction Scheme
Choose initial guess u(0)

for i = 0 until convergence
for k steps

u(i) ← u(i) +Q−1(f −Au(i)) (pre-smoothing)
end
r̄ = R(f −Au(i)) (restrict residual)
solve Āē = r̄
u(i+1) = u(i) + P ē (prolong and update)
for k steps

u(i+1) ← u(i+1) +Q−1(f −Au(i+1)) (post-smoothing)
end

end

In the next few sections, we will talk about the essential components of
the two-grid scheme, including the prolongation operator P, the restriction
operator R, the coarse version of coefficient matrix Ā, and the smoother

3

Q−1. In the end, we will have the multigrid routine built on this two-grid
scheme.

3.1 Prolongation Operator

For the two-grid correction scheme, we have two grid spaces: the fine grid
space

V h = T p ⊗ Sh, dim(V h) = M ×Nh

and the coarse grid space

V 2h = T p ⊗ S2h, dim(V 2h) = M ×N2h.

Note that the mesh size varies from h to 2h, while the polynomial order p,
which corresponds to the subspace T , is held constant.

The prolongation operator P maps a function in V 2h to V h. In other
words, for any v2h ∈ V 2h, if v2h is the coefficient vector of v2h in V 2h, then
the coefficient vector of v2h in V h is Pv2h. Any basis function φ2h

j ∈ S2h

can be written as

φ2h
j =

Nh∑
i=1

pijφ
h
i , j = 1, . . . , N2h (3.1)

since S2h ⊂ Sh. Then the prolongation operator is given by

P = I ⊗ P, with Pij = pij . (3.2)

Therefore, we need to use the relationship in (3.1) to construct matrix P ,
whose jth column consists of the coefficients of the linear combination for
φ2h
j .

In 1D, each basis function in S2h can be written into an interpolation of
3 basis functions in Sh. For instance, if we use a uniform mesh as shown in
the figure below, we have

1 2 3

1 2 3 4 5

φ2h
2 =

1

2
φh2 + φh3 +

1

2
φh4 .

In 2D, any basis function in S2h will be a linear combination of the adjacent
9 basis function in Sh, with coefficients given in the following picture:

11
2

1
2

1
2

1
4

1
4

1
2

1
4

1
4

4

In other words, there will be 9 non-zero entries in each column of P .
Once we have matrix P , the prolongation operator is I⊗P , the restriction

operator is defined as
R = I ⊗ P T , (3.3)

and we have the following relationship

Ā = RAP. (3.4)

3.2 Construction of Ā

Combining (2.10) and (3.2)-(3.4), we have

Ā = RAP = G0 ⊗ (P TK0P) +
m∑
k=1

Gk ⊗ (P TKkP)

= G0 ⊗ K̄0 +

m∑
k=1

Gk ⊗ K̄k. (3.5)

So for Ā, we have the same G matrices but different K matrices. Given K
(omitting the subscripts here), we can construct K̄ by either (1) computing
the matrix product P TKP or (2) assembling it directly on the coarse grid
using (2.7). In fact, for the diffusion problem, we will end up with the same
matrix since (Elman et al, 2014)

(P TKP)ij =
∑
m

∑
n

P T
im

(∫
D

√
λkck(x)∇φhm(x)∇φhn(x)dx

)
Pnj

=

∫
D

√
λkck(x)

∑
m

Pmi∇φhm(x)
∑
n

Pnj∇φhn(x)dx

=

∫
D

√
λkck(x)∇φ2h

i (x)∇φ2h
j (x)dx. (3.6)

We will assemble the K matrices directly on the coarse grid because it’s
cheaper in computation than doing the matrix product, especially when K
is sparse.

3.3 Smoother

We use the damped Jacobi smoother which is defined as follows: given
matrix splitting A = D − (−L− U), then

Q−1 = ωD−1 (3.7)

where ω is the damping coefficient, and D contains the diagonal components
of A. Using the fact that G0 is identity, and Gk has zero diagonal entries,

5

we have

diag(A) = diag(G0 ⊗K0 +

m∑
k=1

Gk ⊗Kk)

= diag(I ⊗K0) (3.8)

This can be used to simplify our definition of the smoother Q−1.

3.4 Matrix Vector Product

In this section we show how we do the matrix vector products when the
matrix is given as a tensor product. For instance, A = G0⊗K0 +

∑m
k=1Gk⊗

Kk. We write the vector

u = [u11, . . . , uN1, . . . , u1M , . . . , uNM]T (3.9)

as a matrix

U =


u11 u12 · · · u1M

u21 u22 · · · u2M
...

...
. . .

...
uN1 uN2 · · · uNM

 . (3.10)

Then we can compute the matrix vector product via

Au = vec(K0UG0 +
m∑
k=1

KkUGk), (3.11)

where vec means writing the matrix into a long vector column-wisely.
This corresponds to our stoch_matvec function, which is used in several

places in the code, such as computing the residual, the smoothing step, the
prolongation operation, and the restriction operation.

3.5 Multigrid Solver

With the several components discussed above, now we are ready to write
the multigrid solver. In the following is the function which executes one
multigrid iteration, or one V-cycle. The function is called recursively, until
we reach the coarsest grid level. The coarsest mesh we have is 4 by 4 in
2D, with 9 interior nodes. On this level we form the coefficient matrix A
explicitly and solve the linear system directly using backslash.

function x=stoch_mg_iter(Ks,G,x0,f,smoother ,level ,

npre ,npost)

%STOCH_MG_ITER performs one stochastic MG iteration

% input

% Ks coefficient matrix K

6

% G coefficient matrix G

% x0 initial iterate

% f right -hand side

% smoother smoothing operator

% level grid level

% npre number of presmoothing steps

% npost number of postsmoothing steps

% output

% x result of multigrid step

K=Ks(level).matrix; P{1}=Ks(level).prolong;

R{1}=P{1}’; I{1}= speye(size(G{1}));

% coarsest grid level

if level ==2

dimk=length(K);

A=kron(G{1},K{1});

for dim=2: dimk

A=A+kron(G{dim},K{dim});

end

x=A\f;

else

% pre -smoothing

x=stoch_mg_pre(K,G,x0,f,npre ,smoother ,level);

% restrict residual

r=f-stoch_matvec(x,G,K);

rc=stoch_matvec(r,I,R);

% coarse grid correction

cc=stoch_mg_iter(Ks ,G,zeros(size(rc)),rc ,smoother

,level -1,npre ,npost);

% prolong and update

x=x+stoch_matvec(cc,I,P);

% post -smoothing

x=stoch_mg_post(K,G,x,f,npost ,smoother ,level);

end

Finally the multigrid algorithm solves the Galerkin systems in the fol-
lowing steps:

1. Construct K,P,Q−1 on each grid level

2. Initialize u(0) = 0, r0 = norm(f −Au(0)), i = 0

3. while r > tol ∗ r0 & i <= maxit
execute one multigrid iteration for Au = f :
u(i+1) = stoch mg iter(K,G,u(i), f , . . .)
r = norm(f −Au(i+1))

7

i = i+ 1
end

In the while loop above, we may also equivalently apply the multigrid iter-
ation for the residual equation

execute one multigrid iteration for Ae = r:
e(i+1) = stoch mg iter(K,G,0, f −Au(i), . . .)
u(i+1) = u(i) + e(i+1)

r = norm(f −Au(i+1))
i = i+ 1

4 Validation

4.1 Model Problem

We consider the model problem with spatial domain D = (−1, 1)2 and
deterministic source term f = 1. The covariance function of c(x, ω) is in the
form of

r(x, y) = σ2e
− 1

b1
|x1−y1|− 1

b2
|x2−y2|. (4.1)

This is convenient because we have analytical solutions for λk and ck(x)
(Ghanem & Spanos, 2003). In the KL expansion

c(x, ω) = c0(x) + σ
√

3
m∑
k=1

√
λkck(x)ξk(ω), (4.2)

we take ξk to be uniformly distributed on [−1, 1], so Γ = [−1, 1]m, ρ(ξ) =
1/2m. The random variable σ

√
3ξk will have mean zero and standard de-

viation σ (Bespalov et al, 2014). The random field related parameters are
selected as follows:

c0(x) = 1, σ = 0.3, b1 = b2 = 2.0. (4.3)

Take h = 2−4, m = 3, p = 3, tol = 10−6. The figure below shows the
reduction of the residual. It takes 7 iterations for the multigrid solver to
converge.

4.2 Convergence Performance

It has been shown theoretically in Elman and Furnival’s paper (2007) that
the convergence rate of the multigrid algorithm is independent of h,m, and
p. In other words, the number of iterations required for multigrid to converge
to a fixed error tolerance is independent of h,m, and p. In this section we
demonstrate that our algorithm has such property.

8

To show the independence of mesh size h, we select the values of m and
p and refine mesh size. From the following tables we see that the number of
iterations n is basically constant. The increase in the number of iterations
is neglectable compared to the increase in the size of the Galerkin system.

m = 3, p = 3

h 2−2 2−3 2−4 2−5 2−6 2−7

n 6 7 7 7 7 8

m = 5, p = 3

h 2−2 2−3 2−4 2−5 2−6 2−7

n 7 8 8 8 8 8

m = 3, p = 5

h 2−2 2−3 2−4 2−5 2−6 2−7

n 7 8 8 8 8 9

Similarly by fixing h = 2−3, we vary the values of m and p to show that
the convergence rate is independent of these two parameters as well.

(m = 2) p 1 2 3 4 5 6

n 6 6 7 7 7 7

(m = 3) p 1 2 3 4 5 6

n 6 6 7 7 8 8

(p = 2) m 1 2 3 4 5 6

n 6 6 6 7 7 7

(p = 3) m 1 2 3 4 5 6

n 6 7 7 7 8 8

9

4.3 Monte Carlo Method

The second part of validation is to compare the SFEM solution with compu-
tational results from Monte Carlo method (MCM). Since the SFEM solution
is a random field

uhp(x, ξ) =
N∑
j=1

M∑
s=1

ujsφj(x)ψs(ξ), (4.4)

we will compare the mean value and variance to show that we are getting
the correct result. Using the orthogonality relationship

E[ψr(ξ)ψs(ξ)] = δrs (4.5)

and the fact that ψ1(ξ) = 1, we have E[ψi(ξ)] = δi1, and thus

E[uhp(x, ξ)] =

N∑
j=1

uj1φj(x). (4.6)

Besides, φj(xi) = δij at a grid point xi, so

E[uhp(xj , ξ)] = uj1, j = 1, . . . , N. (4.7)

Similarly,

E[u2
hp(x, ξ)] =

M∑
s=1

(

N∑
j=1

ujsφj(x))2, (4.8)

V[uhp(xj , ξ)] = E[u2
hp(xj , ξ)]− (E[uhp(xj , ξ)])

2

= (
M∑
s=1

u2
js)− u2

j1 =
M∑
s=2

u2
js (4.9)

for j = 1, . . . , N. Therefore, we can use (4.7) and (4.9) to calculate the mean
value and variance of the SFEM solution.

For the Monte Carlo method (Lord et al, 2014), we sample {ξk}mk=1 via

ξ = 2 ∗ rand(m, 1)− 1, (4.10)

with each component uniformly distributed on [−1, 1]. Then for each re-
alization of ξ, we solve a deterministic PDE using a normal finite element
method, which gives us the following linear system

(K0 +
m∑
k=1

ξkKk)u = f0. (4.11)

10

We have the same K matrices and f0 as in (2.7) and (2.9). The size of the
system (N×N) is much smaller than the stochastic case (MN×MN). After
computing the Monte Carlo solutions {urMC}

q
r=1, where q is the number of

sampling, we can use the following two estimators to calculate the mean
value and variance :

E[uMC] =
1

q

q∑
r=1

urMC (4.12)

V[uMC] =
1

q − 1

q∑
r=1

(urMC − E[uMC])2

=
1

q − 1

(
q∑

r=1

(urMC)2 − q(E[uMC])2

)
. (4.13)

Take the same mesh size h = 2−4 for SFEM and MCM. Let m = 3, p = 9,
and q = 1, 000, 000. In the following pictures, we plot the mean values and
variances of SFEM solution and MCM solution, as well as their differences.
We can see that the differences are relatively very small (especially for the
mean values). The differences can be further reduced if we have a larger q.
This should validate the correctness of our SFEM solution.

11

12

5 Schedule

5.1 Project Status

Here is the proposed timeline and what we have accomplished so far:

• 10/15 Generate Galerkin system from IFISS/S-IFISS 3

• 10/22 Write the multigrid routine and implement for model problem

- Uniform distributions 3

- Normal distributions 7

• 11/19 Validation

- Convergence performance 3

- Comparison with Monte Carlo 3

• 11/26 Prepare for mid-year presentation 3

• 01/25 Validation (if not finished yet)

• 02/08 Implement multigrid for low-rank approximate solutions

• 03/07 Implement BiCGstab for low-rank approximate solutions (if
time permits)

• 04/04 Collect computational results

• 04/25 Prepare for final presentation

Now we have the multigrid algorithm for solving the Galerkin system which
is obtained from the stochastic FEM. We also have the code for Monte Carlo
method for the stochastic diffusion problem.

5.2 Future Work

The second part of the project follows the idea of combining iterative meth-
ods for solving linear systems with low-rank approximation in Kressner and
Tobler’s paper (2011). As discussed in section 3.4, we can write the Galerkin
system (2.10) as

K0UG0 +

m∑
k=1

KkUGk = F, (5.1)

where

U =


u11 u12 · · · u1M

u21 u22 · · · u2M
...

...
. . .

...
uN1 uN2 · · · uNM

 , F =


f11 f12 · · · f1M

f21 f22 · · · f2M
...

...
. . .

...
fN1 fN2 · · · fNM

 .

13

The computational cost can be further reduced if we can write U as

U ≈ Uk = VkW
T
k , Vk ∈ RN×k,Wk ∈ RM×k, k � N,M (5.2)

and use iterative methods to solve the matrix version of the system. In the
next semester, we will follow this idea and apply our multigrid solver to
generate low-rank approximate solutions.

6 Bibliography

Bespalov, A., Powell, C. E., & Silvester, D. (2014). Energy norm a posteri-
ori error estimation for parametric operator equations. SIAM Journal
on Scientific Computing, 36(2), A339-A363.

Elman, H. & Furnival D. (2007). Solving the stochastic steady-state dif-
fusion problem using multigrid. IMA Journal of Numerical Analysis,
27, 675–688.

Elman, H. C., Silvester, D. J., & Wathen, A. J. (2014). Finite Elements
and Fast Iterative Solvers: with Applications in Incompressible Fluid
Dynamics. Oxford: Oxford University Press.

Ghanem, R. G. & Spanos, P. D. (2003). Stochastic Finite Elements: A
Spectral Approach. New York: Dover Publications.

Kressner D. & Tobler C. (2011). Low-rank tensor Krylov subspace methods
for parametrized linear systems. SIAM Journal of Matrix Analysis and
Applications, 32.4, 1288–1316.

Lord, G. J., Powell, C. E., & Shardlow, T. (2014). An Introduction to
Computational Stochastic PDEs. No. 50. Cambridge University Press.

Powell, C. E., & Elman, H. C. (2007). Block-diagonal preconditioning for
spectral stochastic finite-element systems. IMA Journal of Numerical
Analysis, 29, 350–375.

Silvester, D., Elman, H. C., & Ramage, A. Incompressible Flow and Itera-
tive Solver Software, http://www.maths.manchester.ac.uk/∼djs/ifiss.

Xiu, D. & Karniadakis G. M. (2003). Modeling uncertainty in flow sim-
ulations via generalized polynomial chaos. Journal of Computational
Physics, 187, 137–167.

14

