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Abstract

In this project we use multigrid method to solve the stochastic steady-
state diffusion problem. We follow the stochastic finite element formulation
for the discretization of the problem, and apply a multigrid algorithm to
solve the linear system. Implementing the multigrid method to generate
low-rank approximate solutions is studied as the second part of the project.
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1 Background

Many physical problems can be modeled by partial differential equations
(PDEs). A simple example is the steady-state diffusion equation

−∇ · (c(x)∇u(x)) = f(x), x ∈ D. (1.1)

When given such an equation, we are actually assuming that we know the
explicit forms of the diffusion coefficient c(x) and the source term f(x).
There terms are related to the material properties such as heat conductivity
and material porosity, and they may be subject to uncertainty. In this case,
it’s fitting to write them as random fields:

−∇ · (c(x, ω)∇u(x, ω)) = f(x, ω), (x, ω) ∈ D × Ω, (1.2)

where c(x, ω) and f(x, ω) are functions not only in the spatial space D but
also in the sample space Ω. The above equation is called a stochastic partial
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differential equation (SPDE); it’s more difficult to deal with than (1.1) due
to the newly introduced stochastic part.

One of the popular ways to solve SPDEs is the Monte Carlo method
(MCM). The basic idea is to run a large number of sampling, and for each
realization, to solve a deterministic subproblem. Then the results are col-
lected to compute the statistical properties of the solution. The number
of realization can be large, especially when we have a problem with large
variance.

Alternatively, we can use the stochastic finite element method (SFEM)
pioneered by Ghanem & Spanos (2003). The spatial domain is discretized
similar to a traditional finite element method, and the sample space is dis-
cretized as well. From SFEM we will have only one single linear system to
solve, but of course, the size of the system will be much larger than that in
the subproblem of MCM. One of the most important issues about SFEM is
how to solve the linear system efficiently to reduce computational cost.

The goal of this project is to solve the stochastic steady-state diffusion
equation efficiently. We are going to follow the SFEM formulation for han-
dling the stochastic part, and use a multigrid method to solve the resulting
linear system. In the next sections, we will talk about the two parts with
more details.

2 Stochastic finite element method

Consider the stochastic steady-state diffusion equation{
−∇ · (c(x, ω)∇u(x, ω)) = f(x) in D × Ω

u(x, ω) = 0 on ∂D × Ω
(2.1)

where the stochastic coefficient c(x, ω) : D × Ω → R. The sample space
belongs to a probability space (Ω,F , P ) with probability measure P . Note
that we are considering the case where the source term f is deterministic.
The solution of equation (2.1) will be a random field u(x, ω) : D × Ω→ R.

2.1 Weak form

The weak form of (2.1) is given as follows: find u(x, ω) ∈ H = H1
0 (D)⊗L2(Ω)

satisfying∫
Ω

∫
D
c(x, ω)∇u(x, ω)∇v(x, ω)dxdP =

∫
Ω

∫
D
f(x)v(x, ω)dxdP (2.2)

for ∀v ∈ H. Note that we have a double integral with respect to Lebesgue
measure and probability measure. The Hilbert space H is defined as

H = {v(x, ω) : D × Ω→ R|‖v‖H <∞, v|∂D×Ω = 0}
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with energy norm

‖v(x, ω)‖2H =

∫
Ω

∫
D
c(x, ω)|∇v(x, ω)|2dxdP.

Introducing the truncated Karhunen-Loève expansion (Powell & Elman,
2009), which is discussed in Section 2.2, we are able to represent c(x, ω) by a
finite collection of random variables {ξk}mk=1 : Ω→ R. Then correspondingly
the solution will also have finite stochastic dimension. The weak form (2.2)
can be rewritten as: find u(x, ω) ∈ V = H1

0 (D)⊗ L2(Γ) such that∫
Γ
ρ(ξ)

∫
D
c(x, ξ)∇u(x, ξ)∇v(x, ξ)dxdξ =

∫
Γ
ρ(ξ)

∫
D
f(x)v(x, ξ)dxdξ (2.3)

for ∀v ∈ V . Here ρ(ξ) is the joint density function, and Γ is the joint image
of {ξk}mk=1. The Hilbert space V is defined as

V = {v(x, ξ) : D × Γ→ R|‖v‖V <∞, v|∂D×Γ = 0}

with energy norm

‖v(x, ξ)‖2V =

∫
Γ
ρ(ξ)

∫
D
c(x, ξ)|∇v(x, ξ)|2dxdξ.

2.2 Karhunen-Loève expansion

Given a random field c(x, ω) with mean function c0(x), constant variance ν,
and continuous covariance function r(x, y), it admits an orthogonal decom-
position, or Karhunen-Loève (KL) expansion

c(x, ω) = c0(x) +
∞∑
k=1

√
λkck(x)ξk(ω) (2.4)

where {ξk} is a sequence of uncorrelated random variables with mean zero
and variance ν that we assume to be identically distributed. (λk, ck(x)) can
be computed from the eigenvalue equation∫

D

r(x, y)

ν
ck(x)dx = λkck(y). (2.5)

In the previous section we employed the truncated KL expansion

c(x, ω) ≈ c0(x) +
m∑
k=1

√
λkck(x)ξk(ω) (2.6)

to obtain an approximation of the stochastic coefficient c(x, ω) and repre-
sented it by m identically distributed random variables.
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2.3 Finite-element form

To obtain the finite-element form for (2.3), we need to find a finite-dimensional
subspace of V . In SFEM, the spatial space H1

0 (D) and stochastic space
L2(Γ) are discretized separately. For the spatial domain, we use the piece-
wise linear/bilinear basis functions (depending on whether triangles or quadri-
laterals are used for the triangulation). The subspace is given as

S = span{φ1(x), . . . , φN (x)} ⊂ H1
0 (D).

Here N is the number of interior nodes of the mesh. The subspace of L2(Γ)
can be written in a similar manner:

T = span{ψ1(ξ), . . . , ψM (ξ)} ⊂ L2(Γ)

where the basis functions {ψr(ξ)}Mr=1 are the m-dimensional “polynomial
chaos” of total order p (Xiu & Karniadakis, 2002). Details are given in
Section 2.4.

Now we have a subspace of V defined as

V h = S ⊗ T = span{φ(x)ψ(ξ), φ ∈ S, ψ ∈ T}. (2.7)

This gives us the SFEM formulation: find uhp ∈ V h, satisfying∫
Γ
ρ(ξ)

∫
D
c(x, ξ)∇uhp(x, ξ)∇v(x, ξ)dxdξ =

∫
Γ
ρ(ξ)

∫
D
f(x)v(x, ξ)dxdξ

(2.8)
for ∀v ∈ V h. Here the discrete solution is a linear combination of basis
functions

uhp(x, ξ) =
N∑
j=1

M∑
s=1

ujlφj(x)ψs(ξ), (2.9)

test function can be taken as

v(x, ξ) = φi(x)ψr(ξ), i = 1, . . . , N, r = 1, . . . ,M, (2.10)

and the stochastic coefficient is represented by the KL expansion (2.6)

c(x, ω) = c0(x) +

m∑
k=1

√
λkck(x)ξk(ω).

2.4 Polynomial chaos

In general, a second order (with finite variance) random process admits a
polynomial expansion

X(ω) =

∞∑
j=0

ajψj(ξ(ω)) (2.11)
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where ξ a multi-dimensional random variable, and polynomials {ψj} form a
complete orthogonal basis in the L2 space, satisfying∫

ψi(ξ)ψj(ξ)ρ(ξ)dξ = δij

∫
ψi(ξ)

2ρ(ξ)dξ. (2.12)

To construct the subspace T , we restrict the total order of polynomials
in (2.11) to p. Take ξ as an m-dimensional random variable, {ψr(ξ)}Mr=1 as
normalized order-p polynomials from the expansion, such that∫

ψi(ξ)ψj(ξ)ρ(ξ)dξ = δij . (2.13)

The dimension of T is

M =
(m+ p)!

m!p!
. (2.14)

Note that for different distributions of ξ we have different forms of poly-
nomials so that they satisfy the orthogonality relationship with respect to
the density function. If ξ is Gaussian, then ψ will be Hermite polynomials;
if ξ is uniformly distributed, ψ will take the form of Legendre polynomials.

2.5 Matrix form

Substituting (2.6), (2.9), and (2.10) into (2.8), we finally get the linear
system to solve: find u ∈ RMN , such that

Au = f , (2.15)

where

A =


A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
. . .

...
AM1 AM2 · · · AMM

 , f =


f1

f2
...

fM

 ,

and
u = [u11, . . . , uN1, . . . , u1M , . . . , uNM ]T,

[fr]i =

∫
Γ
ρ(ξ)

∫
D
f(x)φi(x)ψr(ξ)dxdξ.

The matrix blocks are given by

Ars = K0

∫
Γ
ψr(ξ)ψs(ξ)ρ(ξ)dξ +

m∑
k=1

Kk

∫
Γ
ξkψr(ξ)ψs(ξ)ρ(ξ)dξ,

K0(i, j) =

∫
D
c0(x)∇φi(x)∇φj(x)dx,
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Kk(i, j) =

∫
D

√
λkck(x)∇φi(x)∇φj(x)dx, k = 1, . . . ,M.

Using tensor product notation (Powell & Elman, 2009), we have

A = G0 ⊗K0 +

m∑
k=1

Gk ⊗Kk, (2.16)

where the stochastic matrices Gk are defined as

G0(r, s) =

∫
Γ
ψr(ξ)ψs(ξ)ρ(ξ)dξ,

Gk(r, s) =

∫
Γ
ξkψr(ξ)ψs(ξ)ρ(ξ)dξ, k = 1, . . . ,M.

The matrix A in (2.11) is symmetric and positive definite if the problem
is well-posed. Also, the choice of basis functions ensures that A is sparse.
In general, A is a large matrix of size MN ×MN . For instance, in 2-D, if
h = 2−7,m = p = 4, then MN ∼ 1, 000, 000. In the next section, we talk
about multigrid method for solving the linear system.

3 Multigrid

Multigrid method has been successfully used in solving large sparse systems
that arise from deterministic problems. Here we use a two-grid correction
scheme (Elman & Furnival, 2007) to show how it’s applied to the stochas-
tic problem. Multigrid can be given by applying the two-grid procedure
recursively.

3.1 Grid transfer operators

The first ingredient of the scheme is the two grid spaces and grid transfer
operators. The fine grid space is defined as

V h = Sh ⊗ T p, (3.1)

and the coarse grid space is

V 2h = S2h ⊗ T p, (3.2)

where h is the mesh size. Note that the mesh parameter varies from h to 2h,
but the polynomial order p, which corresponds to the subspace T , is held
constant. The linear system is represented as Āū = f̄ on the coarse grid.

Now we can define the prolongation operator that maps a function in
V 2h to V h. Any basis function φ2h

j ∈ S2h can be written as

φ2h
j =

Nh∑
i=1

pijφ
h
i , j = 1, . . . , N2h. (3.3)
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Define matrix P such that Pij = pij . Now for v2h ∈ V 2h,

v2h =

N2h∑
j=1

M∑
k=1

v2h
jkφ

2h
j ψk =

N2h∑
j=1

M∑
k=1

v2h
jk

Nh∑
i=1

pijφ
h
i ψk

=

Nh∑
i=1

M∑
k=1

N2h∑
j=1

pijv
2h
jk

φhi ψk =

Nh∑
i=1

M∑
k=1

[Pv2h
k ]iφ

h
i ψk. (3.4)

As v2h ∈ V h, we also have

v2h =

Nh∑
i=1

M∑
k=1

vhikφ
h
i ψk. (3.5)

By comparing (3.4) and (3.5), we see

[Pv2h
k ]i = vhik ⇒ Pv2h

k = vh
k .

Therefore, if v2h is the coefficient vector of v2h in V 2h, then the coefficient
vector of v2h in V h is Pv2h, with the prolongation operator defined as

P = I ⊗ P. (3.6)

The restriction operator maps a function in V h to V 2h. It’s defined as

R = I ⊗R = I ⊗ PT. (3.7)

With these two operators we have following relationships

Ā = RAP, f̄ = Rf . (3.8)

3.2 Smoothing

Given the two grid spaces, we can write V h = PV 2h + Bh. Bh is called
fine grid correction space, and it’s the null space of the restriction operator.
This in fact is an orthogonal decomposition of the space V h (Briggs et al,
2000). For an initial guess u(0), the error e(0) = u− u(0) can be written as

e(0) = Pe
(0)

V 2h + e
(0)

Bh . (3.9)

The second ingredient of multigrid, called smoother, can greatly reduce the
fine grid component of the error when applied to both sides of (3.9). This
means that after the smoothing step, we can restrict our system to the coarse
grid, and solve a smaller system without losing much information.
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The smoother is given by a stationary iteration (Elman et al, 2014). If
we have matrix splitting A = Q−Z, then Au = f , Qu = Zu + f . This gives
the iteration

u(k+1) = Q−1Zu(k) +Q−1f

= Q−1(Q−A)u(k) +Q−1f

= (I −Q−1A)u(k) +Q−1f

= u(k) +Q−1(f −Au(k)). (3.10)

The matrix I−Q−1A is the smoother. Note that in practice we are applying
it to the residual f −Au.

3.3 Two-gird correction scheme

With the discussion above, now we have the two-gird correction scheme
(with k steps of smoothing for each iteration):

Algorithm
Choose initial guess u(0)

for i = 0 until convergence
for k steps

u(i) ← u(i) +Q−1(f −Au(i)) (smoothing)
end
r̄ = R(f −Au(i)) (restrict residual)
solve Āē = r̄
u(i+1) ← u(i) + P ē (prolong and update)

end

4 Numerical experiments

4.1 Implementation

All work will be done in MATLAB R2015a on a personal laptop (Macbook
Air, 1.6 GHz Intel Core i5, 4 GB 1600 MHz DDR3). We will use the In-
compressible Flow & Iterative Solver Software (IFISS) and the stochastic
extension (S-IFISS) (Silvester et al) to produce the Galerkin system. We
will write the multigrid algorithm for solving the stochastic problem. This
will be the main part of the work.

4.2 Model problem

We consider the model problem (Elman & Furnival, 2007) with spatial do-
main D = (−1, 1)2 and deterministic source term f = 1. The covariance
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function of c(x, ω) is given by

r(x, y) = νe
− 1

b1
|x1−y1|− 1

b2
|x2−y2|. (4.1)

The constants b1, b2 are called the correction length and are related to the
decay of {λk}. In the KL expansion

c(x, ω) = c0(x) +
m∑
k=1

√
λkck(x)ξk(ω),

ck(x) and λk are the eigenfunctions and eigenvalues of r(x, y). We will con-
sider two cases for the distribution of ξk(ω):

• Normal distribution with c0(x) = 1 and ν = 0.01. Basis functions of
T will be m-dimensional Hermite polynomials;

• Uniform distribution on (−1, 1) with c0(x) = 10 and ν = 1/3. Basis
functions of T will be m-dimensional Legendre polynomials.

4.3 Validation

For validation of the code, we consider the following two aspects:

• Comparison with MCM. We will use the Monte Carlo method to solve
the same model problem, and compute the solution properties such as
mean and variance. These properties can also be obtained from the
SFEM solutions. We will look at the mean and variance of the SFEM
solutions, and they should approach what we get from MCM for the
same mesh size h.

• Multigrid analysis. There is a “textbook” convergence rate for multi-
grid: it is independent of the mesh parameter h. For the stochastic
version, it’s also independent of the dimension m and polynomial or-
der p. We can check that our multigrid algorithm has this property
by varying the value of h,m, and p.

5 Low-rank approximate solutions

This part follows the idea of combining iterative methods for solving linear
systems with low-rank approximation in Kressner and Tobler’s paper (2011).
Recall that from the SFEM we have a linear system

Au = f , A = G0 ⊗K0 +
m∑
k=1

Gk ⊗Kk.
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This can be written into a matrix form

K0UG0 +
m∑
k=1

KkUGk = F, (5.1)

where

U =


u11 u12 · · · u1M

u21 u22 · · · u2M
...

...
. . .

...
uN1 uN2 · · · uNM

 , F =


f11 f12 · · · f1M

f21 f22 · · · f2M
...

...
. . .

...
fN1 fN2 · · · fNM

 .

The solution is given as a matrix instead of a long vector. The computational
cost can be further reduced if we can write U as

U ≈ Uk = VkW
T
k , Vk ∈ RN×k,Wk ∈ RM×k, k � N,M (5.2)

and use iterative methods to solve the matrix version of the system. Three
iterative methods have been implemented in Kressner and Toblers paper
(2011): preconditioned Richardson, preconditioned conjugate gradient (CG),
and preconditioned biconjugate gradient stablized method (BiCGstab). As
an extension, we will apply the multigrid method to generate low-rank ap-
proximate solutions.

6 Schedule

Here is the timeline of the project:

• 10/15 Generate Galerkin system from IFISS/S-IFISS

• 10/22 Write the multigrid routine and implement for model problem

• 11/19 Validation with multigrid analysis and Monte Carlo

• 11/26 Prepare for mid-year presentation

• 01/25 Validation (if not finished yet)

• 02/08 Implement multigrid for low-rank approximate solutions

• 03/07 Implement BiCGstab for low-rank approximate solutions (if
time permits)

• 04/04 Collect computational results

• 04/25 Prepare for final presentation

Some milestones:
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1. By the end of the first semester, will at least finish writing the multigrid
algorithm for solving the Galerkin system, and implementing it to solve
the model problem. In a better case, will also finish the validation part,
i.e. comparison with Monte Carlo method.

2. By the end of the second semester, will have the multigrid method
for low-rank approximate solutions. If time permits, will implement
BiCGstab method for comparison of efficiency.

7 Deliverables

Deliverables of the project will include:

1. Documented code. We will have a multigrid routine for

• stochastic Galerkin systems,

• low-rank approximate solutions.

2. Reports and presentations.
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