
Solving the Stochastic Steady-State Diffusion

Problem Using Multigrid

Tengfei Su
tengfesu@math.umd.edu

Applied Mathematics and Scientific Computing Program

Advisor: Howard Elman
elman@cs.umd.edu

Department of Computer Science

May 10, 2016

Abstract

In this project we study multigrid for solving the steady-state diffusion
problem with random coefficients. The equation is discretized using the
stochastic finite element method, and we apply a multigrid algorithm to
solve the Galerkin systems. The solutions can be well approximated by low-
rank matrices under certain assumptions. We propose a multigrid method
with low-rank truncation and show by numerical experiments that it’s more
efficient in solving the Galerkin systems than the original multigrid solver.

1 Project Review

1.1 Project Goal

In this project, we study the stochastic steady-state diffusion equation{
−∇ · (c(x, ω)∇u(x, ω)) = f(x) in D × Ω

u(x, ω) = 0 on ∂D × Ω
(1.1)

with the stochastic coefficient c(x, ω) : D × Ω → R. We consider the case
where we have zero Dirichlet boundary conditions and the source term f is
deterministic. The solution of equation (1.1) will be a random field u(x, ω) :
D × Ω→ R.

The goal of the project is to solve the diffusion equation following the
stochastic finite element method (SFEM) [1], and apply a multigrid algo-
rithm [2] for the Galerkin system. We further explore low-rank approxima-
tions to reduce computational efforts.

In the next section we briefly discuss the stochastic finite element method.

1.2 Stochastic FEM

By introducing the Karhunen-Loève (KL) expansion [3], we can write the
stochastic coefficient c(x, ω) in terms of a finite collection of random variables
{ξi}mi=1 which we assume to be independent and identically distributed:

c(x, ω) ≈ c0(x) +

m∑
i=1

√
λkci(x)ξi(ω). (1.2)

Here c0(x) is the mean function, (λi, ci(x)) is the eigen-pair of the covariance
function r(x, y). The weak form of (1.1) is then given as follows:∫

Γ
ρ(ξ)

∫
D
c(x, ξ)∇u(x, ξ)∇v(x, ξ)dxdξ =

∫
Γ
ρ(ξ)

∫
D
f(x)v(x, ξ)dxdξ (1.3)

where ρ(ξ) is the joint density function, and Γ is the joint image of {ξi}mi=1.
The finite-dimensional subspace is defined as

V hp = T ⊗ S = span{φ(x)ψ(ξ), φ ∈ S, ψ ∈ T}. (1.4)

We use piecewise bilinear functions φ(x) for the basis of the spatial space,
andm-dimensional orthonormal polynomials ψ(ξ) [4] for the stochastic space.
The total order of ψ(ξ) doesn’t exceed p. Given the subspace, we can write
the SFEM solution as a linear combination of the basis fuctions

uhp(x, ξ) =

N∑
j=1

M∑
s=1

ujsφj(x)ψs(ξ). (1.5)

1

N and M are the degrees of freedom of the spatial space and stochastic
space, respectively.

Substituting (1.2) and (1.5) into (1.3), and taking the test function as
any basis function φl(x)ψr(ξ), we get matrix form of (1.3) [5]: find u ∈ RMN ,
such that

Au = f . (1.6)

Using the tensor product notation, we have

A = G0 ⊗K0 +
m∑
i=1

Gi ⊗Ki, (1.7)

where

G0(r, s) =

∫
Γ
ψr(ξ)ψs(ξ)ρ(ξ)dξ, Gi(r, s) =

∫
Γ
ξiψr(ξ)ψs(ξ)ρ(ξ)dξ,

K0(l, j) =

∫
D
c0(x)∇φl(x)∇φj(x)dx,

Ki(l, j) =

∫
D

√
λici(x)∇φl(x)∇φj(x)dx, (1.8)

i = 1, . . . ,m; r, s = 1, . . . ,M ; l, j = 1, . . . , N . The right-hand side can also
be written as a tensor product

f = g0 ⊗ f0, (1.9)

where

g0(r) =

∫
Γ
ψr(ξ)ρ(ξ)dξ, r = 1, . . . ,M,

f0(l) =

∫
D
f(x)φl(x)dx, l = 1, . . . , N. (1.10)

Matrix A is symmetric and positive definite if the problem is well-posed.
It’s also block-wisely sparse due to the orthogonality of ψ(ξ) (see Figure 1).
For the implementation of SFEM, we use the IFISS and SIFISS package [6]
to generate the Galerkin system, i.e., the G,K matrices, the right-hand side
vector f , and mesh data. Note that we never form the big matrix A. In the
next section we discuss the multigrid algorithm used to solve (1.6).

2 Multigrid

2.1 Algorithm

The basic idea of the multigrid solver proposed by Elman and Furnival [2] is
that the mesh size h varies for different grid levels, while polynomial degree
p is held constant. Define the fine and coarse grid spaces as

V hp = T p ⊗ Sh, V 2h,p = T p ⊗ S2h. (2.1)

2

Figure 1: Block structure of A (m = 4, p = 1, 2, 3 from left to right. Block
size is N ×N).

Then the prolongation and restriction operators are in the form of

P = I ⊗ P, R = I ⊗ P T , (2.2)

where P is the same prolongation matrix as in the deterministic case. We
only need to construct K matrices on the coarse grid, and

Ā = G0 ⊗K2h
0 +

m∑
i=1

Gi ⊗K2h
i . (2.3)

The damped Jacobi smoother is used for the smoothing steps:

Q =
1

ω
D, D = diag(A) = I ⊗ diag(K0). (2.4)

Algorithm 1 describes the multigrid solver for stochastic Galerkin system
(1.6). In each iteration, we apply one multigrid step for the residual equation

Ae(i) = r(i) = f −Au(i) (2.5)

and update the solution u and residual r. On the coarsest grid level we form
matrix A and solve the linear system directly using backslash.

3

Algorithm 1: Multigrid for stochastic Galerkin systems

initialization: i = 0, r(0) = f , r0 = ‖f‖
while r > tol ∗ r0 & i ≤ maxit do

e(i) = MgIter(A,0, r(i), level)

u(i+1) = u(i) + e(i)

r(i+1) = f −Au(i+1)

r = ‖r(i+1)‖, i = i+ 1

function u(1) = MgIter(A,u(0), f , level)
if level == 2 then

u(1) = A\f
else

for k steps do

u(0) ← u(0) +Q−1(f −Au(0))

r̄ = R(f −Au(0))
ē = MgIter(Ā,0, r̄, level − 1)

u(1) = u(0) + P ē
for k steps do

u(1) ← u(1) +Q−1(f −Au(1))

2.2 Validation

Consider the model problem with spatial domain D = (−1, 1)2 and source
term f = 1. The covariance function of c(x, ω) is in the form of

r(x, y) = σ2exp(−1

b
|x1 − y1| −

1

b
|x2 − y2|). (2.6)

This is convenient because we have analytical solutions for λi and ci(x). In
the KL expansion

c(x, ω) = c0(x) +
√

3

m∑
i=1

√
λici(x)ξi(ω), (2.7)

we take ξi to be uniformly distributed on [−1, 1]. The random field related
parameters are selected as follows:

c0(x) = 1, σ = 0.3, b = 2.0. (2.8)

First we demonstrate that the multigrid algorithm shows “textbook”
convergence behavior: convergence rate is independent of parameters h,m,
and p. Fix the relative tolerance as 10−6. Let m = 5, p = 3. We see that
the number of iterations are basically the same as we vary h:

4

h 2−2 2−3 2−4 2−5 2−6 2−7

n 7 8 8 8 8 8

Similarly, if we fix m = 3, h = 2−3 and vary p:

p 1 2 3 4 5 6

n 6 6 7 7 8 8

Let p = 3, h = 2−3 and vary m:

m 1 2 3 4 5 6

n 6 7 7 7 8 8

Secondly, we compare the SFEM solutions with the results from Monte
Carlo method (MCM) [7]. For MCM, we sample the random variables
{ξi}mi=1 and for each realization solve a deterministic PDE using the finite
element method, which gives us the following linear system

(K0 +
m∑
i=1

ξiKi)u = f0. (2.9)

The size of the system (N × N) is much smaller than the stochastic case
(MN×MN). After computing the Monte Carlo solutions {urMC}

q
r=1, where

q is the sample size, use the following two estimators to calculate the mean
value and variance:

E[uMC] =
1

q

q∑
r=1

urMC (2.10)

V[uMC] =
1

q − 1

q∑
r=1

(urMC − E[uMC])2.

Take mesh size h = 2−4. Let m = 3, p = 9, q = 1, 000, 000. In Figure 2 we
plot the MC solutions and compare them with what we get from SFEM.
Compute the relative differences:

‖E[uFE]− E[uMC]‖2
‖E[uMC]‖2

= 3.35× 10−4,

‖Var[uFE]−Var[uMC]‖2
‖Var[uMC]‖2

= 1.17× 10−3. (2.11)

This should validate the correctness of the SFEM solutions.

3 Low-Rank Approximation

3.1 Motivation

In the Galerkin system (1.6), solution u is a long vector

u = [u11, . . . , uN1, . . . , u1M , . . . , uNM]T (3.1)

5

Figure 2: Sample means and variances for MC and SFEM solutions.

and can be written as a matrix

U = mat(u) =

u11 u12 · · · u1M

u21 u22 · · · u2M
...

...
. . .

...
uN1 uN2 · · · uNM

 . (3.2)

Then (1.6) is equivalent to

A(U) = K0UG
T
0 +

m∑
i=1

KiUG
T
i = F. (3.3)

The motivation of low-rank approximation is based on the observation that
the decay of singular values for the solution matrix U is very fast (Figure
3), and thus U can be well approximated by a low-rank matrix.

We approximate U by a low-rank matrix Uk and assume Uk = VW T ,
where V ∈ RN×k,W ∈ RM×k, k � N,M . Now (3.3) can be written into
low-rank format

(K0V)(G0W)T +
m∑
i=1

(KiV)(GiW)T = FlF
T
r . (3.4)

6

Figure 3: Decay of singular values of U . h = 2−6,m = 5, p = 3.

The right-hand side also admits a low-rank decomposition F = FlF
T
r . If we

use V,W as iterates in the multigrid algorithm, both memory and computa-
tional (matrix-vector products) cost can be reduced from NM to (N+M)k.
This low-rank format is also convenient for implementation. For instance,
the A operator can be written as the product of two low-rank matrices:

A(VW T) = (K0V)(G0W)T +

m∑
i=1

(KiV)(GiW)T

= [K0V,K1V, . . . ,KmV][G0W,G1W, . . . , GmW]T . (3.5)

3.2 Algorithm

We use the low-rank format in the multigrid solver and describe the algo-
rithm below. Note that in each iteration the matrix rank grows rapidly (the
A operator increases matrix rank to (m+ 1)k in the worst case), so we need
to truncate the iterates to keep the cost low. In algorithm 2, S = I ⊗ S is
the smoothing operator and

S (VW T) = (SV)(IW)T . (3.6)

The prolongation and restriction operators are implemented in a similar
manner.

7

Algorithm 2: Multigrid with low-rank truncation

initialization: i = 0, R(0) = F in low-rank format, r0 = ‖F‖
while r > tol ∗ r0 & i ≤ maxit do

E(i) = MgIter(A, 0, R(i), level)

U (i+1) = U (i) + E(i), U (i+1) = Tabs(U
(i+1))

R(i+1) = F −A(U (i+1)), R(i+1) = Tabs(R
(i+1))

r = ‖R(i+1)‖, i = i+ 1

function U (1) = MgIter(A,U (0), F, level)
if level == 2 then

solve A(U (1)) = F directly
else

for k steps do

U (0) ← U (0) + S (F −A(U (0))), U (0) = Trel(U
(0))

R̄ = F −A(U (0)), R̄ = Trel(R̄)
R̄ = RR̄
Ē = MgIter(Ā, 0, R̄, level − 1)

U (1) = U (0) + PĒ
for k steps do

U (1) ← U (1) + S (F −A(U (1))), U (1) = Trel(U
(1))

For the low-rank truncation, we use the idea from Kressner and Tobler
[8]. Assume U = VW T , V ∈ RN×k,W ∈ RM×k, and Ũ = T (U) is truncated

to rank k̃ with Ũ = Ṽ W̃ T , Ṽ ∈ RN×k̃, W̃ ∈ RM×k̃. First, compute the QR
factorization for both V and W

V = QVRV ,W = QWRW , so U = QVRVR
T
WQ

T
W . (3.7)

The R matrices are of the size k× k. Next, apply the singular value decom-
position for RVR

T
W :

RVR
T
W = V̂ diag(σ1, . . . , σk)Ŵ T (3.8)

where σ1, . . . , σk are the singular values. Now we can take the first k̃ singular
values using a relative criterion so that√

σ2
k̃+1

+ · · ·+ σ2
k ≤ εrel

√
σ2

1 + · · ·+ σ2
k (3.9)

or an absolute one so that

k̃ = max{k | σk ≥ εabs}. (3.10)

The total cost of this computation is O((M +N + k)k2).

8

3.3 Numerical Results

Consider the same model problem as in section 2.2. The correlation length
b affects the decay of λi in the KL expansion. m and b are chosen so that

m∑
i=1

λi/

∞∑
i=1

λi ≥ 95%. (3.11)

In the following the performance of the multigrid solver with low-rank
truncation is studied. The algorithm stops converging after a few iterations.
We also run the multigrid solver without truncation to reach a comparable
relative residual. The numerical results, i.e. the rank of matrix U , number
of iterations, and elapsed time for solving the Galerkin system, are given in
Table 1-3. All computations are done in MATLAB R2015a on a MacBook
with 1.6 GHz Intel Core i5 and 4 GB SDRAM.

We have observed when the standard deviation σ in the covariance func-
tion (2.6) is smaller, the singular values of the matrix U decay faster, and
it’s more suitable for low-rank approximation. In Figure 4 we plot the best
approximations we can get by taking the largest k singular values of U (lines
with markers). For example, when σ = 0.01, k = 6, the relative residual is
below 10−4. However, we will need to keep the first 40 singular values in the
case where σ = 0.3. This is also shown in the numerical results (Table 1).
As we increase the value of σ, the rank of matrix U and the computing time
also increase. As σ = 0.3, the low-rank truncation even makes the algorithm
slower. This is mainly because of the overhead introduced in the trunca-
tion operator when the rank k is relatively large. In the later numerical
experiments, we take σ = 0.01.

Table 2 shows the performance of the multigrid solver for various mesh
sizes h, or spatial degrees of freedom N . We can see from the 3rd and 5th
columns that multigrid with low-rank truncation uses less time than the
standard multigrid solver. This is especially true when N is large. Also,
the improvement is more significant (see the 4th and 6th columns) if the
problem doesn’t require very high accuracy for the solution.

Table 3 shows the case where we have various degrees of freedomM in the
stochastic space. The multigrid solver with truncation tolerance 10−6 takes
about half the time compared with no truncation. Similarly, the difference
in elapsed time is more significant if we can use a larger tolerance 10−4.

4 Conclusions

From the discussion above, we can conclude that the multigrid solver works
well for the stochastic Galerkin systems and with low-rank approximation
the computational efforts can be further reduced. We proposed the multi-
grid algorithm with low-rank truncation by writing the Galerkin solution

9

Figure 4: Decay of singular values of U and relative residuals for low-rank
approximation. h = 2−6,m = 5, p = 3.

Truncation 10−6 10−4 No truncation

σ = 0.001

Rank 6 2
Iterations 5 3 5 3
Elapsed time 1.46 0.27 5.50 3.34
Rel residual 3.0e-6 6.2e-4 1.2e-6 2.2e-4

σ = 0.01

Rank 13 6
Iterations 5 3 4 3
Elapsed time 2.58 0.73 4.56 3.39
Rel residual 1.1e-5 6.0e-4 1.6e-5 2.2e-4

σ = 0.1

Rank 40 14
Iterations 7 4 4 3
Elapsed time 11.2 2.09 4.58 3.47
Rel residual 1.7e-5 1.1e-3 1.9e-5 2.4e-4

σ = 0.3

Rank 55 35
Iterations 9 6 6 3
Elapsed time 29.1 7.90 6.57 3.30
Rel residual 1.8e-5 1.7e-3 1.4e-5 1.7e-3

Table 1: Performance of multigrid solver with truncation tolerance 10−6,
10−4, and no truncation for various σ. N = 16129,M = 56.

10

Truncation 10−6 10−4 No truncation

Rank 13 6
nc = 7 Iterations 5 3 4 3
N = 16129 Elapsed time 2.58 0.73 4.56 3.39

Rel residual 1.1e-5 6.0e-4 1.6e-5 2.2e-4

Rank 16 6
nc = 8 Iterations 5 3 4 3
N = 65025 Elapsed time 13.20 3.14 18.87 14.08

Rel residual 1.3e-5 5.8e-4 1.8e-5 2.3e-4

Rank 11 5
nc = 9 Iterations 5 3 4 2
N = 261121 Elapsed time 34.20 12.54 80.89 39.64

Rel residual 4.6e-5 1.7e-3 1.9e-5 3.3e-3

Rank 11 2
nc = 10 Iterations 5 2 4 2
N = 1046529 Elapsed time 207.12 21.14 1144.10 572.71

Rel residual 4.5e-5 6.7e-3 1.9e-5 3.3e-3

Table 2: Performance of multigrid solver with truncation tolerance 10−6,
10−4, and no truncation for various N . N = (2nc − 1)2. σ = 0.01,M = 56.

Truncation 10−6 10−4 No truncation

Rank 13 6
m = 5 Iterations 5 3 4 3
M = 56 Elapsed time 2.58 0.73 4.56 3.39

Rel residual 1.1e-5 6.0e-4 1.6e-5 2.2e-4

Rank 24 8
m = 7 Iterations 6 4 5 3
M = 84 Elapsed time 7.56 1.84 14.84 8.77

Rel residual 5.5e-6 4.6e-4 1.2e-6 2.2e-4

Rank 36 10
m = 9 Iterations 7 4 5 3
M = 220 Elapsed time 16.93 4.88 31.90 19.04

Rel residual 4.0e-6 1.7e-4 1.2e-6 2.2e-4

Rank 47 12
m = 11 Iterations 7 5 5 4
M = 364 Elapsed time 31.86 7.21 61.40 49.86

Rel residual 2.4e-6 7.5e-5 1.2e-6 1.6e-5

Table 3: Performance of multigrid solver with truncation tolerance 10−6,
10−4, and no truncation for various M . M = (m+p)!/(m!p!). σ = 0.01, N =
16129, p = 3.

11

into matrix form and introducing low-rank truncation for the iterates. De-
liverables of this project include MATLAB code for

• Multigrid for stochastic Galerkin systems,

• Multigrid with low-rank truncation, and

• Monte Carlo method for the stochastic diffusion equation,

and the presentations and reports.
We have seen from our numerical experiments that the QR factorization

is the most expensive part in the multigrid solver with low-rank truncation.
It takes more than half of the total time used for solving the linear system.
It will be beneficial if this can be done more efficiently. The low-rank trun-
cation we used is based on singular values. It’s not clear if one can take
advantage of the grid hierarchy and propose a better truncation strategy.
This will be some future work that is worth looking into.

σ 0.01 0.1 0.3

QR 51.2% 67.7% 73.2%

SVD 3.4% 2.2% 2.2%

Table 4: Time consumption of QR and SVD in Algorithm 2. N=16129,
M=56.

References

[1] Ghanem, R. G. & Spanos, P. D. (2003). Stochastic Finite Elements: A
Spectral Approach. New York: Dover Publications.

[2] Elman, H. & Furnival D. (2007). Solving the stochastic steady-state dif-
fusion problem using multigrid. IMA Journal of Numerical Analysis, 27,
675–688.

[3] Loève, M. (1960). Probability Theory. New York: Van Nostrand.

[4] Xiu, D. & Karniadakis G. M. (2003). Modeling uncertainty in flow sim-
ulations via generalized polynomial chaos. Journal of Computational
Physics, 187, 137–167.

[5] Powell, C. & Elman H. (2009). Block-diagonal preconditioning for spec-
tral stochastic finite-element systems. IMA Journal of Numerical Anal-
ysis 29, 350–375.

[6] Silvester, D., Elman, H. & Ramage, A. Incompressible Flow and Iterative
Solver Software,
https://www.cs.umd.edu/users/elman/ifiss3.4.html

12

[7] Lord, G. J., Powell, C. E., & Shardlow, T. (2014). An Introduction to
Computational Stochastic PDEs. No. 50. Cambridge University Press.

[8] Kressner D. & Tobler C. (2011). Low-rank tensor Krylov subspace meth-
ods for parametrized linear systems. SIAM Journal of Matrix Analysis
and Applications 32.4, 1288–1316.

13

