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Problem Definition

Let u(x , t;µ) be the exact solution to the following parameter-dependent
PDE problem:

ut +N [u;µ] = 0,

where µ denote parameters. Let f (u(x , t;µ)) := ut +N [u;µ].

We would like to obtain approximations unn(x , t;µ) produced by trained

neural networks at discrete points {(xtest , ttest)(j)}Ngrid

j=1 and set of

parameters {µ(i)
test}Ntest

i=1 .
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Project Definition

Goal

Studying existing machine learning methods that approximate solutions to
parameter-dependent PDEs.

Existing Methods:

Non-intrusive reduced order modeling of nonlinear problems using
neural networks1

Physics-Informed Neural Networks2

1J. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of nonlinear problems using neural networks,” Journal
of Computational Physics, vol. 363, pp. 55 –78, 2018, issn: 0021-9991.

2M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378,
pp. 686 –707, 2019, issn: 0021-9991.
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POD-NN RB [1]

Procedure:
1 sample Ntrain number of parameters {µ(j)

train}
Ntrain
j=1 ;

2 compute a collection of snapshots {uh(µ
(j)
train)}Ntrain

j=1 at

{(xtest , ttest)(j)}Ngrid

j=1 using traditional solvers such as FDM;
3 using proper orthogonal decomposition (POD) Galerkin Reduced

Basis (RB) method, create change of basis matrix V from left singular
vectors of snapshots. Need to choose dimension of reduced basis L.

4 produce sample outputs {V T
uh(µ

(j)
train)}Ntrain

j=1 and train neural network
with loss function

L(θ) =
1

2Ntrain

Ntrain∑
j=1

∥∥∥unn(µ
(j)
train;θ)− V T

uh(µ
(j)
train)

∥∥∥2

2
,

where unn(µ;θ) is output of the neural network given parameter µ and
weights θ.

5 produce approximations with parameter set {µ(i)
test}Ntest

i=1 as

{Vunn(µ
(i)
test ;θ)}Ntest

i=1 .
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PINN [2]

Procedure:

1 sample over initial and boundary training data as
{(xIB , tIB ,µIB , uIB)(j)}Ni

j=1 and points in the domain as

{(xF , tF ,µF )(z)}Nf
z=1.

2 train neural network with the following loss function:

L(θ) =
1

2Ni

Ni∑
j=1

(unn(x
(j)
IB , t

(j)
IB ,µ

(j)
IB ;θ)− u

(j)
IB )2

+
1

2Nf

Nf∑
z=1

(f (unn(x
(z)
F , t

(z)
F ,µ

(z)
F ;θ)))2

3 produce approximations at discrete points {(xtest , ttest)(j)}Ngrid

j=1 and

parameter set {µ(i)
test}Ntest

i=1 as {{unn(x
(j)
test , t

(j)
test ,µ

(i)
test ;θ)}Ngrid

j=1 }
Ntest
i=1 .
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What We Set Out to Do

Original Goal

Test the influence of following factors on the performance of POD-NN RB
and PINN on parameter-dependent PDE problems:

network depth

network width

network structure

number of samples

type of problems
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Good News

We used an unsteady Burger’s
equation and a nonlinear diffusion
equation as our test problems. We
found:

Network depth, width, network
structure do not influence the
performance of POD-NN RB
significantly;

POD-NN RB performs
similarly if sufficient samples
are given.

Figure: This figure shows that the
network structure (Dense Neural
Network or ResNet) does not influence
the performance of POD-NN RB on
the Burger’s equation. The network
were trained with Levenberg-
Marquardt (LM), as were all the
following results.
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Problems Encountered

Issue 1:

PINN unable to produce good approximation results as the
parameters approach their asymptotes in a simple 1D
Convection-Diffusion equation problem:

−ξu′′ + u
′

= 0 for x ∈ (0, 1)

u(0) = 1− e−1/ε

u(1) = 0

(1)

Here, the parameter is ε = 10a, where a is chosen from a uniform
distribution of [−4, 0].
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Issue 1

(a) (b)

Figure: 2a shows the approximations obtained by PINN on Equation 1 with a
DNN of different depth. 2b shows the same figure zoomed in on x ∈ [0.96, 1].

Jiajing Guan (UMD) AMSC664 Final Presentation May 4, 2021 10 / 55



Problems Encountered

Issue 2:
Unpredictable behavior of PINN

Number of hidden layers Final loss value Runtime Relative Error
2 7.036142e-03 567.494288 0.12503777
3 702.5287 1022.886320 7.454208
4 665.6986 2154.073805 5.666144
5 1.140639e-02 1752.942492 0.14456806

Table: This table shows the effects of depth of a DNN on PINN solving a
nonlinear diffusion equation. The networks were trained using LM.

=⇒ narrow down the scope of the problem and understand the
performance of PINN on parameter-dependent PDE problems with
DNN.
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Convection-Diffusion Equation

Without loss of generality, one-dimension Convection-Diffusion equations
can be modeled as3:

Lu := −εu′′ + b(x)u′ + c(x)u = f (x), for x ∈ (0, 1),

u(0) = u(1) = 0, with c(x) ≥ 0 for x ∈ [0, 1].
(2)

where u′′ corresponds to diffusion, u′ represents convection, u is a source
term and f is a driving term.

Singularly Perturbed

Differential equations (ordinary or partial) that depend on a small positive
parameter ε and whose solutions (or their derivatives) approach a
discontinuous limit as ε approaches zero. Such problems are said to be
singularly perturbed, where ε is a perturbation parameter.

3H.-G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly
perturbed differential equations: convection-diffusion-reaction and flow problems.
Springer Science & Business Media, 2008, vol. 24.

Jiajing Guan (UMD) AMSC664 Final Presentation May 4, 2021 12 / 55



Original Problem

−εu′′ + u′ = 1, x ∈ (0, 1) (3)

with Dirichlet boundary conditions
u(0) = u(1) = 0 and ε ∈ [10−4, 1].
The exact solution to Equation (3)
is:

uex(x) = x−
exp(−1−x

ε )− exp(−1
ε )

1− exp(−1
ε )

(4)
Figure: This figure shows the exact
solution uex(x) to Equation (3) for
various ε values.
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Results without Transformation

Let the residual function be f (u) = −εu′′+ u′− 1. How good of a solution
can we get?

(a) (b)

Figure: 4a shows the approximation done by the neural net of different
configurations compared to the exact solution. 4b is the same figure to their left,
zoomed in on x ∈ [0.96, 1]
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Transformed Problem

The linear transformation is ξ = 1−x
ε . Suppose v(ξ) = u(x). With this

change of variable, the original PDE problem becomes:

−1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (0,

1

ε
) (5)

with Dirichlet boundary conditions v(0) = v(1/ε) = 0. The exact solution
to Equation (5) is:

vex(ξ) = 1− εξ −
exp(−ξ)− exp(−1

ε )

1− exp(−1
ε )

(6)
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Transformed Problem Result

Let the residual function be f (v) = (d
2v

dξ2 + dv
dξ + ε)/ε.

(a) (b)

Figure: 5a shows the approximation done by the neural net (with 3 hidden layers,
32 nodes per layer) compared to the exact solution with Nf = 1000 and
Nb = 400. 5b is the same figure to their left, zoomed in on x ∈ [0.98, 1]
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Visualization of Optimization Trajectory

1 Store the weights at each training epoch i , denoted as θi ;

2 Suppose the last epoch is N. Construct the matrix
[θ0 − θN ; θ1 − θN ; . . . ; θN−1 − θN ] and apply PCA to this matrix;

3 Select the two vectors corresponding to the two largest singular values
and treat them as d1 and d2;

4 Compute the projection of θi − θN , for i = 0, . . . ,N, onto the two
directions and store them as the trajectory points of training;

5 Create a mesh that include the min and max of the trajectory points
and visualize the loss contour with trajectory points plotted.
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Effects of Residual Function - Trajectory

Problems are too complicated to obtain useful information from the
loss landscape.

(a) (b)

Figure: 6a shows the loss landscape created with PCA selected directions of the
original problem and its optimization trajectory. 6b shows the same graph for the
transformed problem.
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A General Transformation

One question one might ask is that: How essential is the boundary layer
location in the transformation? Let ξ = a−x

ε , for a ∈ [0, 1]. Then the
original problem becomes:

−1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (

a− 1

ε
,
a

ε
) (7)

with Dirichlet boundary conditions v(a−1
ε ) = v(aε ) = 0. The exact solution

to Equation (7) is:

vex(ξ) = a− εξ −
exp(−ξ − 1−a

ε )− exp(−1
ε )

1− exp(−1
ε )

(8)
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General Transformation Results

Figure: This figure shows the approximation done by the neural net with
transformation ξ = (a− x)/ε, for a = 0, 0.25, 0.5, 0.75, 1. All approximations are
generated from a DNN with 3 hidden layers, 32 nodes per layer. They are trained
with 1000 residual samples a
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Sample Distribution

Figure: This figure shows the normalized distribution of samples of
transformations ξ = (a− x)/ε, for a = 0, 0.25, 0.5, 0.75, 1. Here, both ξ and ε are
normalized using the formula InputNormalized = Input−Lower Bound

Upper Bound−Lower Bound
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Change of Residual During Training: a = 1

(a) (b)

Figure: 9a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 0, i.e. the

initialization of weights. 9b shows the same graph in (x , ε) space. It shows the

contours of the residual, du
dx and d2u

dx2 at epoch 0.
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Change of Residual During Training: a = 1

(a) (b)

Figure: 10a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 10. 10b shows the

same graph in (x , ε) space. It shows the contours of the residual, du
dx and d2u

dx2 at
epoch 10.
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Change of Residual During Training: a = 1

(a) (b)

Figure: 11b shows the contour of residual value (upper left), the contour of du
dx

(upper right) and the contour of d2u
dx2 (bottom left) at epoch 500. 11a shows the

3D plots of the contours to illustrate details missing from the contour plots.

Jiajing Guan (UMD) AMSC664 Final Presentation May 4, 2021 24 / 55



Change of Residual During Training: a = 0.5

(a) (b)

Figure: 12a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 0, i.e. the

initialization of weights. 12b shows the same graph in (x , ε) space. It shows the

contours of the residual, du
dx and d2u

dx2 at epoch 0.
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Change of Residual During Training: a = 0.5

(a) (b)

Figure: 13a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 10. 13b shows the

same graph in (x , ε) space. It shows the contours of the residual, du
dx and d2u

dx2 at
epoch 10.
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Change of Residual During Training: a = 0.5

(a) (b)

Figure: 14b shows the contour of residual value (upper left), the contour of du
dx

(upper right) and the contour of d2u
dx2 (bottom left) at epoch 500. 14a shows the

3D plots of the contours to illustrate details missing from the contour plots.
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Change of Residual During Training: a = 0

(a) (b)

Figure: 15a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 0, i.e. the

initialization of weights. 15b shows the same graph in (x , ε) space. It shows the

contours of the residual, du
dx and d2u

dx2 at epoch 0.
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Change of Residual During Training: a = 0

(a) (b)

Figure: 16a shows the contour of residual value (upper left), the contour of dv
dξ

(upper right) and the contour of d2v
dξ2 (bottom left) at epoch 10. 16b shows the

same graph in (x , ε) space. It shows the contours of the residual, du
dx and d2u

dx2 at
epoch 10.
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Change of Residual During Training: a = 0

(a)
(b)

Figure: 17b shows the contour of residual value (upper left), the contour of du
dx

(upper right) and the contour of d2u
dx2 (bottom left) at epoch 500. 17a shows the

3D plots of the contours to illustrate details missing from the contour plots.
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Explanation

Figure: This figure shows the graph of tanh(x).

Derivative of tanh x is the largest when x is around 0 =⇒ one wants to
ensure that the boundary layer is transformed to have input values around
0.
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Revisit the Old Problem

−ξu′′ + u
′

= 0 for x ∈ (0, 1)

u(0) = 1− e−1/ε

u(1) = 0

(9)

Here, the parameter is ε = 10a,
where a is chosen from a uniform
distribution of [−4, 0]. We could
compute the exact analytical
solution to be u(x) = 1− e(x−1)/ε.

Figure: This figure shows how solutions
change as ε increases from 10−4 to 1.
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Transformed Problem

Suppose v(ξ) = u(x). With ξ = (1− x)/ε, the original PDE problem
becomes:

−1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 0 for ξ ∈ (0,

1

ε
)

v(0) = 0

v(1/ε) = 1− e−1/ε

(10)

The exact solution is:
vex(ξ) = 1− exp(−ξ) (11)
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Transformed Results

(a) (b)

Figure: 20a shows the approximation produced from the original problem, the
transformed problem and the exact solution side-by-side. 20b shows the same
figure zoomed in on x ∈ [0.96, 1]. Results above are trained using a DNN of 3
hidden layers with 32 nodes per layer, 1000 residual samples and 400 boundary
samples.
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2D Convection-Diffusion Equation

Now we will test if our theory holds for 2D problems. We grabbed this
problem from4.

− ε(uxx + uyy ) + uy = 0, (x , y) ∈ (−1, 1)× (−1, 1)

u(−1, y) ≈ −1, u(1, y) ≈ 1

u(x ,−1) = x , u(x , 1) = 0

(12)

Here ε ∈ [10−4, 1]. The exact solution is:

uex(x , y) = x

(
1− exp((y − 1)/ε)

1− exp(−2/ε)

)
(13)

4H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and
Scie, 2014.
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Exact Solution

Figure: This figure shows the exact solution uex(x) to the 2D Convection-
Diffusion equation for ε = 1/200.
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Results without Transformation

(a) (b) (c)

Figure: 22a shows the exact solution when ε = 1e − 4. 22b shows the
approximation produced by PINN with a DNN of 3 hidden layers, 32 nodes per
layer, 2000 residual samples and 400 boundary samples. 22c shows the contour
plot of the absolute error between the exact solution and the approximation.
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Transformed Problem

Let v(ξ, η) = u(x , y). Suppose ξ = x and η = (1− y)/ε, we then get:

− εvξξ − (vηη + vη)/ε = 0, (ξ, η) ∈ (−1, 1)× (0, 2/ε)

v(−1, η) ≈ −1, v(1, η) ≈ 1

v(ξ, 2/ε) = ξ, v(ξ, 0) = 0

Here ε ∈ [10−4, 1]. The exact solution is:

vex(ξ, η) = ξ

(
1− exp(−η)

1− exp(−2/ε)

)
(14)
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Results with Transformation

(a) (b) (c)

Figure: 23a shows the exact solution when ε = 1e − 4. 23b shows the
approximation produced by PINN with a DNN of 3 hidden layers, 32 nodes per
layer, 2000 residual samples and 400 boundary samples on the transformed
problem. 23c shows the contour plot of the absolute error between the exact
solution and the approximation.
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Can we do better?

Now increase the number of residual samples from 2000 to 8000:

(a) (b) (c)

Figure: 24a shows the exact solution when ε = 1e − 4. 24b shows the
approximation produced by PINN with a DNN of 3 hidden layers, 32 nodes per
layer, 8000 residual samples and 400 boundary samples on the transformed
problem. 24c shows the contour plot of the absolute error between the exact
solution and the approximation.
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1D Convection-Diffusion Equation: Neumann Boundary

What if we have zero-flux boundary condition at x = 1? We then have the
following governing equation:

−εu′′ + u′ = 1, x ∈ (0, 1) (15)

with Dirichlet boundary condition u(0) = 0, Neumann boundary condition
u′(1) = 0 and ε ∈ [10−4, 1]. The exact solution to Equation (15) is:

uex(x) = x − ε[exp(−(1− x)/ε)− exp(−1/ε)]. (16)
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Characteristics of the Exact Solution

(a) (b)

Figure: 25a shows how solutions to the Neumann boundary problem change as ε
increases from 10−4 to 1. 25b shows the same figure zoomed in on
x ∈ [0.9985, 1].
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Transformed Problem

Let v(ξ) = u(x). Suppose ξ = (1− x)/ε. Then we have:

−1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (0,

1

ε
) (17)

with Dirichlet boundary condition v(1/ε) = 0 and Neumann boundary
condition dv

εdξ (0) = 0. The exact solution is:

vex(ξ) = 1− εξ − ε[exp(−ξ)− exp(−1/ε)] (18)

Jiajing Guan (UMD) AMSC664 Final Presentation May 4, 2021 43 / 55



Results

(a) (b)

Figure: 26a compares the approximation obtained using the original problem (ξ = x), using the transformed problem

(ξ = (1− x)/ε), and the exact solution. 26b shows the same figure zoomed in on x ∈ [0.98, 1]. Here NB= dv
dξ

. The different

“NB” options denotes different weightings of the Neumann boundary during training. All approximations results are produced
from a DNN with 3 hidden layers, 32 nodes per layer, 1000 residual samples, 200 Dirichlet boundary and 200 Neumann
boundary samples.
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Possible Explanation

Why would Neumann boundary condition being dv√
εdξ

obtain the best

result?

First, one needs to recognize that the width of the boundary layer at x = 1
is of O(

√
ε)[4], instead of O(ε) like the Dirichlet boundaries. Thus, the

stretching factor at the Neumann boundary should be
√
ε, instead of ε.
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Future Directions

Study effects of different factors on PINN using the transformed
problems to ensure the approximations are accurate;

Study singularly perturbed problems with more than one boundary
layers;

Study singularly perturbed problems with more than one perturbation
parameter;

Adjust PINN automatically without knowing the characteristics of the
problem.
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Test Problems

Unsteady Burger’s Equations
ut + uux = ξuxx , for x ∈ [−1, 1], t ∈ [0, 1]

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0

,

where ξ = 10p, where p is sampled on an uniform distribution of
[−3,−2].
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Burgers’ Equation Solutions

Figure: This figure shows the solution
to the inviscous Burgers’ equation
when ξ = 0.0010233

Figure: This figure shows the solution
to the inviscous Burgers’ equation
when ξ = 0.0097724.
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Test Problems

Nonlinear Diffusion Equation{
−(exp(u(x ; ξ))u(x ; ξ)′)′ = s(x ; ξ), for x ∈ (−π

2 ,
π
2 )

u(±π/2; ξ) = ξ2 sin(2± ξ1π
2 )exp(± ξ3π

2 )

where ξ = (ξ1, ξ2, ξ3) are sampled on uniform distribution of
[1, 3]× [1, 3]× [−0.5, 0.5] and

s(x ; ξ) =− ξ2exp(ξ2 sin(2 + ξ1x)exp(ξ3x) + ξ3x)

∗ [2ξ1ξ3 cos(2 + ξ1x) + (ξ2
3 − ξ2

1) sin(2 + ξ1x)

+ exp(ξ3x)[ξ1 cos(2 + ξ1x) + ξ3 sin(2 + ξ1x)]2]

Here, s(x ; ξ) is calculated such that the exact solution is

uex(x ; ξ) = ξ2 sin(2 + ξ1x)exp(ξ3x)
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Diffusion Equation Solutions
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Importance of Stretching Factor

What if for the 1D Convection-Diffusion equation with Dirichlet problem,
we have ξ = 1− x? Then the governing equation will become the
following equation:

−εd
2v

dξ2
− dv

dξ
= 1, v ∈ (0, 1/ε) (19)

with Dirichlet boundary conditions v(0) = v(1/ε) = 0 and ε ∈ [10−4, 1].
The exact solution to Equation (19) is:

vex(ξ) = 1− ξ −
exp(−−ξε )− exp(−1

ε )

1− exp(−1
ε )

(20)
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Results

(a) (b)

Figure: 29a compares the approximation obtained using the original problem (ξ = x), using the transformed problem
(ξ = (1− x)/ε, ξ = 1− x), and the exact solution. 29b shows the same figure zoomed in on x ∈ [0.96, 1]. All
approximations results are produced from a DNN with 3 hidden layers, 32 nodes per layer, 1000 residual samples, 400 Dirichlet
boundary samples.

Jiajing Guan (UMD) AMSC664 Final Presentation May 4, 2021 55 / 55


	Problem Formulation
	Method
	From the Beginning
	1D Convection-Diffusion Equation with Dirichlet Boundaries
	Different Transformations
	2D Convection-Diffusion Equation with Dirichlet Boundaries
	1D Convection-Diffusion Equation with a Neumann Boundary
	Future Directions
	References
	Appendix

