
Project Proposal

Jiajing Guan
Advisor: Howard Elman

University of Maryland

September 29, 2020

Jiajing Guan (UMD) Project Proposal September 29, 2020 1 / 31



Overview

1 Problem Formulation

2 Method

3 Sample Problem

4 Specific Goals

5 Starting Point

6 Milestones

Jiajing Guan (UMD) Project Proposal September 29, 2020 2 / 31



Problem of Interests

Motivation

Simulations of models defined as parameter-dependent PDEs.

We are interested in obtaining solutions u to the following problem many
times with different µ:

ut +N [u;µ] = 0,

where µ denotes parameters and N denotes a nonlinear differential
operator.

Jiajing Guan (UMD) Project Proposal September 29, 2020 3 / 31



Background

When explicit solutions are not readily available, we need to look for a
surrogate function û(x , t;µ) that approximate solution u(x , t;µ).

This leads to two phases of producing solutions:

1 Offline: train/fit the surrogate function û(x , t;µ).

2 Online: use û(x , t;µ) to produce approximations to u(x , t;µ).

Jiajing Guan (UMD) Project Proposal September 29, 2020 4 / 31



Background

Traditional approximation methods include:

Finite Difference Method

Finite Element Method

Multigrid Methods

etc

Even though these methods don’t require an offline training process, these
numerical schemes needed to be run for every set of parameters during
online phase, i.e. traditional methods become expensive in this setting.

Jiajing Guan (UMD) Project Proposal September 29, 2020 5 / 31



Background

Traditional approximation methods include:

Finite Difference Method

Finite Element Method

Multigrid Methods

etc

Even though these methods don’t require an offline training process, these
numerical schemes needed to be run for every set of parameters during
online phase, i.e. traditional methods become expensive in this setting.

=⇒ use neural networks to reduce the cost of computation.

Jiajing Guan (UMD) Project Proposal September 29, 2020 6 / 31



Comparison

Comparison of the Online Phase

Traditional Methods Neural Networks

Pro
well-studied accuracy of
solution

speedy performance

Con
need to run the numerical
scheme for each choice of
parameters

solutions limited by grid
positions

not thoroughly studied,
unpredictable performance

limited accuracy

Jiajing Guan (UMD) Project Proposal September 29, 2020 7 / 31



Problem Definition

Let u(x , t;µ) be the exact solution to the following parameter-dependent
PDE problem:

ut +N [u;µ] = 0,

where µ denote parameters. Let f (u(x , t;µ)) := ut +N [u;µ].

We would like to obtain approximations unn(x , t;µ) produced by trained

neural networks at discrete points {(xtest , ttest)(j)}Ngrid

j=1 and set of

parameters {µ(i)
test}Ntest

i=1 .

Jiajing Guan (UMD) Project Proposal September 29, 2020 8 / 31



Project Definition

Goal

Studying existing machine learning methods that approximate solutions to
parameter-dependent PDEs.

Existing Methods:

Non-intrusive reduced order modeling of nonlinear problems using
neural networks1

Physics-Informed Neural Networks2

1J. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of nonlinear problems using neural networks,” Journal
of Computational Physics, vol. 363, pp. 55 –78, 2018, issn: 0021-9991.

2M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378,
pp. 686 –707, 2019, issn: 0021-9991.

Jiajing Guan (UMD) Project Proposal September 29, 2020 9 / 31



POD-NN RB [1]

Procedure:
1 sample Ntrain number of parameters {µ(j)

train}
Ntrain
j=1 ;

2 compute a collection of snapshots {uh(µ
(j)
train)}Ntrain

j=1 at

{(xtest , ttest)(j)}Ngrid

j=1 using traditional solvers such as FDM;
3 using proper orthogonal decomposition (POD) Galerkin Reduced

Basis (RB) method, create change of basis matrix V from left singular
vectors of snapshots. Need to choose dimension of reduced basis L.

4 produce sample outputs {V T
uh(µ

(j)
train)}Ntrain

j=1 and train neural network
with loss function

L(θ) =
1

2Ntrain

Ntrain∑
j=1

∥∥∥unn(µ
(j)
train;θ)− V T

uh(µ
(j)
train)

∥∥∥2

2
,

where unn(µ;θ) is output of the neural network given parameter µ and
weights θ.

5 produce approximations with parameter set {µ(i)
test}Ntest

i=1 as

{Vunn(µ
(i)
test ;θ)}Ntest

i=1 .

Jiajing Guan (UMD) Project Proposal September 29, 2020 10 / 31



PINN [2]

Procedure:

1 sample over initial and boundary training data as
{(xIB , tIB ,µIB , uIB)(j)}Ni

j=1 and points in the domain as

{(xF , tF ,µF )(z)}Nf
z=1.

2 train neural network with the following loss function:

L(θ) =
1

2Ni

Ni∑
j=1

(unn(x
(j)
IB , t

(j)
IB ,µ

(j)
IB ;θ)− u

(j)
IB )2

+
1

2Nf

Nf∑
z=1

(f (unn(x
(z)
F , t

(z)
F ,µ

(z)
F ;θ)))2

3 produce approximations at discrete points {(xtest , ttest)(j)}Ngrid

j=1 and

parameter set {µ(i)
test}Ntest

i=1 as {{unn(x
(j)
test , t

(j)
test ,µ

(i)
test ;θ)}Ngrid

j=1 }
Ntest
i=1 .

Jiajing Guan (UMD) Project Proposal September 29, 2020 11 / 31



Error Evaluation

In order to quantitatively evaluate the performance of each method, we
use the following metric:

For POD-NN RB:

Erel = 1
Ntest

∑Ntest
i=1

∥∥∥Vunn(µ
(i)
test ;θ)−u∗(µ(i)

test)
∥∥∥

2∥∥∥u∗(µ(i)
test)

∥∥∥
2

,

where u
∗(µ) is the true solution with parameter µ evaluated at

{(xtest , ttest)(j)}Ngrid

j=1 .

For PINN:

Erel = 1
Ntest

∑Ntest
i=1

√∑Ngrid
j=1 (unn(x

(j)
test ,t

(j)
test ,µ

(i)
test ;θ)−u∗(x (j)

test ,t
(j)
test ,µ

(i)
test))2√∑Ngrid

j=1 (u∗(x
(j)
test ,t

(j)
test ,µ

(i)
test))2

where u∗(x , t,µ) is the true solution evaluated at (x , t) with
parameter µ.

Jiajing Guan (UMD) Project Proposal September 29, 2020 12 / 31



Comparison between two methods

Comparison between POD-NN RB and PINN

POD-NN RB PINN

Benefits
Smaller dimension of
sample inputs

Simpler loss function

No need to produce
snapshots

Approximations can be
done on flexible (x , t)

Jiajing Guan (UMD) Project Proposal September 29, 2020 13 / 31



Sample Problem

Suppose we are approximating the solutions to the following problem:

−ξu′′ + u
′

= 0 for x ∈ (0, 1)

u(0) = 1− e−1/ξ

u(1) = 0

Here, the parameter is ξ = 10a, where a is chosen from a uniform
distribution of [−4, 0].

We could compute the exact analytical solution to be u(x) = 1− e(x−1)/ξ.

Jiajing Guan (UMD) Project Proposal September 29, 2020 14 / 31



Solutions to Sample Problem for Various ξ

Figure: This figure shows how solutions change as ξ increases from 10−4 to 1.

Jiajing Guan (UMD) Project Proposal September 29, 2020 15 / 31



Approximation Results

Figure: This figure shows approximations done by POD-NN RB and PINN when
ξ ≈ 0.3.

Jiajing Guan (UMD) Project Proposal September 29, 2020 16 / 31



Approximation Results

Figure: This figure shows approximations done by POD-NN RB and PINN when
ξ ≈ 10−4.

Jiajing Guan (UMD) Project Proposal September 29, 2020 17 / 31



Approximation Details

Figure: This figure shows the details of
the approximation near x = 1 when
ξ ≈ 10−4.

Figure: This figure shows the finite
difference method approximations
along with the true solution.

Jiajing Guan (UMD) Project Proposal September 29, 2020 18 / 31



Setup Comparison

POD-NN RB (L = 25) PINN

Network 2 hidden layers with 32
neurons per layer

2 hidden layers with 32
neurons per layer

Optimization 234 epochs of
Levenberg-Marquardt

1000 epochs of
Levenberg-Marquardt

Training Time (s) ≈ 120 ≈ 20000

Relative Error 1.005× 10−3 3.958× 10−3

Jiajing Guan (UMD) Project Proposal September 29, 2020 19 / 31



Gaps

What hasn’t been established:

POD-NN RB:

performance of deeper networks
performance of ResNet and other network structures

PINN:

performance of ResNet and other network structures
application on parameter-dependent PDEs
performance of Levenberg-Marquardt optimization

Jiajing Guan (UMD) Project Proposal September 29, 2020 20 / 31



Specific Goals

Investigate the impact of different factors on performance. The factors
include but are not limited to:

Network Structures

Network Setups

Sampling Methods

Optimization Methods

Types of Problems

Jiajing Guan (UMD) Project Proposal September 29, 2020 21 / 31



Details

Network Structures:

Dense Neural Networks

ResNet

Recurrent Networks (LSTM)

Network Setups:

Number of Hidden Layers

Number of Neurons per Layer

Sampling Methods:

Latin-Hypercube

Domain-Specific

Jiajing Guan (UMD) Project Proposal September 29, 2020 22 / 31



Details

Optimization Methods:

Gradient-Based Methods (SGD)3

Quasi-Newton Methods (L-BFGS)4

Levenberg-Marquardt

Types of Problems:

Unsteady Burger’s Equations

Nonlinear Diffusion Equation

Convection-Diffusion Equations

3L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” SIAM Review, vol. 60,
no. 2, pp. 223–311, 2018.

4M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt algorithm,” IEEE Transactions on
Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

Jiajing Guan (UMD) Project Proposal September 29, 2020 23 / 31



Type of Problems in Details

Unsteady Burger’s Equations
ut + uux = νuxx , for x ∈ [−1, 1], t ∈ [0, 1]

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0

,

where ν = 10p, where p is sampled on an uniform distribution of
[−4, 0].

Jiajing Guan (UMD) Project Proposal September 29, 2020 24 / 31



Type of Problems in Details

Nonlinear Diffusion Equation{
−(exp(u(x ;µ))u(x ;µ)′)′ = s(x ;µ), for x ∈ (−π

2 ,
π
2 )

u(±π/2;µ) = µ2 sin(2± µ1π
2 )exp(±µ3π

2 )

where µ = (µ1, µ2, µ3) are sampled on uniform distribution of
[1, 3]× [1, 3]× [−0.5, 0.5] and

s(x ;µ) =− µ2exp(µ2 sin(2 + µ1x)exp(µ3x) + µ3x)

∗ [2µ1µ3 cos(2 + µ1x) + (µ2
3 − µ2

1) sin(2 + µ1x)

+ exp(µ3x)[µ1 cos(2 + µ1x) + µ3 sin(2 + µ1x)]2]

Here, s(x ;µ) is calculated such that the exact solution is

uex(x ;µ) = µ2 sin(2 + µ1x)exp(µ3x)

Jiajing Guan (UMD) Project Proposal September 29, 2020 25 / 31



Type of Problems in Details

Convection-Diffusion Equations

−ξ0∆u + [(ξ1 ~ω1 + ξ2 ~ω2)/(ξ1 + ξ2)] · ∇u = 0 for (x , y) ∈ (−1, 1)× (−1, 1)

u(−1, y) = ξ1(1− ((1 + y)/2))3/(ξ1 + ξ2) for y ∈ [−1, 1]

u(1, y) = (ξ1(1− ((1 + y)/2))2 + ξ2)/(ξ1 + ξ2) for y ∈ [−1, 1]

u(x ,−1) = ξ1/(ξ1 + ξ2) for x ∈ (−1, 1)

un(x , 1) = 0 for x ∈ (−1, 1)

where ~ω1 = (0, 1 + (x+1)2

4 ), ~ω2 = (2y(1− x2),−2x(1− y2)).

Parameters ξ1 and ξ2 are sampled on an uniform distribution of [0, 1],
ξ0 = 10p, where p is sampled on an uniform distribution of [−4, 0].

Jiajing Guan (UMD) Project Proposal September 29, 2020 26 / 31



Starting Point

Done:

Implementation of dense neural network

Implementation of Levenberg-Marquardt

Implementation of problems

include functions that produce discrete approximations obtained by
FDM

To do:

Implement and test ResNet and recurrent networks

Implement and test different optimization methods (SGD, L-BFGS)

Investigate better sampling method

All implementation are done on Python3, utilizing Tensorflow.

Jiajing Guan (UMD) Project Proposal September 29, 2020 27 / 31



Validation

We will have two approaches to validate our implementations:

Reproduce results from [1] and [2].

Using exact solution of simple problems to validate the
implementation.

When exact solution is not available, compare results with
approximation obtained by traditional approaches (FDM, FEM, etc).

Jiajing Guan (UMD) Project Proposal September 29, 2020 28 / 31



Deliverables

Implementation of POD-NN RB and PINN

Implementation of dense net, ResNet, LSTM

Implementation of various optimization methods

Report comparing performance of the different frameworks above

Jiajing Guan (UMD) Project Proposal September 29, 2020 29 / 31



Milestones

End of September: ResNet and optimization methods implemented
and network setup comparisons done.

End of October: Recurrent networks implemented and starting
comparing the different network structures.

End of November: More effective sampling method found and figuring
out minimal setup to achieve satisfatory performance on problems.

Jiajing Guan (UMD) Project Proposal September 29, 2020 30 / 31



References

[1] J. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of nonlinear problems
using neural networks,” Journal of Computational Physics, vol. 363, pp. 55 –78, 2018,
issn: 0021-9991.

[2] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686 –707, 2019,
issn: 0021-9991.

[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[4] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt
algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

Jiajing Guan (UMD) Project Proposal September 29, 2020 31 / 31


	Problem Formulation
	Method
	Sample Problem
	Specific Goals
	Starting Point
	Milestones
	References

