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ABSTRACT

In this report, we examined the performance of machine learning algorithms on approximating
solutions of parameter-dependent partial differential equations. We investigated two algorithms:
Proper Orthogonal Decomposition Neural Network Reduced Basis method (POD-NN RB) and
Physics-Informed Neural Networks (PINN). We tested the effects of network depth, network structure
and number of training samples on the accuracy of approximations produced by POD-NN RB, for an
unsteady Burger’s equation and a nonlinear diffusion equation. We then found the inherent inability
of PINN in approximating singularly perturbed problems, such as convection-diffusion equations. We
utilized techniques used in singular perturbation theory to improve the accuracy of approximations
produced by PINN drastically.

1 Background and Significance

Parameter-dependent partial differential equations (PDEs) are widely used as mathematical models in engineering and
other applied science fields. A general form of such PDEs is shown below:

ut +N [u; ε] = 0 (1)

where N denotes a possibly nonlinear differential operator and ε denotes a set of parameters. In applications, the
parameters carry information about the physical model, such as material and environment properties. When using these
models to perform parameter estimation Brown et al. [1993] or uncertainty quantification Le Maître and Knio [2010],
real-time evaluations of the solution with different configurations of ε are requested numerous times. How to evaluate
the solution under different ε settings in a speedy manner becomes a central topic for researchers in many fields.

When an explicit form of the solution to the defined model is available, we don’t need to concern ourselves with
employing numerical solvers. But in most cases, the models are far too complicated to find explicit solutions. Thus, a
surrogate function û that approximates the solution u would be needed. The idea of finding a surrogate function and
making real-time evaluations naturally separates the process of generating approximations to the solution into two
phases: an offline phase and and an online phase.

In the offline phase, we need to find, or train, a surrogate function û to produce satisfactory approximations to the
solution under a limited set of configurations. In the online phase, we will use the surrogate function û found in the
offline phase to produce many approximations for different parameters. Naturally, we would like the offline phase to
find a generalizable surrogate function whose output is close to the true solution. We do not mind the time taken in the
offline phase to be long. But a good surrogate function found should evaluate approximations quickly in the online
phase.

A naive surrogate function would be well-known traditional PDE numerical solvers such as finite difference method
(FDM) and finite element method (FEM). Such methods are well-studied. We could control the accuracy of the
approximation with the assistance of established theories. However, such numerical solvers do not fit our expectations
for a good surrogate function. When using these methods, the numerical solver needs to be run for every single different
configuration, which leads to a huge computation time in the online phase. This limits the benefit of not needing a
offline training phase. Therefore, researchers looked elsewhere for a more suitable surrogate function.
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As computer hardware improves drastically in recent years, the computational cost of neural networks becomes cheaper
and cheaper. Researchers found that neural networks will be the ideal surrogate function to this type of problem,
provided the network is trained properly. Once trained, the real-time evaluation will be fast. The approximations can
also be done in batches, i.e. the neural network could produce approximations under different ε in one forward pass.
Compared to traditional solvers, where approximations need to be produced individually if interpolation methods are
not used, the neural network is a much better choice. However, since machine learning is still a developing area, the
theories about the accuracy of these black-box tools are still being explored. Thus, a thorough study of how neural
networks perform in producing approximations to parameter-dependent PDEs is needed.

2 Methodology

First, let’s formally define a general form of parameter-dependent PDEs we need to approximate:

∂tu(x, t; ε) +N [u(x, t; ε); ε] = 0 (2)
for x ∈ Ωx ⊂ Rn,

ε ∈ Ωξ ⊂ Rm

where ε denote parameters. For simplicity, the boundary condition equations are not written here, but they might also
be dependent on the parameter ε.

We would like to obtain approximations unn(x, t; ε) produced by trained neural networks at a set of discrete points
of interestXtest = {(xtest, ttest)(j)}

Ngrid

j=1 and a set of parameters of interestMtest = {ε(i)test}
Ntest
i=1 . Note thatMtest

does not need to be of the same size asXtest.

Now we define the residual function f to be

f(x, t, u(x, t; ε); ε) := ∂tu(x, t; ε) +N [u(x, t; ε); ε]. (3)

We see that when the function f(x, t, u(x, t; ε); ε) = 0, u(x, t; ε) satisfies the PDE equation (2). This property of
function f will be utilized later.

For this project, we study existing machine learning methods that approximate solutions to parameter-dependent PDEs.
In particular, we want to compare how different factors affect the performance of these state-of-the-art algorithms. We
also would like to improve the accuracy of these algorithms when needed. The algorithms we will look at are:

• Non-intrusive reduced order modeling of nonlinear problems using neural networks, which we will refer to as
Proper Orthogonal Decomposition Neural Network Reduced Basis method (POD-NN RB) (Hesthaven and
Ubbiali [2018]).

• Physics-Informed Neural Networks (PINN) (Raissi et al. [2019]).

We would like to emphasize that, to our knowledge, PINN has not been applied to parameter-dependent PDE problems
where the parameters are inputs. With different parameter values, the characteristics of the solutions could change
drastically. In other words, treating parameters as inputs imposes a harder approximation task than approximating
solutions of PDE problems with fixed parameters. Later we will address the difficulty we encountered and techniques
we employed to fix the issues in detail.

In this section, we will walk through the technical aspects of this project, including different types of neural networks
and how POD-NN RB and PINN work.

2.1 Neural Networks

Now we will briefly talk about neural networks. They are nonlinear functions inspired by the information processing
procedure of neurons. Different types of neural networks have been developed for different tasks. In this project, we will
use three different neural network structures: Feedforward Fully-Connected Neural Networks (FCNN) (Schmidhuber
[2014]), and Residual Networks (ResNet) (He et al. [2015]).

2.1.1 Feedforward Fully-Connected Neural Networks

We will start by introducing FCNN, the most commonly used neural networks. The authors of (Hesthaven and Ubbiali
[2018]) and (Raissi et al. [2019]) both used FCNN in their papers. A FCNN consists of an input layer, hidden layers
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and an output layer. Within each layer, information passed in is processed by a linear transformation with a weight and
bias, followed by a nonlinear transformation. Such fully-connected networks can be written in the following form:

Y0 = Xin

Yn+1 = σ(WnYn + bn)

YN+1 = WN+1YN + bN+1

(4)

where X0 = Xin are the sample inputs, σ(·) is a nonlinear function referred to as the activation function and θ denotes
the collection of weights Wj and biases bj , for j = 1, . . . , N + 1. Here, the integer N will represent the number of
hidden layers.

2.1.2 Residual Networks

Now we introduce ResNet. ResNet was originally created in He et al. [2015] for image recognition problem. The gist
of ResNet is to add connections between earlier and later layers so that the information does not get lost between layers.
Such connections are called skip connections. Also, it is recognized that this structure has a natural similarity to ODE
solvers (Chen et al. [2018]). Note that in the original ResNet paper (He et al. [2015]), the network used had 34 layers,
which is far greater than the number of layers we will use in this project. Thus, it is doubtful if ResNet would be as
beneficial with fewer layers.

ResNet is very similar to FCNN, except that the output of the previous layer could be passed to the next layer directly.
Mathematically, we can write ResNet as:

Y0 = X

Yn+1 = σ(WnYn + bb) + Yn
YN+1 = WN+1YN + bN+1

(5)

The notations used in Equation (5) are the same as the ones used in (4). Note that there are many variations of ResNet.
The ResNet shown in Equation (5) may now be the perfect choice for our purpose.

2.2 POD-NN RB

Now we will talk about the POD-NN RB algorithm. The idea of the POD-NN RB method is embedded in the concept
of projecting solutions, or approximations to u(x, t; ε), down to a smaller space and training a neural network that
approximates the projections, so that the cost of the optimization task is reduced.

In order to do so, we first need to generate a set of parameters, on which we will create samples for training. Suppose
we sample Ntrain number of parameters {ε(j)train}

Ntrain
j=1 over the parameter space Ωξ. Then we would use traditional

numerical solvers such as FDM to generate a collection of snapshots {uh(ε
(j)
train)}Ntrain

j=1 . A snapshot, uh(ε
(j)
train), is

defined to be a high-fidelity approximation to the true solution with parameter ε(j)train. Note that if these snapshots do not
include approximations at the discrete points of interestXtest, we would need to interpolate to obtain approximations
atXtest in the online phase. Let {uh(ε

(j)
train)}Ntrain

j=1 ⊂ RH . As these snapshots are created on a fine mesh, H would
be large. We could set up a network that approximates these snapshots directly, but the size of the network outputs
would be H . Then the dimension of the weights in the output layer is at least H . The large dimension of weights
means more parameters to train the optimization process. To avoid that, we need to look for a lower rank matrix that
approximatesUh, a matrix whose columns are {uh(ε

(j)
train)}Ntrain

j=1 . We will use proper orthogonal decomposition (POD)
Galerkin Reduced Basis (RB) method to do so. Using singular value decomposition (SVD), we could express Uh as
Uh = WΣZT . The Schmidt-Eckart-Young theorem (Haykin [2008]) states that the POD basis of rank L {w1, . . . ,wL},
consisting of the first L left singular vectors of Uh, minimizes

∑Ntrain

j=1

∥∥∥uh(ε
(j)
train)−

∑L
i=1(wT

i uh(ε
(i)
train))wi

∥∥∥2
2

among all the orthonormal bases of RH . Let V = [w1, . . . ,wL]. Then {V Tuh(ε
(j)
train)}Ntrain

j=1 projects the snapshots

down to a smaller space ΩRB ⊂ RL. Here, L� H . Now, we will use {V Tuh(ε
(j)
train)}Ntrain

j=1 as the sample outputs.

Now we set up the neural network function F (ε;θ) to take parameters as input and train it to approximate to solutions
in ΩRB . We train the neural network by minimizing the following loss function:

L(θ) =
1

2Ntrain

Ntrain∑
j=1

∥∥∥F (ε
(j)
train;θ)− V Tuh(ε

(j)
train)

∥∥∥2
2
.
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Note that F is approximating to V Tuh(ε
(j)
train), not uh(ε

(j)
train). Thus, once optimal θ is obtained, the approximations

we are interested in are produced by {V F (ε
(i)
test;θ)}Ntest

i=1 in the online phase.

2.3 PINN

Now we move on to the second approach we will consider, PINN. The idea of PINN is to use the residual function f
to ensure the neural network follows the governing PDE. In order to train the network, we need to generate training
samples. Instead of just sampling over Ωξ as is done by POD-NN RB, we generate initial and boundary condition
samples over Ωx × Ωξ. We separate the samples into two categories: initial and boundary condition samples and
in-domain samples. Let initial and boundary condition samples be {(xIB , tIB , εIB , uIB)(j)}Ni

j=1 and in-domain as

{(xF , tF , εF )(z)}Nf

z=1. Here, uIB corresponds to either a Dirichlet boundary condition or an initial condition the
solution must satisfy. As indicated by the name, the initial and boundary conditions would be samples on the boundary
or over the initial condition. In-domain samples would be samples that are strictly inside the domain, not on the
boundary or initial condition. Note that the samples are not restricted byXtest like POD-NN RB.

Then we setup the neural network F (x, t, ε;θ) to take space-time coordinates (x, t) and parame-
ters ε as inputs and train neural network by minimizing the following loss function:

L(θ) =
1

2Ni

Ni∑
j=1

(F (x
(j)
IB , t

(j)
IB , ε

(j)
IB ;θ)− u(j)IB)2 +

1

2Nf

Nf∑
z=1

(f(F (x
(z)
F , t

(z)
F , ε

(z)
F ;θ)))2 (6)

Once an optimal θ is obtained, we can produce approximations at discrete points {(xtest, ttest)(j)}
Ngrid

j=1 and parameter

set {ε(i)test}
Ntest
i=1 as {{unn(x

(j)
test, t

(j)
test, ε

(i)
test;θ)}Ngrid

j=1 }
Ntest
i=1 in the online phase.

3 Test Problems

In order to examine the performance of POD-NN RB and PINN, we initially choose the following two parameter-
dependent PDE problems as test cases. The first one is the viscous Burger’s equation:

(a) (b)

Figure 1: Fig. 1a shows the solution to the viscous Burgers’ equation when ξ = 0.0010233. Fig. 1b shows the solution
to the viscous Burgers’ equation when ξ = 0.0097724.

ut + uux = ξuxx, for (x, t) ∈ [−1, 1]× [0, 1]

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0

(7)

where ξ = 10p, for p sampled on an uniform distribution of [−3,−2]. The residual function will be:

f(u(x, t, ξ); ξ) = ut + uux − ξuxx (8)

4
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In order to understand the difficulty of approximating solutions to Equation (7), it is necessary to look at how solutions
vary with respect to ξ. Here we show two sets of solutions computed through limited Lax-Wendroff method in Figure 1.
From Figure 1, we see that for the range of ξ defined in Equation (7), the characteristics of the solutions do not change
much. The only difference we observe is that the shock formed near x = 0 and t = 1 is sharper for smaller ξ. Other
than this feature, there is no visible difference between the solutions shown in Figure 1a and 1b.

The second test case is a nonlinear diffusion equation:

− (exp(u(x; ξ))u(x; ξ)′)′ = s(x; ξ), for x ∈ (−π
2
,
π

2
)

u(±π/2; ξ) = ξ2 sin(2± ξ1π

2
)exp(±ξ3π

2
)

(9)

where ξ = (ξ1, ξ2, ξ3) are sampled on uniform distribution of [1, 3]× [1, 3]× [−0.5, 0.5] and

s(x; ξ) =− ξ2exp(ξ2 sin(2 + ξ1x)exp(ξ3x) + ξ3x) (10)

∗ [2ξ1ξ3 cos(2 + ξ1x) + (ξ23 − ξ21) sin(2 + ξ1x) (11)

+ exp(ξ3x)[ξ1 cos(2 + ξ1x) + ξ3 sin(2 + ξ1x)]2] (12)

Here, s(x; ξ) is calculated such that the exact solution is

uex(x; ξ) = ξ2 sin(2 + ξ1x)exp(ξ3x) (13)

and the residual function is:

f(x, u(x; ξ); ξ) = −(exp(u(x; ξ))u(x; ξ)′)′ − s(x; ξ) (14)

We plot the exact solutions for different ξ in Figure 2 to observe how solution changes with respect to ξ.

Figure 2: This figure shows how solutions to the nonlinear diffusion problem change as ε varies.

From Figure 2, we see that the solution becomes more dynamic as ξ gets larger. There are visible differences in the
characteristics of the solutions for the three sets of ε shown, which indicates to us that it might require larger samples to
capture the characteristics of the solution.

3.1 Performance Evaluation

In order to quantitatively evaluate the performance of the two algorithms under different settings, we will use the average
2-norm relative error between the true solution u(x, t; ε) and the approximation produced by the neural networks on
Xtest andMtest as the metric to evaluate accuracy of the approximations. When an explicit form of true solutions are
not available, we will use high resolution approximations produced by numerical solvers to assess errors.

5
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4 POD-NN RB Performance

Now we explore the effect of different aspects on the performance of POD-NN RB. One thing to keep in mind is that
the results shown below are done on one realization of initialization of weights in the network and one realization of
samples selected. Thus, even though the results could provide some insights on the performance, we need to remember
that more tests need to be done to achieve an established conclusion.

When studying the performance of POD-NN RB, it is necessary to look at how the relative errors vary with respect to
L, the dimension of the reduced basis, as the quality of the solution will be limited by L. In the results shown below, we
chose L to be 1, 3, · · · , 29 and the networks were trained using Levenberg-Marquardt (Hagan and Menhaj [1994]).

4.1 Effect of Number of Samples

(a)
(b)

Figure 3: Fig. 3a shows how the relative errors of approximations of Burgers’ equation solutions changes as number of
samples changes. We tested for 100, 300, 500 and 700 samples. Fig. 3b shows the same information for the nonlinear
diffusion equation.

First, we want to look at how relative errors vary with respect to the number of samples taken on ε. This comparison
will help us determine what a sufficient size of samples is for different problems. We fix the network to be a FCNN of 2
hidden layers with 32 neurons per layer so that we could compare the results in a fair manner.

In Figure 3, we see that the number of samples does not influence the performance for Burgers’ equation as much.
This is due to the small range of parameters defined in Equation (7). We also observe that, except when the number of
samples is 100, the performance for the nonlinear diffusion equation do not change much, which indicates to us that
samples over size of 300 would be enough to capture the characteristics of the solutions. Thus, in the tests afterwards,
we set the number of samples to be 500 for both equations.

4.2 Effect of Depth of Network

Next, we want to look at how relative errors vary with respect to the depth of the FCNN.

In Figure 4, we see that the depth of the network does not have much influence on performance. For both problems, we
observe that the relative errors seem to stabilize around the same value, 10−5 for the Burgers’ equation and 10−4 for
the nonlinear diffusion equation.

However, we do observe some “spikes” especially in Figure 4a. After examining the optimization process, we find that
the worse relative errors resulted from a bad optimization job. For example, when L = 7 and the number of hidden
layers is 5, the loss value converged to around 0.7 and the norm of the gradient converged to around 5× 10−4. In other
cases, the loss value usually converges to 10−6. This tells us that the network was stuck in a bad local minimum.

6
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(a) (b)

Figure 4: Fig. 4a shows how the relative errors of approximations of Burgers’ equation solutions change as the depth of
FCNN changes. Fig. 4b shows the same information for the nonlinear diffusion equation. Here number of samples is
fixed to 500.

4.3 Effect of Network Structure

Now we test the effect of types of networks on the performance of POD-NN RB. In particular, we will look at how
ResNet performs in comparison with FCNN.

(a) (b)

Figure 5: Fig. 5a shows how ResNet compares to FCNN when applying POD-NN RB to the Burgers’ equation. The
number of samples is fixed to 500 and the network setup is 4 hidden layers with 32 neurons per layer in this case. Fig.
5b shows the same information for the nonlinear diffusion equation. The number of samples is fixed to 500 and the
network setup is 2 hidden layers with 32 neurons per layer in this case.

In Figure 5, we observe that there is no significant difference between the performance of ResNet and FCNN for both
problems. We suspect that this is due to the limitation of depth of the networks. Since our networks are still shallow
(networks only have 2 or 4 hidden layers), the benefits of having skip connections in ResNet could be negligible.

5 PINN Performance

Similarly, we explored the effect of different factors on the performance of PINN applied to the unsteady Burger’s
equation and the nonlinear diffusion equation. However, as we were testing the performance of PINN, we noticed that
PINN encountered convergence issue and was not able to produce accurate approximations. For example, when we

7
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were testing the effect of the depth of the network on PINN, we fixed the number of samples in each problem, and set
the width of the network to be 32 nodes per layer. Table 1 shows the results for two to five hidden layers.

Problem Number of
hidden layers

Final loss value Runtime Relative Error

Burgers
Equation

2 7.120012e-06 497.937847 0.123108156
3 4.356060e-06 884.396360 0.178813
4 3.017709e-06 1274.730591 0.18437196
5 8.041630e-07 1735.855668 0.13826065

Diffusion
Equation

2 7.036142e-03 567.494288 0.12503777
3 702.5287 1022.886320 7.454208
4 665.6986 2154.073805 5.666144
5 1.140639e-02 1752.942492 0.14456806

Table 1: This table shows the performance of PINN with different number of hidden layers in the FCNN. Here for
Burgers’ equation, we fix samples to have 3000 residual points, 600 boundary points and 300 initial condition points;
for the nonlinear diffusion equation, we fix sample to have 3000 residual points and 600 boundary points.

From Table 1, we observed that, for the nonlinear diffusion equation, the network did not converge when the network
depth was 3 or 4, which was evident from the final loss value. Even for the cases where the network converged to a
small final loss value, we saw that the relative error was about 10 percent, which meant the approximations were not as
accurate as we hoped to be. Therefore, we decided to shift our focus from testing the influence of configurations to
understanding the behavior of PINN. Moreover, we would like to design techniques that could improve the accuracy
of PINN. Since the Burger’s equation and the nonlinear diffusion equation were deemed too difficult for PINN, we
reduced the complexity of the testing problem and switched to convection-diffusion equations. All results shown below
are trained with Levenberg-Marquardt unless stated otherwise.

5.1 Convection-Diffusion Equations

Convection-diffusion equations are commonly used to describe two different physical processes: the diffusion of a
content within the fluid, and the swift movement of the fluid that convects the content downstream. Such equations
are often used to model fluid flows. Some of the related subjects include water pollution problems (Rap et al. [2007]),
simulation of oil extraction from underground reservoirs (Ewing [1983]) and flows in chemical reactors (Alhumaizi
[2007]). We recognize that the equations used in real-world application are far more complicated than the problems we
are about to discuss. However, the purpose of our tests is to understand the behavior of PINN. Simple problems that
have been thoroughly studied and understood are suitable for our purpose. Therefore, we would like to start from the
simplest problems, comprehend the performance of PINN, then gradually build up to the complicated one. Thus, we
start with one-dimensional (1D) convection-diffusion equations.

(a)
(b)

Figure 6: These figures show the solutions to two 1D convection-diffusion equations discussed in this report for various
ε values. Fig. 6a shows the exact solution to Equation (16). Fig. 6b shows the exact solution to Equation (20)

8
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Without loss of generality, 1D convection-diffusion equations can be written as the following:

Lu := −εu′′ + b(x)u′ = f(x), for x ∈ (0, 1),

u(0) = u(1) = 0, with c(x) ≥ 0 for x ∈ [0, 1].
(15)

where u′′ corresponds to diffusion, u′ represents convection and f is the driving term.

The 1D convection-diffusion equations form a good problem set for understanding the behavior of PINN. On one hand,
we could analytically solve for the exact solutions to these 1D problems. We also know that, since these equations
have been proven to have a single unique solution, any approximations produced by PINN that deviate from the exact
solution can be considered as wrong and unphysical. On the other hand, these convection-diffusion equations carry a
property we are interested in. Singularly perturbed problems are differential equations (ordinary or partial) that depend
on a small positive parameter ε and whose solutions (or their derivatives) approach a discontinuous limit as ε approaches
zero. The parameter ε is called the perturbation parameter (Roos et al. [2008]). These 1D convection-diffusion equations
fall into the category of singularly perturbed problems.

In Figure 6, we plotted the solutions to two 1D convection-diffusion problems used in this report. We observe that as ε
approaches zero, there is a narrow region near the boundary x = 1, where the solution departs significantly from the
flow in the previous region. We call this region the boundary layer.

Neural networks struggle with approximating discontinuities (Llanas et al. [2008]). Even though the exact solutions to
these 1D convection-diffusion problems are continuous, the solutions can be viewed as being close to discontinuous on
a discrete level for small ε. Therefore, we think studying how PINN performs on these singularly perturbed problems
for small ε and investigating possible techniques to improve the accuracy would be significant.

5.1.1 1D Convection-Diffusion Equations with Dirichlet Boundaries

Consider a simple 1D convection-diffusion equation with Dirichlet boundaries:

− εu′′ + u′ = 1, x ∈ (0, 1)

u(0) = u(1) = 0
(16)

where ε ∈ [10−4, 1]. The exact solution to Equation (16) is:

uex(x, ε) = x−
exp(− 1−x

ε )− exp(− 1
ε )

1− exp(− 1
ε )

(17)

We see, in Figure 6a, as ε approaches zero, a discontinuity forms near x = 1.

(a) (b)

Figure 7: Fig. 7a shows the approximation done by the neural net of different configurations compared to the exact
solution. Fig. 7b is a magnified image of fig. 7a, zoomed in on x ∈ [0.96, 1]

Let the residual function be f(u(x, ε); ε) = −εu′′+u′−1. We now apply PINN to this problem without any adjustments.
We plot the approximations for ε = 1e− 4 produced by PINN after training in Figure 7.

From Figure 7, we observe that PINN was unable to approximate the boundary layer accurately. Regardless of the
network setup or the number of samples used, PINN produces unphysical oscillations near the boundary layer. This

9
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result suggests that PINN performs poorly near boundary layers, and there is no configuration of the network that could
improve it. We need to make adjustments on the PDE equations for PINN to produce accurate solutions near boundary
layers.

Inspired by singular perturbation theories, we thought we could “change” the problem with a linear transformation. Let
ξ = 1−x

ε . One could view this transformation as “stretching” the boundary layer near x = 1 by a factor of 1/ε. Thus,
the sharp boundary layer can “smoothed” in ξ space.

Suppose v(ξ) = u(x). With this change of variable, the original PDE problem becomes:

− 1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (0,

1

ε
)

v(0) = v(1/ε) = 0

(18)

Let the residual function be f(v(ξ, ε); ε) = (d
2v
dξ2 + dv

dξ + ε)/ε. We now apply PINN to the transformed problem. The
result is shown in Figure 8

(a) (b)

Figure 8: Fig. 8a shows the approximation produced by PINN (with a FCNN of 3 hidden layers, 32 nodes per layer,
trained with Nf = 1000 and Nb = 400) compared to the exact solution. Fig. 8b is a magnified image of fig. 8a,
zoomed in on x ∈ [0.98, 1]

From Figure 8, we see that PINN produces accurate approximations in the whole domain, including the boundary
layer. This result tells us that the transformation technique works, and may be necessary for PINN to perform well on
singularly perturbed problems. But how should we construct an appropriate transformation for other problems? We
need to investigate why the transformation ξ = 1−x

ε resolves our issue.

Consider ξ = 1−x
ε , we note that the location of the boundary layer (x = 1) is incorporated into the transformation. How

essential is it to include the boundary layer location in the transformation?

Suppose the transformation is ξ = a−x
ε , for a ∈ [0, 1]. Then the transformed problem becomes:

− 1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (

a− 1

ε
,
a

ε
)

v(
a− 1

ε
) = v(

a

ε
) = 0

(19)

It is obvious that, no matter what a is, the residual function f(v(ξ, ε); ε) will be the same. Then the only difference
between these transformed problems is the value of ξ. In other words, we need to test how the distribution of inputs
could influence the performance of PINN.

One thing to note is that when inputs are being passed into the network, we use the following formula to normalize the
inputs to [0, 1]:

InputNormalized =
Input− Lower Bound

Upper Bound− Lower Bound

10
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Such procedure is a common practice in the machine learning community (Singh and Singh [2020]). This way, the effect
of difference of magnitudes between different types of inputs could be minimized. For example, in our transformed
problem, ξ ∈ (a−1ε , aε ). Then when ε = 1e− 4, ξ ∈ (104(a− 1), 104a), which is very different in scale with ε. If the
inputs were not normalized, such difference in scale will hinder the optimization process.

(a) (b)

Figure 9: Fig. 9a shows the approximation produced by PINN with transformation ξ = (a − x)/ε, for a =
0, 0.25, 0.5, 0.75, 1. All approximations are generated from a FCNN with 3 hidden layers, 32 nodes per layer. They are
trained with 1000 residual samples and 400 boundary samples. Fig. 9b shows the normalized distribution of samples of
transformations ξ = (a− x)/ε, for a = 0, 0.25, 0.5, 0.75, 1. Here, both ξn and εn are normalized versions of ξ and ε.

From Figure 9a, we observe that an unphysical sharp jump always forms around x = a when ε = 1e− 4. In order to
understand this phenomenon, we investigate how du

dx changes during the optimization process. Note that when solving
the transformed problems, the network produces a surrogate approximation of v(ξ, ε). Thus, taking the first derivative
of the network’s outputs with respect to its inputs will only result in dv

dξ . We need to compute du
dx using the following

relation:

du

dx
= −1

ε

dv

dξ

We visualize the values of dudx on an uniform mesh at initialization of weights (before training), training epoch 10 and
500 in Figure 10. To make the comparison fair, we fix the initialization seed so that all networks start training from the
same initial weights. The samples used in the transformed problems are obtained from transforming the same samples
in (x, ε) space accordingly.

We observe from Figure 10 that, even though the values of dudx are similar for all a = 0, 0.5, 1 at initialization, dudx attains
large magnitudes around x = a for small ε values at epoch 10. In the case of a = 1, such behavior aligns with trends
for the exact solutions, i.e. the network should attain large values of dudx near x = 1. However, for the cases of a = 0

and a = 0.5, attaining large magnitude of dudx near x = a does not follow the characteristics of the exact solution. The
large magnitude of derivatives near x = a explains the odd sharp jumps at x = a for small ε value in Figure 9a.

The beginning of the training process influences the rest of the training. As a result, we see that at epoch 500, the
contour plot of dudx for a = 1 forms a structured pattern while the two other transformations don’t. But is this structure
true to derivative of the exact solution?

a
∥∥duex

dx −
du
dx

∥∥
2

0 41.868324643539481
0.5 41.889458304866388
1 0.144441893681944

Table 2: This table shows the L2 norm of the difference between du
dx calculated by PINN at training epoch 500 and the

analytical duex

dx for a = 0, 0.5, 1.

11
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(a)

(b)

(c)

Figure 10: This figure shows the contour plots of dudx evaluated on an uniform mesh at initialization (epoch 0), training
epoch 10 and 500 for a = 0, 0.5, 1. 10a, 10band 10c correspond to transformations with a = 1, 0.5 and 0, respectively.
The three cases all optimize a FCNN with 3 hidden layers, 32 nodes per layer, 1000 residual samples and 400 boundary
samples.

To answer this question, we compute duex

dx :

duex
dx

= 1−
exp(− 1−x

ε )

ε− ε exp(−1/ε)

We compare du
dx produced by PINN to the analytical duex

dx at epoch 500 by calculating the L2 norm of the differences.
The result is displayed in Table 2. We notice that at epoch 500, the error for a = 1 is small, which tells us that the
network is behaving similarly as the exact solution. However, we don’t see the same results with a = 0, 0.5.

12
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We now understand sharp jumps near x = a result from the network attaining derivatives of large magnitudes at the
beginning of training. But what causes the network to behavior in such way during training?

We have been using LM as our optimizer. Could this phenomenon be caused by LM? In other words, LM might not be
robust enough to avoid bad local minima. Since the Adam optimizer has been widely used in optimizing PINN, we
implemented the Adam optimizer (Kingma and Ba [2017]) to see if Adam is a better optimizer for our problem. We
compare LM and Adam by plotting the loss values during training against the CPU time. Both optimizers were used to
train the exact same transformed problem of a = 1 and a = 0.5. The results are shown in Figure 11.

(a) (b)

Figure 11: Fig. 11a and 11b shows the loss value of the network over training CPU time using LM and Adam optimizers.
Both optimizers were applied to the transformation problem of case a = 1 and a = 0.5, respectively, using a FCNN of
3 hidden layers, 32 nodes per layer, 1000 residual samples and 400 boundary samples.

From Figure 11, we see that LM minimizes loss more quickly and efficiently. Even though a small loss value does not
guarantee good approximations, a large loss value does indicate an inadequately trained network and such networks
have no luck in producing good approximations. Therefore, at least for the transformation problem, LM is superior to
Adam.

Since the setup for the transformed problems are the same except for the input distribution, we thought that must be the
culprit. We show the distribution of normalized inputs in Figure 9b. We could see that after normalizing the inputs,
inputs with larger εn cluster around ξn = 1− a, which corresponds to x = a.

We observed when a = 1, the normalized inputs cluster around ξn = 0. We thought the good performance from the
transformed problem of a = 1 was due to the characteristics of the activation function, tanh(x). We hypothesized that
since the derivative of tanh(x) attains large magnitude around 0, clustering samples around 0 would guarantee good
performance. To test this theory, we scaled the inputs of case a = 0.5, so that the normalized inputs clustered around 0.
The resulted approximations behaved just like the plot of a = 0.5 in Figure 9a. This result tells us that this hypothesis
does not hold.

Now we hypothesize that the region where the normalized inputs cluster affects the performance. We think that the
network tends to minimize the residual mean squared errors of the cluster region first. This theory aligns the observations
from Figure 10. However, more tests are needed to validate this hypothesis.

Regardless, we propose, for 1D convection-diffusion equations with Dirichlet boundaries and one boundary layer, a
linear transformation

ξ =
a− x
ε

will enable PINN to produce good approximations. Here, a is the location of the boundary layer and ε is the perturbation
parameter.

Now let’s test the proposed transformation technique on another 1D convection-diffusion equation. Consider the
following problem:

−ξu
′′

+ u
′

= 0 for x ∈ (0, 1)

u(0) = 1− e−1/ε

u(1) = 0

(20)
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where ε ∈ [10−4, 1]. The residual function is f(u(x, ε); ε) = −εu′′ + u′. We could compute the exact analytical
solution:

uex(x, ε) = 1− e(x−1)/ε. (21)

The characteristics of the exact solution are visualized in Figure 6b. Like the last problem, there is also a boundary
layer at x = 1. Therefore, we perform the same linear transformation, i.e. let ξ = (1− x)/ε.

Suppose v(ξ) = u(x). With ξ = (1− x)/ε, the original problem becomes:

−1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 0 for ξ ∈ (0,

1

ε
)

v(0) = 0

v(1/ε) = 1− e−1/ε

(22)

The residual function is f(v(ξ, ε); ε) = − 1
ε
d2v
dξ2 −

1
ε
dv
dξ .

(a) (b)

Figure 12: Fig. 12a shows the approximation produced for the original and transformed problem, and the exact solution
side-by-side. Fig. 12b is a magnified image of fig. 12a, zoomed in on x ∈ [0.96, 1]. Results above are trained using a
FCNN of 3 hidden layers with 32 nodes per layer, 1000 residual samples and 400 boundary samples.

We can compare the results obtained with and without transformation in Figure 12. From Figure 12, we see drastic
improvements in approximation produced from the transformed problem like before. Our proposed linear transformation
works. We will now apply our transformation technique to 2D convection-diffusion equations with one boundary layer
to test its validity in higher dimensions.

5.1.2 2D Convection-Diffusion Equations with Dirichlet Boundaries

Figure 13: This figure shows the exact solution uex(x) to the Equation (23) for ε = 1e− 4.

14
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(a) (b)

Figure 14: Fig. 14a shows the approximation produced for ε = 1e− 4 by PINN applied on the untransformed problem,
with a FCNN of 3 hidden layers, 32 nodes per layer, 2000 residual samples and 400 boundary samples. Fig. 14b is a
magnified image of fig. 14a, zoomed in on (x, y) ∈ [−1, 1]× [0.96, 1].

Now consider the following problem from Elman et al. [2014]:

− ε(uxx + uyy) + uy = 0, (x, y) ∈ (−1, 1)× (−1, 1)

u(−1, y) ≈ −1, u(1, y) ≈ 1

u(x,−1) = x, u(x, 1) = 0

(23)

where ε ∈ [10−4, 1]. The residual function is f(u(x, y, ε); ε) = −ε(uxx + uyy) + uy . The exact solution is:

uex(x, y, ε) = x

(
1− exp((y − 1)/ε)

1− exp(−2/ε)

)
(24)

We visualize the exact solution for ε = 1e− 4 in Figure 13. We observe that the boundary layer is located at y = 1.

Let’s first apply PINN on the untransformed problem. The approximations produced for ε = 1e− 4 are shown in Figure
14. We observe that the produced approximations near the boundary layer y = 1 are inaccurate, as expected.

(a) (b)

Figure 15: Fig. 15a shows the approximation produced for ε = 1e− 4 by PINN applied on the transformed problem,
with a FCNN of 3 hidden layers, 32 nodes per layer, 2000 residual samples and 400 boundary samples. Fig. 15b is a
magnified image of fig. 15a, zoomed in on (x, y) ∈ [−1, 1]× [0.96, 1].

According to our hypothesis, we propose the following transformations:

ξ = x, η =
1− y
ε
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Here, we did not transform x because there is no boundary layer in x direction. Let v(ξ, η) = u(x, y). With the
proposed transformation, the transformed problem becomes:

− εvξξ − (vηη + vη)/ε = 0, (ξ, η) ∈ (−1, 1)× (0, 2/ε)

v(−1, η) ≈ −1, v(1, η) ≈ 1

v(ξ, 2/ε) = ξ, v(ξ, 0) = 0

(25)

The residual function is f(v(ξ, η, ε); ε) = −εvξξ − (vηη + vη)/ε.

Now we apply PINN on the transformed problem with the same network setup. The approximations are shown in
Figure 15. We, again, see a great improvement in the accuracy of approximations near the boundary layer, y = 1.
However, when zoomed in, we can still see small inaccuracy at the boundary. In a naive attempt, we simply added more
residual samples to see if we could improve the accuracy of approximations even further.

(a) (b)

Figure 16: Fig. 16a shows the approximation produced for ε = 1e− 4 by PINN applied on the transformed problem,
with a FCNN of 3 hidden layers, 32 nodes per layer, 8000 residual samples and 400 boundary samples. Fig. 16b is a
magnified image of fig. 16a, zoomed in on (x, y) ∈ [−1, 1]× [0.96, 1].

We increased the number of residual samples from 2000 to 8000 and obtained the approximation results shown in
Figure 16. We see that the approximations near the boundary near and at the boundary becomes accurate. The decrease
in absolute errors becomes more apparent when we look at the L∞ norm of the error in Table 3. We observe drops in
orders of magnitudes in the error when we use transformation and increase the number of residual samples.

‖û− uex‖∞
No Transformation 1.469087243080139

With Transformation, Nf = 2000 0.028683111071587
With Transformation, Nf = 8000 0.003129094839096

Table 3: This table shows the L∞ norm of the error for approximation produced for ε = 1e− 4 by PINN.

Now that we have tested the transformation technique on one and two dimensional convection-diffusion equations and
seen great results, we have faith that our transformation technique can be extended to multi-dimensional convection-
diffusion equations with Dirichlet boundaries and one boundary layer.

5.1.3 1D Convection-Diffusion Equations with one Neumann Boundary

So far, we have only been looking at problems with Dirichlet boundaries. However, Neumann boundary conditions are
actually more common in real-world PDE models. Therefore, we want to test if the transformation technique could be
extended to problems with Neumann boundary conditions.

Consider the 1D convection-diffusion equation from Equation (16). Let the right boundary, x = 1, have a zero-flux
boundary condition. We then get the following governing equation:

− εu′′ + u′ = 1, x ∈ (0, 1)

u(0) = u′(1) = 0
(26)
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where ε ∈ [10−4, 1]. The exact solution to Equation (26) is:

uex(x, ε) = x− ε[exp(−(1− x)/ε)− exp(−1/ε)]. (27)

The residual function is f(u(x, ε); ε) = −εu′′ + u′ − 1. We visualize the exact solutions for different perturbation
parameter values in Figure 17.

(a) (b)

Figure 17: Fig. 17a shows how solutions to Equation (26) change as ε increases from 10−4 to 1. Fig. 17b is a magnified
image of fig. 17a, zoomed in on x ∈ [0.9985, 1].

From Figure 17, we notice that the exact solution is similar to the linear function y = x for the majority of the domain
and only changes characteristics near the boundary layer at x = 1. Note that the width of the Neumann boundary layer
is of O(

√
ε), while the width of the Dirichlet boundary layer is of O(ε) (Elman et al. [2014]).

(a) (b)

Figure 18: Fig. 18a compares the approximation obtained using the original problem (ξ = x), using the transformed
problem (ξ = (1− x)/ε), and the exact solution. Fig. 18b is a magnified image of fig. 18a, zoomed in on x ∈ [0.98, 1].
All approximations results are produced from a FCNN with 3 hidden layers, 32 nodes per layer, 1000 residual samples,
200 Dirichlet boundary and 200 Neumann boundary samples.
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Let v(ξ) = u(x). We reuse the same transformation and test if our proposed transformation still works. Suppose
ξ = (1− x)/ε. Then we have the transformed problem as:

− 1

ε

d2v

dξ2
− 1

ε

dv

dξ
= 1, ξ ∈ (0,

1

ε
)

v(1/ε) = 0

− 1

ε

dv

dξ
(0) = 0

(28)

The residual function is f(v(ξ, ε); ε) = − 1
ε
d2v
dξ2 −

1
ε
dv
dξ − 1.

Surprisingly, even though the solution to the Neumann boundary condition problem is smooth, producing accurate
approximations is not easy. We apply PINN on the original and the transformed problems and plot the approximations
in Figure 18. We consider different ways of formulating the Neumann boundary. We use NB to denote dv

dξ . The different
“NB” options in the figure denotes different weightings of the Neumann boundary during training. In other words,
keeping everything else the same, we could vary the weighting of the Neumann boundary samples and observe the
effects of the weighting.

We observe that setting the Neumann boundary as dv√
εdξ

yields the most accurate approximations, which is surprising.

Why would weighting dv
dξ by 1/

√
ε, a seemingly random weighting, produce the best approximations? Remember that

the width of the Neumann boundary layer is of O(
√
ε). We suspect that reciprocal of the width of the boundary layer

would be the correct weighting at the boundary condition. We need to validate this hypothesis with more test problems.

6 Conclusion

In this report, we have explore the applications of two machine learning algorithms: POD-NN RB and PINN.

For POD-NN RB, we used an unsteady Burger’s equation and a nonlinear diffusion equation as test cases to study the
effects of network depth, network structure and number of samples on the performance of POD-NN RB. We found
that the performance of POD-NN RB was not greatly influenced by these factors. A FCNN with 3 hidden layers, 32
nodes per layer, should be sufficient in approximating solutions to unsteady Burger’s equations and nonlinear diffusion
equations. Once provided with enough samples, i.e. more than 500 parameter samples, the relative errors of the
produced approximations were similar in scale.

For PINN, we encountered great difficulty when using the unsteady Burger’s equation and the nonlinear diffusion
equation as test cases. We found that PINN did not converge easily and the produced inaccurate approximations. Thus,
we switched directions and decided to understand the behavior of PINN and find techniques for improving accuracy
of PINN. We used convection-diffusion equations as test problems because they are simple and singularly perturbed.
Inspired by singular perturbation theories, we used transformation techniques to help “stretch” the steep boundary
layer. As a result, PINN was able to obtain accurate approximations as perturbation parameter goes to zero in 1D
and 2D convection-diffusion equations with Dirichlet boundaries and one boundary layer. We also briefly studied a
1D convection-diffusion equation with one Neumann boundary condition. We found that the stretching factor at the
boundary layer should be related to the width of the boundary layer.

7 Future Directions

The performance of POD-NN RB did not seem interesting. Therefore, our future focus will be on PINN. So far, we
have only looked at problems with one boundary layer. However, there are many problems with two or more boundary
layers. Take the problem from Elman et al. [2014] as an example:

− ε(uxx + uyy) + (1 + (x+ 1)2/4)uy = 0, for (x, y) ∈ (−1, 1)× (−1, 1)

u(−1, y) = (1− (1 + y)/2)3, u(1, y) = (1− (1 + y)/2)2

u(x,−1) = 1, uy(x, 1) = 0

(29)

The residual function is f(u(x, y, ε); ε) = −ε(uxx + uyy) + (1 + (x+ 1)2/4)uy . We can compute approximations to
solutions of Equation (29) by Finite Difference Method (FDM). We can also apply PINN to this problem. The results
are shown in Figure 19.
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(a) (b)

Figure 19: Fig. 19a shows the approximation produced by Finite Difference Method (FDM) when ε = 1e− 3. Fig.
19b shows the approximation produced by PINN with a FCNN of 3 hidden layers, 32 nodes per layer, 2000 residual
samples and 400 boundary samples.

From Figure 19, we observe that the approximations produced by PINN have small oscillations near x = −1 and x = 1.
However, our proposed transformation technique does not consider problems with two boundary layers. Therefore,
we would like to study problems with two or more boundary layers and generalize the transformation technique to all
singularly perturbed problems.

Moreover, we have not studied problems with more than one perturbation parameters. Generalizing the transformation
technique to problems with more than one perturbation parameters would be much needed.

Lastly, our transformation scheme has been chosen based on a priori information we have about the solutions of
the problems. However, assuming knowing the characteristics of the solutions before solving the problem would be
unrealistic. Therefore, we would like to extend and improve PINN so that the neural network could detect boundary
layers during training and automatically adjust itself.
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Implementation with data: Github
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