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In this project, we consider inverse problems and study the stability and regular-

ization in the process of parameter estimation in important magnetic resonance

(MR) models. In the literature of MR and nonlinear least squares analysis, the

Cramér–Rao lower bound (CRLB) provides a bound for the variance of parameters

to be estimated. However, controlling variance to be small while making a huge bias

is not desirable, and vice versa. Therefore, it is preferable to introduce the mean

squared error (MSE), which is a metrics combining the variance and bias, to study

the performance of the estimators. We will calculate the bias, variance and MSE

by solving a regularized non-linear least squares problem using Monte Carlo simu-

lations, and check if it is possible to adjust the range of regularization parameter to

reduce MSE below the theoretical CRLB. We then propose a strategy to provide

optimal regularization parameter to reduce the MSE below CRLB for a prior range

of model parameters.
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1 Introduction

1.1 Background

Magnetic resonance imaging (MRI) is widely used to map physical characteristics of a suitable sample.

MRI machines use strong magnetic fields, magnetic field gradients and radio waves to produce images about

the internal situation of the body. The MR images contain important information about many parameters,

such as the nuclear spin density, the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and

molecular motions, such as diffusion and perfusion5. We can change the imaging effects by suppressing or

enhancing a certain set of parameters in an experiment, so the MR images can look very different with

different data acquisition methods. In general, an MRI imaging can be made to a spatial map of the density

of stationary spins or moving spins, or of relaxation times, or of the water diffusion coefficients. These are

the subjects of study for subareas known as spectroscopic imaging, diffusion-weighted imaging, angiographic

imaging, and functional imaging. In biophysics, nuclei have their own magnetic moments, so they will interact

with magnetic fields that applied externally. Therefore, when nuclei are exposed to a static magnetic field,

their proton spins will be aligned either parallel or antiparallel. If we apply radiosfrequency (RF) pulse to

the nuclei, then it will tip the net magnetization away from the static magnetic field, into the transverse

plane.

Then, one will observe a relaxation of the signal intensity within the transverse plane, after excited in the

above manner. The transverse T2 relaxation is the loss of transverse magnetization, which is a time constant

characterizing the signal decay. To be more exact, T2 denotes the amount of time it takes to remain 63%

of the excited transverse magnetization. It turns out that T2 provides important biophysical information.

Because of this, obtaining or estimating these parameters is of great clinical importance, such as diagnosis

of cancer and many other diseases.

In this project, we specifically consider the T2-weighted imaging, also known as transverse decay time

weighted imaging, where we assume that tissues can be approximated as having two dominant components.

The bi-exponential model for this is stated explicitly as,

S(TE; c1, c2, T21, T22) = c1 exp(−TE/T21) + c2 exp(−TE/T22)

where T21, T22 represent transverse relaxation time constants, and c1, c2 are component fractions. TE are

the echo times when we make the measurements, and S denotes the signal intensity.

The bi-exponential model is used for assessment of cartilage degeneration in osteoarthritis, where the

rapidly relaxing component is proteoglycan and slowly relaxing compoent is less-bound water. For the

project, we assume we have information about c1, c2 and study the tissue characteristics by estimating the

two relaxation times, T21 and T22, which relate to tissue hydration and microscopic organization.

For example, in brain, the myelin corresponds to a shorter relaxing component T21, while extracellular

and interstitial water corresponds to longer relaxing component T22. In many clinical situations, we wish to

know how much myelin is in the brain. Therefore, at a certain location, we do an “imaging” version of the

MRI models we are considering, where the model applies separately at every imaging pixel. Longer T2 means

“more fluid-like, and less solid-like”. Therefore, the fluidity or mobility of a component can be judged by its

T2 value. That is, we have to be able to distinguish the two relaxing components based on their relaxation

times in order to make statements about c1 as belonging to the shorter T2 component, and c2 as belonging
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to the longer T2 component.

In the procedure of parameter estimation, an important aspect is to find the limiting performance of

estimators, and solve for efficient estimators that achieve this performance. The Cramér–Rao lower bound

(CRLB) gives an explicit lower bound on the variance of any unbiased estimators for fixed but unknown

parameters, and hence a benchmark against which we could compare the performance of any estimators8.

In practice, we also compare with the nonlinear least squares (NLLS) analysis, since CRLB will generally be

found to be close to NLLS, and NLLS can have little bias when non-regularized. Here, we state the definition

of CRLB since it is a benchmark against which we could compare the performance of estimators.

Definition 1.1 (Cramér–Rao lower bound). Consider the parameter vector θ = [θ1, θ2, . . . , θd]
T ∈ Rd,

with probability density function f(x;θ), and the Fisher information matrix is a d × d matrix given by

Im,k = −E
[

∂2

∂θm∂θk
log f(x;θ)

]
. Let T (X) be an estimator, and denote its expectation vector E[T (X)] by

ψ(θ), then the Cramér–Rao bound states that the covariance matrix of T (X) satisfies

covθ(T (X)) ≥ ∂ψ(θ)

∂θ
[I(θ)]−1

(
∂ψ(θ)

∂θ

)T
(1.1)

The calculation of CRLB has been done for different noise distributions. For example, an explicit calcu-

lation of CRLB of noncentral χ-distribution has been done by Bouhrara and Spencer1.

Although the CRLB is a popular performance benchmark, the limitation is also obvious: estimators with

small variance usually have larger bias, i.e., far away from the true parameters. Therefore, we use mean

squared error (MSE) as the metrics, which measures both the variance and bias of estimators. By definition,

the MSE of an estimator θ̂ with respect to an unknown parameter θ is

MSE(θ̂) = Eθ

[
(θ̂ − θ)2

]
= Varθ(θ̂) + Biasθ(θ̂, θ)

2

In addition, Eldar, et al. (2006)3 showed that MSE could be reduced below the CRLB if we relax the

requirement of unbiasedness of estimators. Therefore, we artificially introduce bias by adding regularization

to the estimation procedure, which can decrease the MSE below the conventional lower limit of CRLB,

provided that we use appropriate amount of regularization. Mathematically, we formulate the following

nonlinear least squares optimization problem

p̂λ = argmin
p

{
‖G(p)− d‖22 + λ2 ‖L (p− p0)‖22

}
, (1.2)

or equivalently,

p̂λ = argmin
p

∥∥∥∥∥
(

G(p)

λLp

)
−

(
d

λLp0

)∥∥∥∥∥
2

2

≡ argmin
p

∥∥∥G̃λ(p)− d̃
∥∥∥2
2

where G(p) is a known model nonlinear in parameter p ∈ Rs, p0 a prior estimated parameter of the problem,

d ∈ Rn is the signal vector (d = G(p) + ν, where the noise ν is assumed to follow the normal distribution

N (0, σ2)). Therefore, G̃λ(p) and d̃ are of size (n+ s)× 1. L is the weighting diagonal matrix which serves

to scale the order of elements of the estimators, since different model parameters have different units and

order of magnitude.

To find the estimators that fit the biomedical MRI data best, we need to solve the regularized nonlinear

least squares problem (1.2). The introduction of Tikhonov regularization will improve the stability of the

kernel, but the solution it produces will be distant from the solution of the original problem. In other words,
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even without the presence of noises, it is inevitable to introduce bias by regularization.

1.2 Project Objectives

The goal of the project is to provide a method of analysis that yields, on average, a lower MSE than the

conventional method of CRLB and NLLS. Therefore, the goal is very practical, that is to provide better

parameter estimates than CRLB and NLLS does. In particular, we study the bias-variance trade-off of

estimators in mono-exponential and bi-exponential model, with additive Gaussian noise. By comparing the

MSE with CRLB, we could evaluate a suitable degree of regularization, through the value of λ, that we

should introduce to achieve MSE less than CRLB. At the same time, we evaluate its robustness with respect

to range of possible model parameter values. In practical applications, we will assume the realistic case of

having some a priori knowledge of plausible parameter ranges.

2 Approach

2.1 General Idea

The general idea to achieve our goal is stated as following: based on the combination of each MRI model

and each noise distribution, we generate synthetic data. For each combination of MRI model and noise

distribution, we first compute the CRLB, which is the theoretical lower bound of the variance of the estimators

for model parameters. To obtain the estimators, we formulate a constrained optimization problem (1.2), and

the solution to which will be the estimators in that particular noise realization.

Then, for each regularization parameter λ in a specific range, we run a number of noise realizations to

solve for the estimators (solving the constrained optimization problem (1.2)), then calculate the mean and

variance of desired estimators within each run. Then, we calculate MSE by its relation to variance and

bias. Finally, we obtain a set of MSE corresponding to different λ′s, so we are able to compare the MSE

with the CRLB, and observe which range of λ makes the MSE lower than the CRLB, i.e., regularized least

squares estimators perform better than the theoretical lower bound. A detailed description of this is stated

in Algorithm 1.

As stated, the key problem is solving the regularized least squares estimators. This ends up to solve

a constrained nonconvex optimization problem, due to the fact that we have the model function nonlinear

in the parameters. Since this problem is extremely case-dependent, and nonconvex optimization is a broad

topic, we will present here several nonconvex optimization algorithms that we implement.
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2.2 Algorithms and Guarantee Analysis

Algorithm 1: Monte Carlo Simulation

Input: Sequence of regularization parameters {λi}Mi=1, number of noise realizations N , weighting

matrix L, MRI model G;

Output: Estimators of parameters sol vec;

Data: MRI model measurements d;

for i = 1 to M do

for j = 1 to N do

Using optimization solvers to solve p̂λ = argmin
p

{
‖G(p)− d(:, j)‖22 + λ2i ‖Lp‖22

}
;

sol veci(j, :) = (p̂λ)>;

end

end

The point of Algorithm 1 is to solve for the synthetic data on various noise realizations, and obtain

estimators of the model, with respect to different noise realizations. Next, we compute the bias, variance

and MSE from all estimators to proceed on our analysis. Since our MSE is obtained using Monte Carlo

methods, which contain only finitely many samples, it is important to perform a guarantee analysis to

understand how many noise realizations are enough for our purpose.

By definition, the MSE of an estimator θ̂ with respect to an unknown parameter θ is

MSE(θ̂) = Eθ

[
(θ̂ − θ)2

]
and we let X denote the random variable (θ̂ − θ)2. Then, by the generalized finite-sample Chebyshev’s

inequality by Kaban, et al.(2012)4, we have

P (|X −m| ≥ ks) ≤ 1

N + 1

⌊
N + 1

N

(
N − 1

k2
+ 1

)⌋
where m is the sample mean, s is the sample standard deviation, k is an arbitrary constant, and N is the

number of times we sample X. For N = 100, the 95% confidence interval is approximately ±4.9595 standard

deviations4, which is acceptable to us. Unless otherwise specified, we will implement 100 noise realizations

to approximate MSE for the rest of the report.

2.2.1 Grid Search

For this algorithm, we use the bi-exponential model to illustrate the idea. First, assume true parameters to

be p = (c1, c2, T21, T22) = (0.7, 0.3, 50, 90), echo time TE = 8 : 8 : 256 milli-seconds , and the signal-to-noise

ratio (SNR) to be 1000 and, say, we implement 100 noise realizations. This step is to generate the synthetic

data d of size 32× 100.

For the grid search, we build a meshgrid in T21 and T22, i.e., a square domain [0, 200] × [0, 200] with

sufficiently fine grid. We choose 60 different regularization parameter λ’s that lie uniformly within [10−4, 102].

Then, for each λ, each noise realization, and for each pair of grid points of (T21, T22), we have a linear problem

in c1 and c2, so we use the MATLAB optimization solver quadprog to find c1 and c2 that minimizes Eq.

(1.2). Finally, we calculate the bias, variance and MSE of estimators, for each λ.
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2.2.2 Gradient Descent

The method of gradient descent is a common iterative, first-order gradient based method. It is based on the

idea that the loss function F (x) decreases most quickly when moving against the direction of gradient of F

at a, i.e., −∇F (a). The update formula of parameters is given by:

an+1 = an − γ∇F (an)

In addition, if the loss function F is convex and its gradient ∇F is Lipschitz continuous, then we are

guaranteed to have a local minimum, provided the learning rate γ satisfies the Wolfe conditions. In order

to have optimal step length γ, we could combine this method with the line search method. We also use

backtracking approach to ensure that the candidate step lengths are chosen appropriately.

2.2.3 VARPRO

The VARPRO (variable projection) algorithm is a good option for solving nonlinear least squares problems,

where many parameters are linear. The idea behind this algorithm is to separate the nonlinear and linear

variables in the curve fitting loss function, and use finite differences to approximate the Jacobian of loss

function. O’Leary, et al. (2013)7 contributed to this algorithm a lot, and provided a robust implementation of

this algorithm written in MATLAB. We implement the VARPRO algorithm developed by O’Leary referenced

at http://www.cs.umd.edu/~oleary/software/varpro/ and compare it to other numerical algorithms.

The regularized version of VARPRO is non-trivial and takes a lot of extra effort, so this will be a potential

future work.

2.2.4 Mesh Adaptive Direct Search (MADS)

In pattern-search methods, we choose a set of search directions at each iterate and evaluate the objective

function at a given step length along each of these directions. The potential candidate points form a “stencil”

around the current iterate. When one of the points in the frame gives a significant decrease in the objective

function, we move to that point. Otherwise, if no points on the stencil gives huge decrease in value of

objective function, we stay at the current iterate and reduce the step length. An advantage of this type of

method is that it is possible to show global convergence results.

In particular, in our example, in the T21 and T22 grid, we use the estimate obtained from section 2.2.1,

then starting from that estimate, we implement our MADS method. That is, beginning from the warm start

obtained from 2.2.1, we only need two or three steps to achieve the desired accuracy. A detailed description
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of the algorithm is in algorithm (2)6.

Algorithm 2: Mesh Adaptive Direct Search (MADS)

Given convergence tolerance γtol, contraction parameter θmax,

sufficient decrease function ρ : [0,∞)→ R with ρ(t) an increasing function

of t and ρ(t)/t→ 0 as t ↓ 0;

Choose initial point x0, initial step length γ0 > γtol, initial direction set D0

for k = 1, 2, . . . do

if γk ≤ γtol then

stop;

end

if f (xk + γkpk) < f (xk)− ρ (γk) for some pk ∈ D0 then

Set xk+1 ← xk + γkpk for some such pk;

Set γk+1 ← ϕkγk for some such ϕk ≥ 1;

else

Set xk+1 ← xk ;

Set γk+1 ← θkγk, where 0 < θk ≤ θmax < 1

end

end

For the implementation, we choose γtol = 1e−4, γ0 = 1, θ = 0.5, D0 = {[0, 0.5], [0,−0.5], [−0.5, 0], [0.5, 0]},
φ = 1.5, and ρ(t) = t(3/2). However, since this algorithm is activated by grid search, it is very time consuming

(solving hundreds and thousands of least squares problems, depending on the density of T21 − T22 grid).

2.2.5 Gauss-Newton Method and Levenberg-Marquardt Method

Gauss-Newton method can be regarded as the Newton’s method with line search, which uses the following

approximation for the Hessian matrix:

∇2fk ≈ JTk Jk, (2.1)

where Jk is the Jacobian matrix. The search direction pk then satisfies that

JTk Jkpk = −JTk rk (2.2)

Then, it is easily shown that when the Jacobian Jk is of full rank, and gradient ∇fk is nonzero, then pk is

indeed a descent direction for f , namely,

(pk)
T ∇fk = (pk)

T
JTk rk = − (pk)

T
JTk Jkpk = −‖Jkpk‖22 ≤ 0 (2.3)

where rk is the residual. To implement Gauss-Newton, similarly to gradient descent, we also need to perform

a line search in the direction pk for step length α, which needs to satisfy the Wolfe conditions.

Levenberg-Marquardt method is a very famous nonlinear least squares method. The Levenberg-Marquardt

method uses the same approximation of the Hessian matrix as in Eq.(2.1), but replaces the line search method

with a trust-region method.
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3 Mono-exponential Model

3.1 Nonlinear Least Squares Problem and Analytic Computation

To establish methodology with a simpler but still-relevant problem, we first analyze the simpler but still-

important mono-exponential model

S(TE; c, T ) = c exp(−TE/T ) (3.1)

where TE = {TEk}nk=1 is the echo time. In the actual signal measured, we have additive white Gaussian

noise, namely,

S(TE; c, T ) = c exp(−TE/T ) + ν (3.2)

where ν is the noise with normal distribution, i.e., ν ∼ N (0, σ2).

Now, we set up the constrained optimization problem as following

argmin
c,T

∥∥∥c exp(−TE/T )− d
∥∥∥2
2

s.t. c ≥ 0, T ≥ 0

(3.3)

where TE = {TEk}nk=1 is the echo time, d = {dk}nk=1 is the signal data of one noise realization, i.e., dk is

the datum we collect at time TEk, for k = 1, 2, . . . , n. The objective function in (3.3) can be expanded as

L =
∥∥∥c exp(−TE/T )− d

∥∥∥2
2

=

n∑
k=1

[
c exp(−TEk/T )− dk

]2
=

n∑
k=1

[
c2 exp(−2TEk/T )− 2c exp(−TEk/T )dk + d2k

]
=

[
n∑
k=1

exp(−2TEk/T )

]
c2 −

[
n∑
k=1

2 exp(−TEk/T )dk

]
c+

n∑
k=1

d2k

(3.4)

Assuming linear progression of TE = {kTE}nk=1, we do a change of variable, i.e., let Q = exp(−TE/T ),

then we have

L =
∥∥∥c exp(−TE/T )− d

∥∥∥2
2

=
[
Q2 + (Q2)2 + . . .+ (Qn)2

]
c2 − 2

[
n∑
k=1

Qkdk

]
c+

n∑
k=1

d2k

=
Q2(1−Q2n)

1−Q2
c2 − 2

[
n∑
k=1

Qkdk

]
c+

n∑
k=1

d2k

(3.5)

Now, to minimize the loss function L, we set dL
dQ = 0, and obtain the following quadratic equation in c,

[
2nQ2n+3 −

(
2n+ 2

)
Q2n+1 + 2Q

]
c2 − 2

[
n∑
k=1

kQk−1dk

](
1−Q2

)2
c = 0 (3.6)
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Eq.(3.6) has solution of

c1 = 0, c2 =
2
[∑n

k=1 kQ
k−1dk

](
1−Q2

)2
[
2nQ2n+3 −

(
2n+ 2

)
Q2n+1 + 2Q

] (3.7)

Numerically, we use the solvers to solve for c and T in (3.3). To generate the synthetic data, we use (4.2),

where we choose c = 0.7, T = 80, TE = 8 : 8 : 128 milliseconds, S = c exp(−TE/T ) and SNR = 1000, so

the standard deviation of noise is

σ =
1

SNR

To compare the performance of each solver, we use parameters set up as above. For the specific noise

realization, we make the following plots of loss function (3.3) value vs. T , and label the estimators returned

by different solvers.

(a) (b)

Figure 1: Landscape of L =
∥∥∥c exp(−TE/T )− d

∥∥∥2
2
, c = 0.7, T = 80,TE = 8 : 8 : 128 ms. Left Figure: T ∈

[0, 250] with 100000 points uniformly distributed. Right Figure: Zoom in view, T ∈ [75, 85] with 1000
points uniformly distributed.
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3.2 Regularized Nonlinear Least Squares Estimation

In order to add robustness to the estimators and lower the MSE below the conventional CRLB, we introduce

a regularization term and obtain the following optimization problem,

argmin
c,T

∥∥∥c exp(−TE/T )− d
∥∥∥2
2

+ λ2
∥∥∥(c, T )>

∥∥∥2
2

s.t. c ≥ 0, T ≥ 0

(3.8)

where TE is the echo time, d is the signal data, λ is the regularization parameter. To choose the desired

range of λ which makes MSE below CRLB, we plot the regularized MSE of estimators of T vs. λ.

(a) SNR = 10 (b) SNR = 100

Figure 2: Mean squared error of estimators of T vs. λ, where c = 0.7, T = 60 : 10 : 90, TE = 8 : 8 : 128 ms.
Left: SNR = 10. Right: SNR = 100.

As we see from Figure 2, we observe a consistent range of values of λ’s that make MSE of T below the

corresponding CRLB, in the SNR = 10 case. On the other hand, we do not observe MSE below CRLB for

any regularization parameter λ in the case of SNR = 100. The explanation for this is when the noise is

small, then the Levenberg-Marquardt returns the optimal estimator, so the variance of the estimators are

already very close to CRLB even without the introduction of regularization. Plus, by adding regularization,

we will introduce more bias into the estimators.
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4 Bi-exponential Model

Now, bi-exponential analysis proceeds analogously. We consider the following model

S(TE; c1, c2, T21, T22) = c1 exp(−TE/T21) + c2 exp(−TE/T22) (4.1)

where TE is the echo time, and c1, c2, T21, T22 are parameters to be estimated. In spectroscopy, which we

consider here, the noise model is additive white Gaussian noise, namely,

S(TE; c1, c2, T21, T22) = c1 exp(−TE/T21) + c2 exp(−TE/T22) + ν (4.2)

where ν is the noise with the normal distribution ν ∼ N (0, σ2). Now, we set up the unregularized optimiza-

tion problem as follows

argmin
c1,c2,T21,T22

∥∥∥c1 exp (−TE/T21) + c2 exp (−TE/T22)− d
∥∥∥2
2

s.t. c1 ≥ 0

c2 ≥ 0

T21 ≥ 0

T22 ≥ 0

(4.3)

where TE is the echo time, d is the signal data of one noise realization. To recover the parameters of the

underlying bi-exponential model accurately, we need to study and compare the performance of these solvers

in Section 2.2. The criteria that we use to compare these solvers are

• If the solver achieves a local, global minimum of loss function or not, and

• At the same condition number of the Jacobian matrix J of bi-exponential model, which solver returns

estimators that have small variance, and

• At the same SNR in the synthetic data, which solver returns estimators that have small variance, and

• The processing time of the solvers.

Remark: Different from the goal of our project, which is to estimate T21, T22 given known c1, c2, this sec-

tion tests the accuracy and robustness of each optimization solver, so the tests in this section are implemented

for four-parameter estimation (Estimating for c1, c2, T21, T22 simultaneously).

4.1 Global Optimum Check

In principle, we prefer solvers that could find a global optimum of the loss function, and that are more stable

and fast. By Figure 3, we find that the loss function (4.3) has a relatively smooth landscape, but there is a

huge area near the global optimum where the landscape is almost flat. For this specific noise realization, all

solvers could reach the global optimum well. We plot the projection of estimators by individual solvers on
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the T21 − T22 plane, where the green point is the true parameter (50, 90), the closest to it is the estimator

by Levenberg-Marquardt, then followed by MADS and VARPRO, respectively.

Here, we consider the model that G(p) = 0.7 exp(−TE/50) + 0.3 exp(−TE/90), where TE is the echo

time, which is a vector 8 : 8 : 256 in milliseconds. To generate the data d for one noise realization, we

set SNR = 1000. In the Table 1 below, we enumerate the estimator returned by individual optimization

solver, and the corresponding value of loss function. To compare, we also generate the noiseless data d, i.e.,

Table 1: Estimators with corresponding value of loss function, SNR = 1000

Solver Estimator Value of Loss Function

Gauss Newton (0.6940,0.3063,49.3361,90.2190) 5.3124e-5
Levenberg-Marquardt (0.6841, 0.3163, 49.4100, 89.1342) 3.6034e-05

MADS (0.6934, 0.3068,49.6449, 89.8818) 3.6052e-5
VARPRO (0.6932, 0.3171, 49.2124, 89.1562) 3.6169e-5

True (0.7, 0.3, 50, 90) 3.7924e-5

d = 0.7 exp(−TE/50)+0.3 exp(−TE/90) to compare the performance of individual solvers. In this noiseless

case, we could offset the influence of the realization of a specific noise, and observe which solver could return

a loss function value as close to zero as possible. From Figure 3b, we observe that the estimates returned by

Levenberg-Marquardt coincide with the true parameters T21 = 50, T22 = 90.

Table 2: Estimators with corresponding value of loss function, noiseless data

Solver Estimator Value of Loss Function

Gauss Newton (0.6908, 0.3092, 49.4642, 89.3857) 2.4257e-5
Levenberg-Marquardt (0.7000, 0.3000, 50.0000, 90.0000) 9.4217e-25

MADS (0.6925, 0.3050,49.4024, 89.0207) 1.1302e-7
Varpro (0.6950, 0.3048, 49.7285, 88.6095) 2.1828e-07

True (0.7, 0.3, 50, 90) 0

(a) Data with SNR = 1000 (b) Noiseless data

Figure 3: Landscape of loss function and estimators by various solvers.

To check if estimators are at least critical points, we do a sanity check to see if the Karush-Kuhn-Tucker

conditions are met. To do so, we set up the following optimization problem

13



argmin
c1,c2,T21,T22

∥∥∥c1 exp (−TE/T21) + c2 exp (−TE/T22)− d
∥∥∥2
2

s.t. − c1 ≤ 0

− c2 ≤ 0

c1 − 1 ≤ 0

c2 − 1 ≤ 0

− T21 ≤ 0

− T22 ≤ 0

T21 − T22 ≤ 0

T21 − 200 ≤ 0

T22 − 200 ≤ 0

We now define the corresponding Lagrangian function. First, since we do not have any equality constraints,

then there are no equality terms in the Lagrangian function. Second, the complementary slackness property

holds, so the inequality constraints are inactive and the optimum values are within the interior of feasible

region. Hence, the Lagrangian function is the original loss function. This coincides with Figure 3, since the

optimum values are indeed not achieved on the boundary of domain. Therefore, the Lagrangian function

degenerates to the loss function, so it suffices to check the gradient of Lagrange function with respect to the

parameters, and we list them below as

Table 3: Gradient of Lagrangian function evaluated at estimates (SNR = 1000)

Solver Gradient of Lagrangian Function at Estimator

Gauss Newton (-1.0692e-2, -1.0173e-2, -2.0430e-5, -1.2058e-5)
Levenberg-Marquardt (2.4983e-4, 3.7184e-4, 3.9016e-6, 2.4022e-6)

MADS (-2.2528e-4, -3.3072e-4, -3.1190e-6, -2.0495e-6)
VARPRO (-3.0673e-4, -5.4640e-4,4.7554e-6, 4.1402e-6)

True (0.0031, 0.0042, 4.5848e-5, 1.4530e-5)

Table 4: Gradient of Lagrangian function evaluated at estimates (Noiseless landscape)

Solver Gradient of Lagrangian Function at Estimator

Gauss Newton (-2.7845e-2, -1.0548e-2, -1.4572e-5, -1.1307e-5)
Levenberg-Marquardt (0, 0, 0, 0)

MADS (-1.6358e-4, -1.4972e-4, -2.6832e-6, -1.4820e-6)
VARPRO (-2.8575e-4, -3.8534e-4,3.5712e-6, 3.8962e-6)

True (0, 0, 0, 0)

Indeed, we find that the estimator returned by Levenberg-Marquardt has the minimum norm of gradient

in the noiseless landscape, so according to the sanity check it is a local critical point, and from the landscape

plot, a global minimizer.
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4.2 Performance Regarding the Conditioning of the Model

The second criterion to compare the performance of these solvers is to study their stability of the estimators

with respect to the conditioning of the model G = c1 exp(−TE/T21) + c2 exp(−TE/T22). Then under this

criterion, for a fixed conditioning of the model, the optimal solver should be able to return estimators with

relatively small variance. In other words, both in the well-conditioned and ill-conditioned case of model G,

the optimal solver is supposed to show better stability.

First, we will study the conditioning of model G(p), where p = (c1, c2, T21, T22).

p∗ = argmin
p

∥∥∥G(p)− d
∥∥∥2
2

(4.4)

where we have G : RN → RM . However, since G is a nonlinear model with respect to the parameters, we

perform a first-order approximation of the j−th element of G(p) about a vector p0

Gj(p) ≈ Gj (p0) +
∑
l

δGj
δpl

∣∣∣∣∣
p0

· (pl − p0,l) (4.5)

Therefore, we denote by J be the Jacobian matrix of G evaluated at p0, namely

Jjl =
δGj
δpl

∣∣∣∣
p0

Then, Eq.(4.4) becomes

p∗ = argmin
p

∥∥∥Jp +
(
G (p0)− Jp0 − d

)∥∥∥2
2

(4.6)

where G(p0) and Jp0 are constants. Therefore, we could study the conditioning of the original model G by

studying its Jacobian matrix J. For a particular example, we take

G(p) = 0.7 exp(−TE/50) + 0.3 exp(−TE/T22),

where we fix c1 = 0.7, c2 = 0.3, T21 = 50, and vary T22 within the range [30, 70]. We set the echo time

TE = 8 : 8 : 256 ms, and data d is obtained with SNR = 1000. Then, for this model, we obtain the

Jacobian matrix J of size 32× 4, and we plot its condition numbeer κ(J) vs. T22. As expected, from Figure

4, we observe that as T22 approaches T21, the condition number of Jacobian matrix J becomes larger, so the

problem is more ill-conditioned, and this is the region where our approach of introducing regularization will

work better. On the other hand, as T22 deviates away from T21, we see that we have a more stable model.

Then, we explore the stability of the problem with respect to the T22/T21 ratio and the SNR. Now, keep

all the parameters of the bi-exponential model before, except we let T21 = 60, and T22 = 70 : 20 : 150, so

the T22/T21 ratio is greater than 1. From the Figure 5 below, we also observe that the T22/T21 ratio could

be used to measure the stability of model G. Then, we perform 100 noise realizations and thus obtain 100

estimators of c1, c2, T21, T22. Hence, we could plot the variance of the resulting estimators vs. T22/T21 ratio.

We observe that for all solvers, their stability is the worst when T21 equals T22. Levenberg-Marquardt’s and

MADS’s performance are close, with Levenberg-Marquardt’s slightly better. VARPRO is the best since it

guarantees great stability in a wide range of T22/T21 ratio. In practice, this robustness is very important

since we need the stability to deal with different set of T22 values.
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Figure 4: Condition number of the Jacobian matrix J of model G vs. T22, where G(p) = 0.7 exp(−TE/50)+
0.3 exp(−TE/T22). The condition number blows up when T21 = T22 = 50, as J becomes singular.

(a) Variance vs. T22/T21 ratio (b) Variance vs. SNR

Figure 5: Performance of solvers regarding to conditioning and SNR. Left: c1 = 0.7, c2 = 0.3, T21 =
60, T22 = 70 : 20 : 150, SNR = 1000. Right: c1 = 0.7, c2 = 0.3, T21 = 50, T22 = 90, SNR = 100 : 100 : 400.

4.3 Performance Regarding the Signal-to-Noise Ratio (SNR)

In practice, we will observe signal-to-noise ratio (SNR) in a wide range. SNR is defined as the ratio of the

magnitude of signal to the magnitude of background noise, i.e.,

SNR =
Psignal

Pnoise

Therefore, the noise of data decreases as SNR increases. To compare the performance of solvers, we could

study the variance of estimators by individual solvers, in a range of SNR. As expected, in Figure 5, variances

of estimators decrease as SNR increases for all solvers.
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4.4 Processing Time

Another important criterion to consider is the processing time. In Table 5 below, we compare the processing

time for each solver for 100 noise realizations. The processing time is obtained by MATLAB command

tic toc. From Table 5, we observe that Levenberg-Marquardt has the highest speed, while Gauss Newton

and VARPRO also relatively fast.

Table 5: Processing time for different solvers

Solvers Processing Time (sec)

Gauss Newton 5.6103
Levenberg-Marquardt 1.4235

MADS 29.0450
VARPRO 4.4697

4.5 Conclusion

According to the results in each criterion in this section, we conclude MADS, Levenberg-Marquardt and

VARPRO have better performance than Gauss Newton. In our problem, the landscape of loss function is well-

behaved and smooth, so all solvers could achieve a global minimum reasonably well. We choose Levenberg-

Marquardt method as the one which we use for finding the desired range of Tikhonov regularization parameter

λ, since it returns a global optimum of the loss function, relatively stable on different conditioning and SNR

of the problem, and relatively fast processing speed. In the case of multiple existences of local optimum and

a more complex geometry of the landscape of loss function, there are multi-scale optimization algorithms

available in the literature, that could jump out of the local trap and find the global optimum in the feasible

region.

5 Results

5.1 Choosing Optimal λ I: For each Combination of Parameters

In practice, given a prior knowledge of range of parameters, one needs to figure out the value of regularization

parameter λ that possesses the power to improve the average estimation accuracy. Since we choose the MSE

as the metrics to measure the estimators, the goal is to find λ that gives the average MSE less than CRLB.

In other words, instead of trying to find the optimum λ for one possible combination of parameters, we need

to find a λ that gives the best improvement of MSE over CRLB, for all possible combinations of parameters

in a particular range. A preliminary goal is that, to visualize the effects of regularization parameter λ on

each possible combination of T21, T22. This means that, for each combination of T21, T22, we calculate the

regularized MSE of estimators for T21, T22, and find the greatest improvement of MSE over CRLB,

Improvement =
CRLB −MSE

CRLB
(5.1)
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One case that interests an experimentalist is assuming we are given c1 and c2, and we look for the optimal

λ that works for T21 and T22 in some ranges, which we will focus on. Particularly, in our experiment, we set

c1 = 0.5, c2 = 0.5, T21 in the range of 10 : 10 : 70 , T22 in the range of 70 : 10 : 160. Although in theory, T22

could achieve 1500, but the ranges we choose here are broad enough for practical purposes. Then, for each

combination of T21, T22, we calculate the regularized MSE of estimators for T21, T22, and then for each λ,

we calculate the corresponding MSE, and select the λ that gives the best improvement. Therefore, in this

case, the λ that corresponds to each combination of parameters is optimal and thus different. In Figure 6,

each entry in the table is the improvement we defined in (5.1). Therefore, positive, larger values indicate

significant improvment of MSE over CRLB, while negative number means there is no improvement, i.e., the

MSE is alway above the CRLB.

(a) SNR = 10 (b) SNR = 100

Figure 6: Improvements of MSE over CRLB by optimal λ. Positive numbers indicate there is improvement
of MSE over CRLB, and negative numbers indicate there is no improvement. An optimal value of λ was
used for each entry in the figure.

Firstly, in Figure 6, we observe that for SNR = 10, we see the effects of regularization are more significant

than that of SNR = 100, where a large portion of the map shows a huge improvement of MSE over CRLB.

This is due to the fact that in the high noise case, by introducing regularization parameter λ, MSE can

break the theoretical limit of CRLB, since we artificially introduce more bias, and our CRLB only works

for unbiased estimators. Secondly, we observe for both cases of SNR = 10 and SNR = 100, the lower left

corner of the table shows the effects of regularization more obviously, and mitigates when we move to upper

right of the table. This result coincides very well to our conditioning analysis to the bi-exponential model,

since when T22/T21 ratio is close to 1, we have a more ill-conditioned system, and that is the case when

introduction of regularization is more helpful.

Next, we plot regularized MSE vs. λ for different combinations of T21 and T22, for different SNRs. In

Figure 7 , we see when we fix T21 = 50, and vary T22 in the range of 80 : 10 : 120, we observe a relatively

consistent range of λ’s that make MSE less than CRLB. To be more specific, we choose 60 λ’s uniformly in

the log space(−4, 2), and for each T21, T22 combinations, we compute the corresponding regularized MSE of

estimators of T21, the corresponding CRLB, and the relative improvement of MSE over CRLB, with that

particular λ, which we show in the figure below. The connection between Figure 6 and Figure 7 is that, the

values in tables of Figure 6 measure how much MSE dips below the CRLB in Figure 7, and that’s why a

larger and positive value in Figure 6 means more significant improvement, while negative values would mean

MSE always sits above CRLB.

Then, to understand why we have MSE dipping below CRLB, we implement a similar visualization of
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(a) SNR = 10 (b) SNR = 100

Figure 7: MSE vs. λ

bias squared vs. λ and variance vs. λ. For the MSE in Figure 7a, we decompose it into the bias squared

and variance of estimators of T21, and obtain Figure 8. From Figure 8, we conclude that the MSE is mostly

contributed by bias we artificially introduced through regularization parameter λ, where the MSE dipping

below CRLB is caused by the bias squared dipping below CRLB, and we see that variance of estimators

of T21 is decreasing as regularization parameter λ increases, which is what we expect since regularization

should improve the stability of problem.

(a) Bias squared of estimators of T21 vs. λ. (b) Variance of estimators of T21 vs. λ.

Figure 8: Bias squared, variance of estimators of T21 vs. λ, SNR = 10.

5.2 Choosing Optimal λ II: A Strategy When Given a Prior Range of Param-
eters

In practice, one will be given a range of possible values of T21 and T22, and need to give an optimal λ that

works well for all parameters on average. Based on the result that even different combinations of parameters

shall have a relatively consistent range of optimal value of λ’s, we are now finally proposing a strategy of

how to give the optimal λ for a prior range of T21 − T22 parameters. Given a prior range of T21 − T22, we

could compute the average of relative improvement of MSE over CRLB, for all λ’s in the range, and find the

λ that gives the highest possible average improvement we defined in (5.1). In another word, this heat map

now corresponds to a single λ, and we obtain as many heat maps as many λ’s we consider. Then, we repeat

the above procedure for all λ’s in some particular ranges, then we could average the improvement of MSE
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over CRLB, and then chooses the λ that gives the best average improvement. In Figure 9, all entries denote

the improvement of MSE over CRLB we defined in (5.1), and corresponds to the same λ = 1e− 4.

(a) Improvements of MSE with λ = 1e− 4. (b) An example of prior range of T21 − T22.

Figure 9: Improvements of MSE over CRLB by λ. Positive numbers indicate there is improvement of MSE
over CRLB, and negative numbers indicate there is no improvement. A single λ = 1e − 4 over the entire
diagram has been used, which is the main difference with Figure 6. Left: Improvements of MSE over CRLB
with λ = 1e− 4. Right: A particular example of a prior range of T21 − T22, with λ = 1e− 4.

In Figure 9b, we take the prior range of T21 in the range of [40, 60], T22 in the range of [80, 100] as labeled

in the orange area. Then, for this particular heat map with λ = 1e−4, we compute the average improvement

in this prior range, which is 0.3988. Then, we repeat this calculation for all the corresponding region in heat

maps, with respect to different λ’s. Finally, we choose the λ that gives us the best average improvement of

MSE over CRLB within the specific region of parameters. In this particular example, we find the optimal λ

that works best on average is 0.7318, with a average improvement of MSE over CRLB to be 0.5382.

5.3 Practical Applications

To illustrate the practical application of these results, we envision the following scenario: A magnetic res-

onance experimentalist will be making relaxometry measurements on a specific sample. Based on the con-

struction of the sample, it is comprised of two components of equal amount. The signal model will be

bi-exponential, with equal values for c1 = c2 = 0.5.

Given the size and chemical construction of the sample, and its chemical stability and the amount of time

available for study, the SNR will be around 30. Based on the hydration and chemical make-up of the sample,

a plausible range of T21 is 20 − 35 ms, while a plausible range of T22 is 75 − 160 ms. The experimentalist

has no prior expectation of the likelihood, within these ranges, of the true values of T21 and T22; In other

words, the priors are flat over the given ranges. (Note that there are other possibilities, e.g., T21 may be

much more likely to have a value in the center of the given range than it is have a value towards the edges

of the range, but this can be incorporated by performing a weighted average over prior expected values.)

Based on the given values of c1, c2, T21, T22, and SNR, we will first pick a λ using L-curve method,

generalized cross validation, or the discrepancy principle, which are standard approaches and can be found

in Spencer, et al. (2020)9. This will get us a reasonable value of λ to start with.

Next, we fix c1, c2, and for the given SNR, we calculate the MSE for every pair of T21, T22 over many
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noise realizations. We will also calculate the corresponding CRLB. Then, we can calcuate the ratios of

MSE/CRLB for every pair of T21, T22.

After this, we will average MSE/CRLB within the plausible ranges of T21 and T22. Now, we repeat

this for a range of λ’s, which will be guided by the general shape of plots shown in this report. We find

some values of λ giving MSE/CRLB less than 1 and we select the optimal λ which achieves the greatest

improvement.

6 Validation

To test our results, we use mono-exponential model as an example to illustrate the similarity and differences

between numerical and theoretical analysis. By the work by Box, et al. (1971)2, we are able to explicitly

approximate the bias of the estimators of the nonlinear parameter estimation model. Also, by the work by

Spencer, et al. (2020)9, we could compute the covariance matrix of the estimators, then obtain the variance.

Therefore, we are able to calculate the MSE directly by the relationship among them. In Figure 10 and

Figure 11 we compare the results obtained numerically and theoretically. Regarding the bias of estimators,

we observe from Figure 10a and Figure 10b that the general shape of both results coincide very well, while

the theoretical result deviates from the numerical result by a scaling factor that depends on the particular

parameters, and this is because that the work by Box, et al. (1971)2 is only a local first order approximation

of the bias in the nonlinear parameter estimation, so there will be differences to numerical solutions, and in

real application, we should follow the results obtained numerically. On the other hand, regarding variance of

estimators, from Figure 11, the variance of estimators obtained numerically and theoretically coincide very

well.

(a) Numerical Results (b) Theoretical Calculation

Figure 10: Bias of estimators of T vs. λ, where c = 0.5, T = 70, and TE = 8 : 8 : 128 ms, SNR = 100. Left:
Numerical results using Levenberg-Marquardt. Right: Theoretical calculation using results from Box, et al.
(1971)2.
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(a) Numerical Results (b) Theoretical Calculation

Figure 11: Variance of estimators of T vs. λ, where c = 0.5, T = 70, and TE = 8 : 8 : 128 ms. Left:
Numerical results using Levenberg-Marquardt. Right: Theoretical calculation using results from Spencer, et
al. (2020)9.

7 Project Schedule and Milestones

• September - October 2020: Define the project. Set up goals for the project. (finished)

• November 2020: Write and implement codes for solving the bi-exponential model data, including

Levenberg-Marquardt, VARPRO, MADS, etc. (finished)

• December 2020: Validation and interpretation of results. (finished)

• February 2021: Write and implement codes for solving the mono-exponential model data, and compare

results to those of bi-exponential model. (finished)

• March - May 2021: Propose strategy to select optimal regularization parameter, visualization of results,

wrap up the project. (finished)

8 Future Work

The methods and strategy we proposed in this report could be easily generalized to other common biomedical

MRI models. Originally, we planned to study some of these models within the scope of this project, but

later we decided it is more important to study bi-exponential model thoroughly and completely, and provide

deeper insights into the project. Having said that, we still list them here as a reference for possible future

work, and each model itself could be expanded to a independent project.

• Stretched-exponential model10

S(t;α,D) = S0 exp (−(tD)α)

where α is the stretching constant (0 ≤ α ≤ 1), and D denotes the distributed diffusion parameter.

S(t;α,D) and S0 denote signal intensities with and without diffusion weighting, respectively. t repre-

sents the measurement times at which we measure the signal intensities. This model arises from some

models of restricted diffusion.
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• Diffusion kurtosis model10

S(t;D,K) = S0 exp (−tD + t2D2K/6)

where D represents mean diffusivity, and K represents mean kurtosis. S(t;α,D) and S0 denote signal

intensities with and without diffusion weighting, respectively. t denotes the measurement times at

which we measure the signal intensities. This model is a first-order approximation to non-Gaussian

diffusion.

9 Implementation and Deliverables

9.1 Hardware and Software

We implement the algorithm on the personal laptop with

• CPU: 2.3GHz Dual-Core Intel Core i5

• Memory: 8GB 2133 MHz LPDDR3

• OS: OS Catalina Version 10.15.6

The software we use is MATLAB R2020b.

9.2 Deliverables

• Datasets: All mono-exponential and bi-exponential model signals are synthetic data, generated by the

model and additive white Gaussian noise.

• MATLAB codes: The folder “ns biexp” contains the driver codes for visualization of final results on

strategy of choosing optimal regularization parameter. The folder “biexp” and “monoexp” contain

codes of optimization solvers, validation and testing results for bi-exponential and mono-exponential

model. The link to MATLAB codes is referenced here https://github.com/zsong2019/AMSC664.

• Trained estimators of models: We have many saved data of estimators of bi-exponential model, from

which we perform statistical analysis, including bias, variance, MSE, etc.

• Documents including the proposal, the presentation slides, the mid-year report and final report, etc.

10 Conclusion

In the final report, we analyze the mono-exponential model and bi-exponential model, and implement differ-

ent solvers to fit for the optimal model parameters. We also improve the stability of estimators by introducing

an regularization term to the nonlinear least squares loss function, which reduces the MSE over the CRLB

of parameters. Most importantly, we answer the question that, instead of having the prior information

about the accurate values of the parameters of the model, we are given a prior range of the possible values
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of parameters, and we find out a method to give an optimal regularization parameter that on average, an

experimentalist will get a better improvement of MSE over CRLB, which is of great practical value.

A possible future direction of the work is to assume we have information about T21, T22 values, and

estimate for the component fractions c1, c2, or we estimate the four parameters simultaneously. Our idea of

introduction of regularization could then be applied to other common biomedical MRI models.

11 Bibliography

References

1. Mustapha Bouhrara and Richard G Spencer. Fisher information and cramér-rao lower bound for exper-

imental design in parallel imaging. Magnetic resonance in medicine, 79(6):3249–3255, 2018.

2. MJ Box. Bias in nonlinear estimation. Journal of the Royal Statistical Society: Series B (Methodological),

33(2):171–190, 1971.

3. Yonina C Eldar. Uniformly improving the cramér-rao bound and maximum-likelihood estimation. IEEE

Transactions on Signal Processing, 54(8):2943–2956, 2006.

4. Ata Kabán. Non-parametric detection of meaningless distances in high dimensional data. Statistics and

Computing, 22(2):375–385, 2012.

5. Zhi-Pei Liang and Paul C Lauterbur. Principles of magnetic resonance imaging: a signal processing

perspective. SPIE Optical Engineering Press, 2000.

6. Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

7. Dianne P O’leary and Bert W Rust. Variable projection for nonlinear least squares problems. Compu-

tational Optimization and Applications, 54(3):579–593, 2013.

8. Calyampudi Radhakrishna Rao, Calyampudi Radhakrishna Rao, Mathematischer Statistiker, Calyam-

pudi Radhakrishna Rao, and Calyampudi Radhakrishna Rao. Linear statistical inference and its appli-

cations, volume 2. Wiley New York, 1973.

9. Richard G Spencer and Chuan Bi. A tutorial introduction to inverse problems in magnetic resonance.

NMR in Biomedicine, page e4315.

10. Jianjian Zhang, Shiteng Suo, Guiqin Liu, Shan Zhang, Zizhou Zhao, Jianrong Xu, and Guangyu Wu.

Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-

weighted imaging in differentiation of renal solid masses. Korean journal of radiology, 20(5):791–800,

2019.

24


	Introduction
	Background
	Project Objectives

	Approach
	General Idea
	Algorithms and Guarantee Analysis
	Grid Search
	Gradient Descent
	VARPRO
	Mesh Adaptive Direct Search (MADS)
	Gauss-Newton Method and Levenberg-Marquardt Method


	Mono-exponential Model
	Nonlinear Least Squares Problem and Analytic Computation
	Regularized Nonlinear Least Squares Estimation

	Bi-exponential Model
	Global Optimum Check
	Performance Regarding the Conditioning of the Model 
	Performance Regarding the Signal-to-Noise Ratio (SNR)
	Processing Time
	Conclusion

	Results
	Choosing Optimal  I: For each Combination of Parameters
	Choosing Optimal  II: A Strategy When Given a Prior Range of Parameters
	Practical Applications

	Validation
	Project Schedule and Milestones
	Future Work
	Implementation and Deliverables
	Hardware and Software
	Deliverables

	Conclusion
	Bibliography

