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1 Introduction

1.1 Background

As computer power grows, along with the introduction of new technology, computational
fluid dynamics (CFD) allows researchers to explore fluid related questions without expensive
prototypes or complicated experiments. Many important applications of CFD involve the
crucial inclusion of turbulence in the system. In the ocean, turbulence ranges from eddies
with scales set by the size of the turbulent boundary layers (orders of 10s of meters), down to
the molecular level where viscosity dissipates energy. Large-eddy simulation (LES) is one of
the most promising methodologies for simulating turbulent flows. LES resolves the largest
eddies and eliminates the smaller motions through physically motivated models, allowing for
a computationally feasible and accurate method.22 Unfortunately, the complex geometry in
the flows involved in many scientific inquiries can be challenging and costly for most LES
systems.7

One of the largest applications of CFD, modeling the ocean and atmosphere, often requires
implementing aspects of LES. With recent pushes for updating the commonly used modeling
practices and parameters, the Climate Modeling Alliance (CliMA) aims to build a climate
model from scratch that will simulate small-scale ocean physics at high resolutions.21 As
part of this project, they are developing the “fast and friendly” software package, Oceanani-
gans, to solve the incompressible fluid problems of the ocean.21 Written in Julia, the package
supports LES and Direct Numerical Simulations on both CPUs and GPUs. Oceananigans
aims to create a user-friendly interface, allowing researchers to “focus on the science,” while
relying on algorithms that will run as fast as possible.21 While Oceananigans has a function-
ing LES package, the group continues to improve the algorithms and add more capabilities
for scientists to utilize.24 However, they lacked the ability to represent solid boundaries
in the fluid, severely limiting its utility for scientific problems involving flow-topography
interaction.

Through this work, we implement the immersed boundary method (IBM) within Oceanani-
gans to assist in answering the many research questions involving flow along and over to-
pography. The aspects of the implementation were chosen to best benefit the application of
the method to geophysical problems. We found that most of the literature focused on more
engineering aspects, which will have different goals and complexities than that of ocean
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flow.8,19,20 Through studying flow around a cylinder, we found good agreement between
our implementation and that of other numerical and experimental results.8,20 Due most
likely to our choices favoring geophysical applications, we did encounter some differences
in our results compared to similar IBM codes.20 Some of these differences, showed better
convergence and accuracy, while other aspects were not as favorable. However, taking into
consideration the accuracy of the parameterized models that ocean simulations already rely
on, we have successfully created a tool for scientists to use in their studies of topography in
turbulent flows.

1.2 Motivation

Figure 1: Vertical sections of po-
tential vorticity along the Great Ba-
hamas Banks, adapted from Gula

An important aspect of ocean modeling is the inclusion of
topography in the system. The interaction of terrain with
the ocean could be one of the major pathways of extract-
ing energy from mesoscale flows (10-100 km), creating
unbalanced submesoscale (0.1- 10 km) turbulence.10 The
influx of energy into these smaller flows can lead to ele-
vated local dissipation and mixing outside of the oceanic
boundary layers, of significance to the energy budget for
general circulation.10 While, in horizontal flow, the bot-
tom boundary layer (BBL) is usually relegated to just
a thin layer near the bottom, if you introduce more re-
alistic topography, such as a sloping bottom, this could
separate through increased instability. The topography
generates vertical vorticity or relatedly, low potential vor-
ticity, which is susceptible to submesoscale instabilities.
Once unstable, the vorticity can generate secondary in-
stabilities, that will then enhance turbulence.17,27 This
effect can be seen in the results of a simulation from
Gula,10 shown in Figure (1), where currents flowing along
the slope of the Great Bahamas Banks generate negative
potential vorticity within the BBL (a). This layer sepa-
rates from the slope (b) and mixes with the interior, caus-
ing instabilities and energy dissipation (c,d).10 These dy-
namics due to topography interactions could also impact
the mixing of nutrients or oxygen from the bottom of the
ocean.28 To consider these topography related problems,
one must use a turbulence resolving simulation such as
LES, but currently there are not many options for sci-
entists to add terrain in LES. By developing a way to
implement topography into LES that is widely available
and easy to use, we can assist many scientists in their
inquiries into these physical scenarios and give Oceanani-
gans an advantage over many LES codes currently in use.

1.3 Methodology

1.3.1 Immersed boundary method

One alternative to the complicated methodologies used in modeling complex geometries and
topography is the immerse boundary method (IBM). In this method, instead of using meshes
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to conform to the terrain or solid body, as depicted in Figure (2a), topography is represented
by an “immersed boundary” that can arbitrarily intersect a standard Cartesian grid, as in
Figure (2b). Then the boundary conditions are applied along the IB by modifying the
governing equations through a forcing term.1,19 In this way, you can employ many types of
boundary conditions onto whatever shape the surface has, while still maintaining a simple
Cartesian grid, easily refined and implemented.19 By implementing IB methods in LES
code, we can study these important questions involving small-scale ocean interactions with
topography.

Figure 2: Sketch of IBM vs Common Alternative

(a) Grid generated to conform to solid body (b) Grid generated regardless of immersed object

2 Implementation

2.1 Oceananigans Temporal Discretization

To discuss the changes we have made to include IBM, first we must look at how Oceananigans
solver works without IBM. Consider the typical spatially-filtered, incompressible Boussinesq
equations,21 with the inclusion of an arbitrary tracer,

∂tu+ (u · ∇)u+ (f −∇× us)× u = −∇φ+ bẑ −∇ · τ − ∂tus + Fu (1)

∂tc+ u · ∇c+ U · ∇c+ u · ∇C = −∇ · qc + Fc (2)

∇ · u = 0. (3)

This gives the equation for the velocity vector u, including f , the Coriolis parameter, b,
buoyancy, τ , the kinematic stress tensor, and φ the the potential associated with both
kinematic and constant hydrostatic contributions to pressure. The superscript, s, indicates
stokes drift, and F indicates internal forcing on the associated field. In the tracer equation
for c, capital letters represent the background fields and q, the diffusive flux.
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After discretization, the time-integral of the momentum equation is given by the following,21

Un+1 −Un =

∫ tn+1

tn

[
−∇φnon −∇φhyd − (U · ∇)u− f ×U +∇ · τ + Fu

]
dt

=

∫ tn+1

tn

[
−∇φnon +Gu

]
dt

≈ −∆t∇φn+1
non +

∫ tn+1

tn

Gudt.

Oceananigans implements a fractional step method where non-hydrostatic pressure, ∇φnon,
is treated implicitly while the rest of the terms on the right hand side, defined as the
tendency, Gu, are treated explicitly.21 The non-hydrostatic pressure is calculated to ensure
that the velocity field at n + 1 is divergence-free. Oceananigans uses a third order Runge-
Kutta scheme with pressure correction, produced by Le and Moin.15 At the kth stage of the
time stepper, the velocity is updated by

Uk = Uk + γk∆tGk + ζk∆tGk−1, (4)

where Gk is the tendency calculated prior to the kth stage of the time stepper and γk, ζk are
Runge-Kutta coefficients. Then the velocity is corrected for the non-hydrostatic pressure by

Uk = Uk −∇φk
non∆t(γk + ζk). (5)

For the tracer equations, the model time steps with the same Runge-Kutta method, but
ignores the pressure correction step, as pressure is not included in those equations. It is
within this part of the model that the IBM forcing is added, between the Runge-Kutta
sub-step and the pressure correction of the velocity.

Figure 3: Depiction of the staggered
Arakawa C-Grid used by Oceananigans21

Oceananigans also implements a staggered
Arakawa C-grid which shifts the evaluation of
the velocity quantities on the edges of the tracer
equations, as seen in Figure (3).21 This will add
complications to our IBM implementation that
will be discussed in the following sections.

2.2 IBM Implementation

This section describes the implementation of
IBM within Oceananigans. The algorithm
based on this description can be found in Ap-
pendix A.

2.2.1 Treatment at the boundary

After time stepping the velocities and tracers
forward during a certain stage of the Runge-
Kutta method, we want to alter the equations,
so that the desired immersed boundary condi-
tions hold. Other IBM versions implement a
predictive step, and correct the tendency terms before the time stepping.2,19 We found that
this adds both computational cost and time, without quantitative differences in the results,
so we used the ordering above, “masking” the quantities in the model. Unfortunately, the
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location of the boundary does not often coincide with the nodes in complex geometries,
meaning that our boundary will cut through cells in between nodes. To enforce the bound-
ary conditions on the desired boundary, we must use interpolation and alter nearby nodes
instead. These nearby nodes are called “immersed” nodes.

2.2.2 Classification of nodes

As discussed above, given the location of the solid surface, we need to be able to classify
which nodes are immersed nodes, solid nodes, and fluid nodes. Since there will also be geo-
metric calculations later on where it will be valuable, users give the model a signed distance
function, φ(x) that returns the shortest distance to the given boundary and the normal
vector. If the coordinate is within the solid (fluid), the distance will be negative (positive).
The immersed nodes, are then classified as solid nodes (negative) that have at least one
neighboring fluid node (positive). Given a solid node, one can check the surrounding six
nodes that share edges with the solid node, the “neighbors” of the node, for any fluid nodes.
Since the model is not aware of the immersed solid, for higher order advection schemes one
can include several layers of immersed nodes within the solid, merely by widening the radius
of what is considered a “neighboring node.” Note, that the velocities are enforced on the
faces of the cell, as in Figure (3), with tracers in the center. For an arbitrary boundary, node
identification must be performed separately for each velocity component and cell centered
tracer, to better represent the boundary on a staggered grid.20 For a stationary boundary,
classification could be performed once at the beginning and one could store the values for
use later on. Unfortunately, this adds considerable storage, which for use on GPUs could
be problematic for larger simulations. For this implementation, the classification is done at
every time step.

2.2.3 Reflection over the boundary

Once the nodes are classified, we can then work specifically with the immersed nodes to force
the boundary. Consider a boundary, that arbitrarily intersects the grid, such as the one
depicted in Figure (4). One layer of immersed nodes, based on the classification in Section
2.2.2, are represented by the letter I. We will focus on the immersed node, xI , denoted in
the figure. We want to determine a value to enforce, so that the boundary condition is
correct at the nearest point along the boundary, marked in blue as point xb. The boundary
point is determined by the intersection of the boundary and the surface normal vector n
that passes through xI . By using the distance function from our classification, we can
calculate the surface normal at a point as ∇φ(x). To interpolate, we also need physically
motivated velocity in the fluid. This is done by reflecting the node xI over the boundary in
the direction of n into the fluid, thereby obtaining the point xR, in red. While xR is not
necessarily a node, we have surrounding fluid nodes, Fr, such that we can interpolate the
value at xR. Then using the boundary condition and the value at xR, we can determine the
required quantity at xI to ensure the boundary condition holds.20
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Figure 4: Immersed solid with classified immersed nodes and interpolation over the boundary

There are several popular interpolation techniques, but we will use the bilinear (trilinear
for 3D) interpolation that Nasr-Azadani and Meiburg employ.20 This gives us second order
spatial accuracy and good stability for the numerical solution. Then for a quantity of
interest, q, the value at reflected node, xR = (xR, yR), in 2D is given by

qR =
4∑

j=1

wjqj, (6)

with interpolation coefficients of

w1 = αβ w2 = (1− α)β

w3 = α(1− β) w4 = (1− α)(1− β)

where α = xi+1−xR

xi+1−xi
and β =

yj+1−yR
yj+1−yj . The indices i, j are given by the fluid node to the

left and to the south respectively, of the point xR, as seen by the node F4 in Figure (4).
Just as node classification will have to take place separately for each velocity and cell-
centered quantities, due to the staggered grid, we will have to determine these interpolation
coefficients and reflected values independently for each quantity of interest.

2.2.4 Projection into tangential and normal components

For the geophysical applications of this work, the velocity boundary conditions are more
useful if broken into tangential and normal components instead. One always knows that
they do not want flow entering the ground (zero normal velocity), and researchers often
want to include some kind of forcing in the tangential direction that can mimic drag along
the surface. Therefore, for this implementation, we project the velocity components V =〈
u, v, w

〉
into tangential and normal components V =

〈
V t1, V t2, V n

〉
before interpolating

over the boundary.

The projection is based on the surface normal vector used to reflect over the boundary.
Given a normal vector, one can find two orthonormal vectors in 3D space that represent
the two tangential directions. To keep things uniform, in 2D, the first tangential direction
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is always to the right of the normal vector in the x-y plane. One can see the projection of
a velocity vector (purple) into tangential and normal components around a circle in Figure
(5). The lighter arrows represent the positive normal and tangential directions at each point.
The three unit normal and tangential direction vectors create a 3×3 projection matrix. The
velocity vector can be multiplied by this calculated projection matrix to give the tangential
and normal components, and by its inverse to return to cartesian components.

Figure 5: Projection of a given 2D velocity, ~V into tangential and normal components, at different
locations around a circle, detailing the projection method used in IBM

Now, at each reflected node, the trilinear interpolation must be done for all three velocity
components,

〈
u, v, w

〉
. Then the velocity is projected into normal and tangential components〈

V t1, V t2, V n
〉
. Using tangential and normal boundary conditions, the projected velocity at

xR can be interpolated to xI . Since the model values are still given in cartesian components,
the velocity at xI must be projected back. It was discussed in Section 2.2.3, that the
reflection process is done independently for each velocity component. Therefore, once we
have projected back at the immersed node xI into cartesian velocity components, we are only
going to “mask” the component we are working on at the time. The projection process means
we interpolate 9 times for a given cell, but the added benefit to researchers mitigates added
computational costs. Fortunately, as tracers are not vectors, we only project in the case of
the three momentum equations. Projection is not done in most IBM implementations, and
could cause differences in our results in comparison, as will be discussed in Section 4.1.

2.2.5 Boundary conditions

Given a quantity q, we can assume that we have the reflected value qR, the distance between
the points L = |xI − xb|, and the unit normal vector n. Then for a Dirichlet boundary
condition of q(xb) = qb, we can determine qI from linear interpolation along n, giving

qI = 2qb − qR.

For a Neumann boundary condition at the point xb, we would have ∂q
∂n

∣∣
b

= ab, such that if
we discretize the left hand side with a central difference along n, we find

qR − qI
2L

= ab
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Therefore, the value at xI , can be given by

qI = qR − 2 ab L.

2.3 Internal treatment of the immersed body

This process only holds at the boundary where you have boundary conditions to enforce,
so some thought must be given to the treatment of the nodes within the solid that are not
at the boundary. For this internal treatment, there are several possibilities, as described
by Fadlun.7 One could apply forcing within the body, leave the quantities within the body
free to develop without alteration, or enforce a reflected velocity distribution that continues
the linear profile of the fluid. In all of them it was found that the external flow remains
unchanged as long as the boundary remains the same. Therefore, Fadlun suggests that
the easiest treatment be used. For our implementation, we have forced the velocity and
tracer values to zero, allowing the pressure to adjust accordingly. This will result in some
unphysical flow within the body, but will not impact the simulated fluid.

3 Results

To demonstrate the accuracy and convergence of the IBM implementation we use several
case studies involving flow around a circular cylinder.

3.1 Steady State Flow

First we will look at steady state flow around a cylinder, as it has been extensively studied,
with many experimental and numerical results, including those with IBM implementation.
We will be comparing our results to those collected by Fornberg and those from the Nasr-
Azadani and Meiburg IBM implementation.8,20 The specifications of the flow are given
by very few parameters. The flow dynamics depend on the Reynolds number, which we
will define as ReD = U∞D/ν, with U∞ the free stream velocity, D the diameter of the
cylinder, and ν the kinematic viscosity of the fluid. We will focus on steady-state flow,
with ReD = 40. The simulation was determined to reach steady state when the norms of
the pressure and velocity changes in time were smaller than 10−5, as described in Figure
(7). Figure (6) describes the specifications of the problem. Periodic boundary conditions
were used along the left and right sides of the the domain, and we imposed a vertical
inflow and outflow velocity of v = U∞ = 1. Our simulations were run with a cylinder
of diameter D = 2. To minimize the impact of the outer boundary on the flow near the
cylinder, our simulations were carried out on domains of Lx × Ly = 10D × 15D. The
cylinder was centered at (xc, yc) = (Lx/3, Ly/2), for the same reason.20 Table 1 gives
information about the grid resolution for the studies used for validation and convergence.
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Figure 6: Diagram of domain and
probelm specifications used for steady
state case study

∆x = ∆y 0.04 0.08
nx 500 250
ny 750 375
∆t 0.0057 0.0228

Table 1: Resolution for steady state studies

Figure 7: “Steady State” numericallly deter-
mined by when the model variables, velocity and
pressure, vary less than O(10−5) in time

3.1.1 Fluid characteristics around the cylinder

One can see the depiction of flow from the simulation though the streamlines in Figure (8).
The arrows show the direction of flow and the separation of the boundary layer around the
cylinder, creating the characteristic, symmetric twin vortices within the wake. The red line
through the center corresponds to the recirculation length or wake length, Lw, extending
from the back stagnation point on the cylinder to the end of the wake. The end of the wake
is determined by the point where the velocity along the vertical center of the domain crosses
from negative (recirculation) to positive values (uniform flow). The values of Lw obtained
by the current study, scaled by the diameter, show some reasonable agreement with results
from other authors, as indicated in Table(2). While these lengths are varied, our results
are within 13% and 10% away from the mean. This could be due to the other boundary
interaction dampening the wake length. It is encouraging that with grid refinement, the
wake length begins to converge.
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Figure 8: Streamlines around a cylin-
der for steady state flow with ∆x =
0.04, with marked wake length, Lw

Study Lw/D
Current Study, ∆x = 0.04 2.02
Current Study, ∆x = 0.08 2.01
Ta 2.13
Fornberg 2.24
Ye et al. 2.27
Nasr-Azadani et al. 2.26
Dennis and Chang 2.35
Mean 2.25
Std Dev 0.08

Table 2: Comparison of wake length from steady
state simulations to experimental and numerical re-
sults8,20

Study pstag Error
∆x = 0.04 0.585 3.0%
∆x = 0.08 0.59 3.3%
Mean8,20 0.571

Table 3: Comparison of stagnation pressure to the
mean stagnation pressure from the same studies as
above

The contour plots in Figure (9) depict the velocity and pressure distribution near the cylinder
after the simulation reached a steady-state solution. Within the velocity contours of Figure
(9a) one can clearly see the wake formed once the solution reached steady-state flow, as
depicted in the streamlines. Figure (9b) also demonstrates that the pressure contours are
normal to the cylinder surface, as is prescribed by the analytical steady-state problem. One
can see nonphysical pressure within the cylinder, but as long as our boundary is not moving,
this should have little impact on the flow, as this noise will remain in the solid body. The
larger pressure values within the cylinder, come from the large divergences created over the
boundary via the immersed boundary method. The pressure correction step counteracts
these divergences, creating the unphysical pressure you see here. To check the pressure in
the fluid, we can look at the commonly recorded, front stagnation pressure. This is the
pressure at the point where the velocity is zero before coming in contact with the cylinder.
These values for our studies are given in Table(3). One can see that we are within 3% of
the mean value from several studies, indicating that our results for pressure are in good
agreement despite the noise within the immersed solid.

3.1.2 Fluid characteristics on the surface of the cylinder

We can also consider the results specifically on the surface of the cylinder where the boundary
truly must be enforced. Instead of (x, y) we will look at positions by the angle θ, as measured
counter-clockwise from the right side of the cylinder. This positioning is given in Figure
(10).
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Figure 9: Steady-state flow past a cylinder, ∆x = 0.04

(a) Velocity contours showing wake formation be-
hind cylinder and small magnitude inside of cylinder

(b) Pressure contours normal to the boundary, but
with unphysical values inside the cylinder

To evaluate the accuracy of our model on the surface, we calculated the pressure coefficient,

Cp =
p− p∞
1/2ρU2

∞
.

Here, p is the pressure on the surface, p∞ is the free stream pressure, and ρ is the density
of the fluid.20 The pressure coefficient results for both mesh sizes are compared to data
obtained by Fornberg in Figure (11). Due to the symmetric nature of steady state flow,
we have only plotted the coefficients of the right side of the surface. The increased grid
resolution shows better accuracy and greater adherance to the smooth profile we would
expect.

Figure 10: Angle position
around surface of cylinder

We can also look at the friction coefficient, given by

Cf =
τw

1/2ρU2
∞

= 2ν
∂V t

∂n
,

where τw is the stress at the “wall,” or the surface of the cylin-
der in this case. This is an important quantity for ocean model-
ing, since it it comparable to the stress quantity we will need to
be able model flow near the boundary. The friction coefficient
results for both mesh sizes are compared to data obtained by
Fornberg in Figure (12). One can see the convergence with in-
creased grid resolution. Comparable results by Nazr-Azadani
and Meiburg20 with their IBM implementation were not nearly
as accurate for this measure, as depicted in gray in the figure.
This may be a positive impact of the projection step of this
implementation, as it is not used in the other work.
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Figure 11: Pressure coefficient compared to Fornberg results shows convergence with increased
resolution8

Figure 12: Friction coefficient compared to Fornberg results8 shows better convergence than
Nasr-Azadani and Meiburg results at similar resolution20

Finally, we can consider the velocity tangential and normal to the surface of the cylinder,
which through the projection step, is where the model enforces zero Dirchlet boundary
conditions. Therefore, any nonzero values, are erroneous. These distributions over the
whole cylinder surface are given in Figures (13) and (14) for both mesh sizes. The norms
of the errors in the normal and tangential velocity at the more refined ∆x = 0.04, are
||V n||2 = 0.085 and ||V t||2 = 0.062. These values are only 25% and 18% of the errors
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in the coarse resolution, showing good convergence. About 40% of the velocity error in
this case study can be attributed to the pressure correction step taken after the immersed
boundary “masking.” The rest of the error could be impacted by the process of projecting
into tangential and normal components, but only enforcing one of three derived cartesian
components at the immersed nodes. While the data is noisy, we would not necessarily expect
it to be smooth, merely symmetric. Due to the curvature in the cylinder compared to the
grid spacing, the surface normal and subsequent interpolation could vary greatly between
staggered components of velocity. This could cause the calculated values during analysis to
suffer a degree of variability.

Figure 13: Normal Velocity on steady state flow for both tested resolutions, with error given by
non zero values

Figure 14: Tangential Velocity on steady state flow for both tested resolutions, with error given
by non zero values
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3.2 Inclusion of Tracer in Cylinder Flow

With the above results for the momentum equations enforced with Dirichlet boundary condi-
tions, we will now look at implementing Neumann boundary conditions and the introduction
of a tracer. The velocity boundary conditions will remain the same, but the model will also
include an arbitrary tracer, C, with a diffusivity given by κ = 2/Re.

For the first case, we will continue with the same set up as in the previous studies, using a
Reynolds number of Re = 40, with the original grid size of 500×750 points. On the cylinder
boundary, the tracer is given a Neumann boundary condition of 0, such that it is insulated
from the tracer in the fluid. Theoretically, there should be no change in the amount of
concentration in fluid over time. Then the volume integrated concentration should remain
steady. The simulation was run for 20 seconds, and the percent concentration leakage, as
compared to the initial values was calculated. This is shown in Figure (15). After 20 seconds
there is only a 1.4% increase in the amount of concentration in the fluid. This indicates
that, even though the velocity shows O(10−1) errors and “leakage,” this is not impacting
the tracers at the same magnitude. This could mean that the level of errors in the velocity
will not greatly impact larger applications of this IBM code.

Figure 15: % Leakage of tracer concentration over time for cylinder boundary condition, ∂C
∂n = 0.

Any leakage is unphysical

For the second case, we used an unsteady flow simulation with a Reynold’s number of
Re = 100 and a coarser grid of 350 × 350 points. On the cylinder boundary the tracer is
given a Neumann boundary condition of 1, such that it is leaking tracer into the fluid at
a steady rate. The fluid starts with a concentration of zero. When the normal gradient is
along the cylinder boundary, we can take the volume integrated tracer concentration and
calculate the rate of leakage into the fluid. The theoretical rate of leakage into the fluid
is given by the tracer’s diffusivity, κ, the surface area of the cylinder, and the Neumann
boundary condition,

dC

dt
= κ

∂C

∂n
(πD) = 2κπ.
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Figure 16: Tracer concentration leakage for cylinder boundary condition, ∂C
∂n = 1 compared to

theory. Slopes or rates given for comparison

By calculating the volume integrated concentration of the tracer over time, we can determine
if our results reflect this theoretical rate. This comparison is given in Figure (16). One can
see that the difference between simulation and theory is only 7%, and the concentration is
steadily increasing, despite the larger Reynolds number. This also indicates that a more
developed model will not see large impacts from velocity errors advecting tracer through
the cylinder.

4 Conclusions and Future Directions

4.1 Summary

The implementation of immersed boundaries shows promising results, with errors that can
be scaled as per the user’s requirements through grid refinement. For the test case of uni-
form flow around a circular cylinder, our results show qualitatively good agreement with the
expected flow. The pressure contours are normal to the surface, and we see the symmetry in
the cylinder wake as is desired. There is some variation within the measurements for wake
length, but this could be due to exterior boundary interaction rather than the immersed
boundary. On the surface of the cylinder we see normal and tangential velocity measure-
ments with errors on the order of 10%. This is larger than one would like, but is most likely
an artifact of the projection step and the pressure correction, and can be mitigated with
increased resolution. The pressure and friction coefficients show very good agreement with
the non-IBM, numerical results by Fornberg,8 and indicate convergence of the model with
refinement of the grid size. With the inclusion of tracers, we find that the velocity errors
are not causing a similar magnitude error in the tracers. The errors in the tracer budget
are within reasonable limits for geophysical applications. Ultimately, we have taken the first
steps towards addressing the many unknowns involving flow-topography interactions in the
ocean in the submesoscale.

4.2 Future Directions

With these results we can confidently move forward to applying IBM to topography prob-
lems, such as the breaking of an internal wave approaching a shoaling coast. This topic has
been considered with IBM before by Winters in 201529 and would allow us to investigate
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geophysical applications with comparable results. Winters used a no-slip immersed bottom
boundary slope, which is well within the capabilities of our model. Depictions of the ve-
locity and kinetic energy dissipation rate from the Winters simulation are given in Figure
(17). One can see that the slope has triggered “ejection events” where the near-boundary
fluid moves into the interior, indicated by the yellow arrows. With our immersed boundary
method, we can simulate a bottom slope, such as this one, and determine the impacts of
topography on mixing in the ocean.

Figure 17: Flow topography interactions
along a slope, adapted from Winters29

A large part of our future work will be deter-
mining the impact of the projection method and
the different avenues of its implementation we
could take. Currently the step of projecting the
velocity into tangential and normal components
improves the results of the friction coefficient
and the tangential velocity compared to other
IBM methods,20 but it could be doing worse at
mass conservation with respect to the momen-
tum equations. By only enforcing one compo-
nent of the three, there could be variation near
the boundary, leading to the magnitudes of error
we are seeing.

Among our efforts to include the final implemen-
tation into the next Oceananigans release, we
will also continue to improve the efficiency and
usability of the model. These are some of the
main tenants of Oceananigans,21 and are neces-
sary updates for the IBM implementation to becomes more widely used and appreciated in
LES modeling. We must determine the best way for users to specify the necessary infor-
mation, such as the distance function and individual boundary conditions. Currently the
code is also not running at the necessary speeds. One way to improve speeds would be to
make better use of Julia’s multiple dispatch concept. In Julia, functions can have multiple
definitions as long as each definition has a different combination of arguments, allowing the
programmer to avoid typical nested “if” statements.3 This can greatly speed up the code,
if used smartly. We can also take advantage of Julia’s ability to handle message passing in-
terface (MPI) code. Since our topography remains constant in time and the geometry could
be calculated from the start and stored locally on each processor, IBM can be paralellized,
for improved speeds.20 With some of these specifications and improvements the method can
be confidently released to the public for general use.

4.3 Conclusion

The goal of this project was to determine and implement the best method of including
topography into Oceananigans’ LES code. We wanted it to handle both Dirichlet and
Neumann boundary conditions for the momentum equations as well as an arbitrary number
of tracers. The described implementation has fulfilled these goals. Ultimately the product
will be a tool our team and other researchers can use in future investigations simulating the
separation of ocean boundary layers over rough terrain. By adding this ability to the up-
and-coming Oceananigans, we have opened up new avenues of research which will pave the
way to even more accurate models and simulations that include the impact of topography
on ocean dynamics.
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A Algorithm

Algorithm 1 IBM Algorithm for kth stage of RK3 method

INPUT: U k−1, Qk−1

Update Velocities and tracers with RK step: Uk, Qk, immersed distance function: φ(x)

for Velocity fields do
if Solid Node then

if Immersed Node then
xI = x
n = ∇φ(xI)
L = |φ(xI)|
xb = xI + Ln
xR = xI + 2Ln
Interpolate U = (u, v, w) at Reflected Point: UR

Project UR at Reflected Point: ÛR

Interpolate to Immersed Node: ÛI

Project ÛI back at Immersed Node: UI

Isolate the desired velocity component: UI = UI [idx]
Update velocity Uk(xI) = UI

else
Update velocity Uk(x) = 0

end if
else

Fluid node, so do nothing.
end if

end for

for Tracer fields do
if Solid Node then

if Immersed Node then
xI = x
n = ∇φ(xI)
L = |φ(xI)|
xb = xI + Ln
xR = xI + 2Ln
Interpolate tracer, Q, at Reflected Point: QR

Interpolate to Immersed Node: QI

Update tracere Qk(xI) = QI

else
Update tracers Qk(x) = 0

end if
else

Fluid node, so do nothing.
end if

end for
Correct U k with pressure
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B Github Code

Make sure you are on the vw/arbitrary immersedboundary branch of the repository. The
README.md file in the src directory will direct you to relevant files.

https://github.com/whitleyv/Oceananigans.jl/tree/vw/arbitrary_immersedboundary/

src

C Data and Results

Simulation data can be found in the google drive as .jld2 files. Jupyter, Julia notebooks
from analysis are found as .ipynb files. The papers by Fornberg and Nasr-Azadani and
Meiburg, which contain the data used in comparison to our results, are also included here.
There is also a README file here to explain each of the files.

https://drive.google.com/drive/folders/1B6JDxxg7gUy1wFDT7HVXI5K7GuFqztTS?usp=

sharing
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