Quiz 6, MATH 246, Professor Radu Balan, Tuesday, 19 October 2010

1. [5pts] Find the general solution of:

$$y'' + \omega_0^2 y = \cos(\omega t)$$
 , $\omega_0^2 \neq \omega^2$

Solution

1. The homogeneous equation is:

$$y'' + \omega_0^2 y = 0$$

The characteristic equation is: $r^2 + \omega_0^2 = 0$ and roots $r_{1,2} = \pm i\omega_0$

Hence: $y_1(t) = \cos(\omega_0 t)$, $y_2(t) = \sin(\omega_0 t)$

2. We use the method of undetermined coefficients to find a particular solution. We look for a solution of the form:

$$Y(t) = A\cos(\omega t) + B\sin(\omega t)$$

Substitute into the differential equation:

$$Y'(t) = -\omega A \sin(\omega t) + \omega B \cos(\omega t)$$

$$Y''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$$

$$Y'' + \omega_0^2 Y = A(\omega_0^2 - \omega^2)\cos(\omega t) + B(\omega_0^2 - \omega^2)\sin(\omega t) = \cos(\omega t)$$

Thus

$$A = \frac{1}{\omega_0^2 - \omega^2}, B = 0$$

And a particular solution is

$$Y(t) = \frac{1}{\omega_0^2 - \omega^2} \cos(\omega t)$$

3. The general solution of this equation is:

$$y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{1}{\omega_0^2 - \omega^2} \cos(\omega t)$$

2. [5pts] Find the solution of the initial value problem

$$y''+y'-2y=2t$$
, $y(0)=0$, $y'(0)=1$

Solution

1. First we find the solution of the homogeneous equation:

$$y'' + y' - 2y = 0$$

The characteristic equation is $r^2+r-2=0$ with roots $r_1=1$, $r_2=-2$.

Hence
$$y_1(t) = e^t, y_2(t) = e^{-2t}$$
.

2. Find a particular solution of the nonhomegeneous equation. Using the method of undetermined coefficients, we choose a function:

$$Y(t) = At + B$$

Substitute into equation:

$$A - 2At - 2B = 2t$$

Hence
$$A = -1, B = -0.5$$

And a particular solution is

$$Y(t) = -t - 0.5$$

3. The general solution is

$$y(t) = c_1 e^t + c_2 e^{-2t} - t - 0.5$$

4. We impose the initial conditions:

$$y(0) = c_1 + c_2 - 0.5 = 0$$

$$y'(t) = c_1 e^t - 2c_2 e^{-2t} - 1$$

$$y'(0) = c_1 - 2c_2 - 1 = 1$$

Thus

$$\begin{cases} c_1 + c_2 = 0.5 \\ c_1 - 2c_2 = 2 \end{cases} \rightarrow \begin{cases} c_1 = 1 \\ c_2 = -0.5 \end{cases}$$

Hence the solution of the IVP is:

$$y(t) = e^{t} - 0.5e^{-2t} - t - 0.5$$