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Graph Partitions: Objective Functions
Assume a weighted graph given by the weight matrix W (could be the
adjacency matrix). The goal is to perform a disjoint partition into two
clusters of the vertex set V = S ∪ S̄ that had the largest total weight
inside each cluster while maintaining a low cross-weight between clusters.
Two types of objective functions:
1. Min-edge type criterion (Rayleigh type criterion), or Cheeger constant:

hG = min
S⊂V

|E (S, S̄)|
min(vol(S), vol(S̄))

.

where vol(S) = 1T W 1S =
∑

i∈S di , vol(S̄) = 1T W 1S̄ =
∑

i∈S̄ di , |E(S, S̄)| = 1T
S W 1S̄ .

2. Modularity function, fraction of the edges that fall within the
communities minus the expected fraction if edges were distributed at
random (unweighted case):

max
S⊂V

1
2m

∑
(i ,j)∈(S×S)∪(S̄×S̄)

(
Ai ,j −

di dj
2m

)
, di =

∑
k

Ai ,k .
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Optimization Problems
Second Smallest for ∆̃

The Algorithm is supposed to provide an approximate solution for the
min-edge cut problem of the Cheeger constant

hG = min
S⊂V

|E (S, S̄)|
min(vol(S), vol(S̄))

.

The algorithm has been derived while proving the bound 2hG ≥ λ1.
Implicitely, the second smallest eigenpair solves the optimization problem:

min
e ∈ Rn

‖e‖2 = 1
eT D1/21 = 0

eT ∆̃e
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Spectral Algorithm using the Symmetric Normalized Graph
Laplacian
Algorithm (Spectral Algorithm with ∆̃)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the symmetric normalized graph Laplacian
∆̃ = I − D−1/2AD−1/2, with D = Diag(A · 1) the degree matrix.

2 Compute the second smallest eigenpair: (e1, λ1), with ∆̃e1 = λ1e1
and λ1 > 0 = λ0.

3 Define the partition Ω1 = {k : e1(k) > 0}, Ω2 = {k : e1(k) ≤ 0}. Set
d = 2.

Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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Optimization Problems
MAP and MLE for Balanced Communities

Consider now a slightly different optimization problem. Assume we know
we have a symmetric stochastic block model SSBM(n, 2, a, b) with two
communities of equal size: |Ω1| = |Ω2|. Then the Maximum A Posteriori
(MAP) partition function Z ∈ {1, 2}n coincides with the Maximum
Likelihood Estimator (MLE) and maximizes:

max
Z :|Ω1|=|Ω2|

am11+m22(1− a)mc
11+mc

22bm12(1− b)mc
12

But for equal size communities (== balanced communities),

m12 + mc
12 = n2

4 and m11 + m22 + mc
11 + mc

22 = 2
(

n/2
2

)
≈ n2

4 .

Furthermore, m11 + m12 + m22 = m. Thus, the optimal estimator
maximizes:

max
Z :|Ω1|=|Ω2|

(a(1− b)
b(1− a)

)m11+m22
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Optimization Problems
MAP and MLE for Balanced Communities

Assume a > b. Then a(1−b)
b(1−a) > 1 and maximization of

(
a(1−b)
b(1−a)

)m11+m22 is
equivalent to maximization of the number of intra-edges while have
balanced communities.

max
Z :|Ω1|=|Ω2|

m11 + m22

Equivalently, since m11 + m22 + m12 = m and is invariant to any partition,
the solution minimizes the number of cross-edges m12 subject to balanced
communities:

min
Z :|Ω1|=|Ω2|

m12
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Optimization Problems
MAP and MLE for Balanced Communities (2)

Replace the partition vector Z ∈ {1, 2}n with a sign vector z ∈ {−1, 1}n
so that Zk = 1 iff zk = −1 and Zk = 2 iff zk = +1. Then

zT Az =
n∑

i ,j=1
Ai ,jzi zj = 2(m11+m22)−2m12 = 4(m11+m22)−2m = 2m−4m12

Thus
m11 + m22 = 1

4zT Az + m
2

and the number of cross-edges can be computed using:

m12 = 1
4(2m − zT Az) = 1

4(zT Dz − zT Az) = 1
4zT ∆z

because zT Dz = 1T D1 =
∑n

i ,j=1 Ai ,j = 2m.
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The Quadratic Integer Programs
Balanced communities: |Ω1| = |Ω2| is equivalent to requiring zT · 1 = 0.
Thus we obtain the following optimization problems:

1 Graph Laplacian based Minimization:

min
z ∈ {−1,+1}n

zT · 1 = 0

zT ∆z

2 Adjacency Matrix based Maximization:

max
z ∈ {−1,+1}n

zT · 1 = 0

zT Az

These are NP-hard problems, known as Quadratic Integer Programming.
We study two relaxations: Euclidean relaxation, and SDP relaxation.
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Euclidean Relaxations

The Euclidean relaxation of the QIP

min / max
z ∈ {−1,+1}n

zT · 1 = 0

zT Sz

is obtained by replacing z ∈ {−1,+1}n with ‖z‖2 =
√

n. Here S = ST

stands for ∆ or A. Since different norm values produce same solution up
to scaling, we use instead the unit Euclidean norm relaxation:

min / max
‖z‖2 = 1
zT · 1 = 0

zT Sz
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Spectral Algorithms

Using the Courant-Fisher criterion (related also to the Rayleigh quotient),
the Euclidean relaxation is solved using the second eigenvector of the
corresponding symmetric matrix.
Why the second eigenvector:

1 In the case of ∆̃, 1 is the eigenvector corresponding to the smallest
eigenvalue (λ0 = 0), hence zT 1 = 0 is satisfied automatically by the
second eigenvector.

2 In the case of A, 1 is approximately the leading eigenvector asuming
each node has the same valence. This happens when the adjacency
matrix approximates well its Expected value matrix E[A]. Note: One
can solve exactly (no approximation needed) the optimization
problem max zT Az subject to ‖z‖2 = 1 and zT 1 = 0. The solution is
the normalized eigenvector associated to the largest eigenvalue of
(I − 1

n 11T )A(I − 1
n 11T ).

Radu Balan (UMD) MATH 420: SDP Relaxation April 20, 2023



Integer Programs Spectral Algorithms SDP Relaxation Weighted Graphs Convex Optimizations

Spectral Algorithm using the Graph Laplacian

Algorithm (Spectral Algorithm with ∆)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the graph Laplacian ∆ = D − A, with D = Diag(A · 1), the
degree matrix.

2 Compute the second smallest eigenpair: (e1, λ1), with ∆e1 = λ1e1
and λ1 > 0 = λ0.

3 Define the partition Ω1 = {k : e1(k) > 0}, Ω2 = {k : e1(k) ≤ 0}. Set
d = 2.

Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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Spectral Algorithm using the Adjacency Matrix

Algorithm (Spectral Algorithm with A)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the second largest eigenpair of A: (f2, µ2), with Af2 = µ2f2.
2 Define the partition Ω1 = {k : f2(k) > 0}, Ω2 = {k : f2(k) ≤ 0}. Set

d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The SDP Relaxation

The Semi-Definite Program (SDP) relaxation of the QIP

min / max
z ∈ {−1,+1}n

zT · 1 = 0

zT Sz

is obtained in the following way: First one replaces the variable vector z by
the matrix Y ∈ Rn×n, Y = zzT . Note:

zT Sz = trace(zT Sz) = trace(SzzT ) = trace(SY )

The constraints z ∈ {−1,+1}n is equivalent to Yii = 1. The constraint
zT · 1 = 0 is equivalent to Y · 1 = 0. Additionally, the matrix Y satisfies
also: Y ≥ 0 and rank(Y ) = 1.
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The SDP Relaxation - 2
Putting together all conditions, we obtain the (equivalent!) problem:

min / max
Y = Y T ≥ 0
rank(Y ) = 1

Yii = 1 , 1 ≤ i ≤ n
Y · 1 = 0

trace(SY )

However this problem is not convex, due to the rank constraint. The
convex relaxation, known as the SDP relaxation, simply removes the rank
constraint:

min / max
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
Y · 1 = 0

trace(SY )

In general the result Y is not rank 1, so one approximates it by the leading
eigenvector of solution Ŷ . Note, for Y = Y T ≥ 0, Y · 1 = 0 is equivalent
to 1T Y 1 = 0.
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The SDP Relaxation - 2
Putting together all conditions, we obtain the (equivalent!) problem:

min / max
Y = Y T ≥ 0
rank(Y ) = 1

Yii = 1 , 1 ≤ i ≤ n
Y · 1 = 0

trace(SY )

However this problem is not convex, due to the rank constraint. The
convex relaxation, known as the SDP relaxation, simply removes the rank
constraint:

min / max
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
Y · 1 = 0

trace(SY )

In general the result Y is not rank 1, so one approximates it by the leading
eigenvector of solution Ŷ . Note, for Y = Y T ≥ 0, Y · 1 = 0 is equivalent
to 1T Y 1 = 0.
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The Graph Laplacian SDP

Algorithm (SDP with ∆)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the graph Laplacian ∆ = D − A, with D = Diag(A · 1), the
degree matrix.

2 Solve the Semi-Definite Program:

min
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(∆Y )
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The Graph Laplacian SDP

Algorithm (SDP with ∆ - continued)
3 Find the leading eigenvector of Y , (emax , σmax ), i.e.,

Yemax = σmax emax .
4 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The Adjacency Matrix SDP

Algorithm (SDP with A)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Solve the Semi-Definite Program:

max
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(AY )

2 Find the leading eigenvector of Y , (emax , σmax ), i.e.,
Yemax = σmax emax .
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The Adjacency Matrix SDP

Algorithm (SDP with A - continued)
3 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The Normalized Graph Laplacian SDP

Algorithm (SDP with ∆̃)
Input: Adjacency matrix A ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the symmetric normalized graph Laplacian
∆̃ = I − D−1/2AD−1/2, with D = Diag(A · 1), the degree matrix.

2 Solve the Semi-Definite Program:

min
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(∆̃Y )
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The Normalized Graph Laplacian SDP

Algorithm (SDP with ∆̃ - continued)
3 Find the leading eigenvector of Y , (emax , σmax ), i.e.,

Yemax = σmax emax .
4 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.

This is the SDP counterpart of the spectral algorithm we studied last time.
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Partitions of Weighted Graphs

In this section we rewrite all the previous algorithms in the case of
weighted graphs.
The idea: The Cheeger constant is simply replaced by total cross-weight
between partitions:

hG = min
S

∑
x∈S,y∈S̄ Wx ,y

min(
∑

x∈S Dx ,x ,
∑

y∈S̄ Dy ,y ) , Di ,i =
∑

j
Wi ,j

Solution: replace the adjacency matrix A by the weight matrix W .
Thus we obtain a total of six algorithms: 3 spectral algorithms, and 3 SDP
relaxations; each class using eitherI − D−1/2WD−1/2 , D −W , or W .
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Spectral Algorithm using the symmetric normalized
Weighted Graph Laplacian
Algorithm (Spectral Algorithm with symmetric normalized weighted
graph Laplacian ∆̃)
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the symmetric normalized weighted graph Laplacian
∆̃ = I − D−1/2WD−1/2, with D = Diag(W · 1).

2 Compute the second smallest eigenpair: (e1, λ1), with ∆e1 = λ1e1
and λ1 > 0 = λ0.

3 Define the partition Ω1 = {k : e1(k) > 0}, Ω2 = {k : e1(k) ≤ 0}. Set
d = 2.

Output: Disjoint partition (Ω1,Ω2, ...,Ωd ) of nodes [n] = {1, 2, · · · , n}.
Radu Balan (UMD) MATH 420: SDP Relaxation April 20, 2023



Integer Programs Spectral Algorithms SDP Relaxation Weighted Graphs Convex Optimizations

Spectral Algorithm using the Weighted Graph Laplacian

Algorithm (Spectral Algorithm with weighted ∆)
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the weighted graph Laplacian ∆ = D −W , with
D = Diag(W · 1).

2 Compute the second smallest eigenpair: (e1, λ1), with ∆e1 = λ1e1
and λ1 > 0 = λ0.

3 Define the partition Ω1 = {k : e1(k) > 0}, Ω2 = {k : e1(k) ≤ 0}. Set
d = 2.

Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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Spectral Algorithm using the Weight Matrix

Algorithm (Spectral Algorithm with W )
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the second largest eigenpair of W : (f2, µ2), with
Wf2 = µ2f2.

2 Define the partition Ω1 = {k : f2(k) > 0}, Ω2 = {k : f2(k) ≤ 0}. Set
d = 2.

Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted ∆̃)
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the symmetric normalized weighted graph Laplacian
∆̃ = I − D−1/2WD−1/2, with D = Diag(W · 1).

2 Solve the Semi-Definite Program:

min
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(∆̃Y )
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The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted ∆̃ - continued)
3 Find the leading eigenvector of Y , (emax , σmax ), i.e.,

Yemax = σmax emax .
4 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The weighted Graph Laplacian SDP

Algorithm (SDP with weighted ∆)
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Compute the weighted graph Laplacian ∆ = D −W , with
D = Diag(W · 1).

2 Solve the Semi-Definite Program:

min
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(∆Y )
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The weighted Graph Laplacian SDP

Algorithm (SDP with weighted ∆ - continued)
3 Find the leading eigenvector of Y , (emax , σmax ), i.e.,

Yemax = σmax emax .
4 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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The Weight Matrix SDP

Algorithm (SDP with W )
Input: Weight matrix W ∈ Rn×n.
If the graph is not connected then produce a disjoint partition
(Ω1,Ω2, ...,Ωd ) into connected components.
Else:

1 Solve the Semi-Definite Program:

max
Y subject to
Y = Y T ≥ 0

Yii = 1 , 1 ≤ i ≤ n
1T · Y · 1 = 0

trace(WY )

2 Find the leading eigenvector of Y , (emax , σmax ), i.e.,
Yemax = σmax emax .
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The Weight Matrix SDP

Algorithm (SDP with W - continued)
3 Define the partition Ω1 = {k : emax (k) > 0},

Ω2 = {k : emax (k) ≤ 0}. Set d = 2.
Output: The disjoint partition (Ω1,Ω2, ...,Ωd ) of the set of nodes
[n] = {1, 2, · · · , n}.
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Measures of Partition Accuracy

Problem: How to measure the quality of a given partition?
We previously studied:

Definition
The agreement between two community vectors x , y ∈ [k]n is obtained by
maximizing the number of common components of these two vectors over
all possible relabelling (i.e., permutations):

Agr(x , y) = 1
n max
π∈Sk

n∑
i=1

1(xi = π(yi ))

where Sk denotes the group of permutations.
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Measures of Partition Accuracy (2)
In the case of 2-community detection, the above formula reduces to:

Agr(x , y) = 1
n max

( n∑
i=1

1(xi = yi ),
n∑

i=1
1(xi 6= yi )

)
= 1

n max(α, n − α)

where
α =

n∑
i=1

1(xi = yi ).

measures the overlap. Typically it is more appropriate to report the
percentage agreement:

Agr [%] = 100 max(αn , 1−
α

n ).

Note the agreement is always larger than or equal to 50%. In the case of k
communities, the previous formula involves taking maximum over k!
possible label assignments.
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Convex Sets. Convex Functions

A set S ⊂ Rn is called a convex set if for any points x , y ∈ S the line
segment [x , y ] := {tx + (1− t)y , 0 ≤ t ≤ 1} is included in S, [x , y ] ⊂ S.

A function f : S → R is called convex if for any x , y ∈ S and 0 ≤ t ≤ 1,
f (t x + (1− t)y) ≤ t f (x) + (1− t)f (y).
Here S is supposed to be a convex set in Rn.
Equivalently, f is convex if its epigraph is a convex set in Rn+1. Epigraph:
{(x , u) ; x ∈ S, u ≥ f (x)}.

A function f : S → R is called strictly convex if for any x 6= y ∈ S and
0 < t < 1, f (t x + (1− t)y) < t f (x) + (1− t)f (y).
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Convex Optimization Problems

The general form of a convex optimization problem:

min
x∈S

f (x)

where S is a closed convex set, and f is a convex function on S.
Properties:

1 Any local minimum is a global minimum. The set of minimizers is a
convex subset of S.

2 If f is strictly convex, then the minimizer is unique: there is only one
local minimizer.

In general S is defined by equality and inequality constraints:
S = {gi (x) ≤ 0 , 1 ≤ i ≤ p} ∩ {hj(x) = 0 , 1 ≤ j ≤ m}. Typically hj are
required to be affine: hj(x) = aT x + b.
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Convex Programs

The hiarchy of convex optimization problems:
1 Linear Programs: Linear criterion with linear constraints
2 Quadratic Programs: Quadratic Criterion with Linear Constraints;

Quadratically Constrained Quadratic Problems (QCQP);
Second-Order Cone Program (SOCP)

3 Semi-Definite Programs(SDP)
Typical SDP:

min
X = X T ≥ 0

trace(XBk) = yk , 1 ≤ k ≤ p
trace(XCj) ≤ zj , 1 ≤ j ≤ m

trace(XA)
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CVX
Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows ”Disciplined” Convex
Programming – à la Boyd [2].

m = 20; n = 10; p = 4;
A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin

variable x(n)
minimize( norm( A * x - b, 2 ) )
subject to

C * x == d
norm( x, Inf ) <= e

cvx_end

min
Cx = d
‖x‖∞ ≤ e

‖Ax − b‖
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CVX
SDP Example

cvx_begin sdp

variable X(n,n) semidefinite;
minimize trace(X);
subject to
X*ones(n,1) == zeros(n,1);
abs(trace(E1*X)-d1)<=epsx;
abs(trace(E2*X)-d2)<=epsx;

cvx_end

minimize trace(X )
subject to X = X T ≥ 0

X · 1T = 0
|trace(E1X )− d1| ≤ ε
|trace(E2X )− d2| ≤ ε
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