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Graph Partitions: Objective Functions

Assume a weighted graph given by the weight matrix W (could be the
adjacency matrix). The goal is to perform a disjoint partition into two
clusters of the vertex set YV = SU S that had the largest total weight
inside each cluster while maintaining a low cross-weight between clusters.
Two types of objective functions:

1. Min-edge type criterion (Rayleigh type criterion), or Cheeger constant:

b E(S,5)|

¢ = min —.
5V min(vol(S), vol(S))
where vol(S) =1TW1s =37, o di, vol(5) =1TWis =", < d;, |E(S,5)| = 1] Wis.
2. Modularity function, fraction of the edges that fall within the
communities minus the expected fraction if edges were distributed at

random (unweighted case):
1

didj _

(iJ)E(SxS)U(5%S)
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Optimization Problems
Second Smallest for A

The Algorithm is supposed to provide an approximate solution for the
min-edge cut problem of the Cheeger constant

U |E(S, )]
€7 scv min(vol(S), vol(S))

The algorithm has been derived while proving the bound 2hg > 1.
Implicitely, the second smallest eigenpair solves the optimization problem:

min e’ Ae
ecR”
lell, =1
e’ DV21 =0
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Spectral Algorithm using the Symmetric Normalized Graph
Laplacian

Algorithm (Spectral Algorithm with A)

Input: Adjacency matrix A € R"*".
If the graph is not connected then produce a disjoint partition

(1,92, ...,Q4) into connected components.
Else:

(1) Compute the symmetric normalized graph Laplacian
A =1—-DY2AD'/?, with D = Diag(A- 1) the degree matrix.

@ Compute the second smallest eigenpair: (e1, A1), with Ae; = \e
and \1 > 0 = \g.

© Define the partition Q1 = {k : e1(k) > 0}, Q2 = {k : e1(k) < 0}. Set

d=2.
Output: The disjoint partition (1,2, ...,Q4) of the set of nodes
[n] ={1,2,---, n}.
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Optimization Problems
MAP and MLE for Balanced Communities

Consider now a slightly different optimization problem. Assume we know
we have a symmetric stochastic block model SSBM(n, 2, a, b) with two
communities of equal size: |Q1]| = |Q2|. Then the Maximum A Posteriori
(MAP) partition function Z € {1,2}" coincides with the Maximum
Likelihood Estimator (MLE) and maximizes:

ma am11+m22(1 _ a)m§1+m§2 bmu(]_ _ b)mfz
Z:| =[]

But for equal size communities (== balanced communities),

2 n/2 2
mi2 + mi, = 7 and mu1 + moo + mi; + m§, =2 é ~ T
Furthermore, my; + mi2 + mp> = m. Thus, the optimal estimator

maximizes:
a(l o b) myi1+mo2
max ()
Z:||=|2| \ b(1 — a)
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Optimization Problems
MAP and MLE for Balanced Communities

mi1+m
Assume a > b. Then b((l b% > 1 and maximization of ( ((i g%) R
equivalent to maximization of the number of intra-edges while have

balanced communities.

max mi1 + moo
Z:| |=[<|
Equivalently, since my; + mys + mi2 = m and is invariant to any partition,
the solution minimizes the number of cross-edges mi> subject to balanced
communities:

min mio
Z:| |= |82
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Optimization Problems
MAP and MLE for Balanced Communities (2)

Replace the partition vector Z € {1,2}" with a sign vector z € {—1,1}"
so that Z, =1 iff zz = —1 and Zx = 2 iff zx = +1. Then

n
ZTAZ = Z A,"J'Z,'Zj = 2(m11+m22)—2m12 = 4(m11—|—m22)—2m = 2m—4m12
i,j=1
Thus
m

1
my1 + Mmooy = ZZTAZ + D)

and the number of cross-edges can be computed using:
1 _ T R NI _ 17
myp = 4(2m z' Az) = 4(z Dz—z"Az)=>z" Az

because z" Dz =17D1 = Y7, _; Aij = 2m.
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The Quadratic Integer Programs

Balanced communities: |Q;] = || is equivalent to requiring z" -1 = 0.
Thus we obtain the following optimization problems:

© Graph Laplacian based Minimization:
min zTAz
ze{-1,+1}"
zl.1=0

@ Adjacency Matrix based Maximization:

max zT Az
ze{-1,+1}"
zT.1=0

These are NP-hard problems, known as Quadratic Integer Programming.
We study two relaxations: Euclidean relaxation, and SDP relaxation.
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Euclidean Relaxations

The Euclidean relaxation of the QIP

min / max z"Sz
ze{-1,+1}"
zT - 1=0

is obtained by replacing z € {—1,+1}" with |z|l, = \/n. Here S= ST
stands for A or A. Since different norm values produce same solution up
to scaling, we use instead the unit Euclidean norm relaxation:

min / max  z'Sz
Izl =1
zT.1=0
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Spectral Algorithms

Using the Courant-Fisher criterion (related also to the Rayleigh quotient),
the Euclidean relaxation is solved using the second eigenvector of the
corresponding symmetric matrix.

Why the second eigenvector:

O In the case of A, 1 is the eigenvector corresponding to the smallest
eigenvalue (Mg = 0), hence z71 = 0 is satisfied automatically by the
second eigenvector.

@ In the case of A, 1 is approximately the leading eigenvector asuming
each node has the same valence. This happens when the adjacency
matrix approximates well its Expected value matrix E[A]. Note: One
can solve exactly (no approximation needed) the optimization
problem max zT Az subject to ||z|l, = 1 and z71 = 0. The solution is
the normalized eigenvector associated to the largest eigenvalue of
(I —i11T)A(I - L11T).
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Spectral Algorithm using the Graph Laplacian

Algorithm (Spectral Algorithm with A)

Input: Adjacency matrix A € R"*".
If the graph is not connected then produce a disjoint partition
(21,92, ...,Q4) into connected components.
Else:
© Compute the graph Laplacian A = D — A, with D = Diag(A - 1), the
degree matrix.
@ Compute the second smallest eigenpair: (e1, A1), with Ae; = A\1e;
and A\1 > 0 = )\g.
© Define the partition Q1 = {k : e1(k) > 0}, Qo = {k : e1(k) < 0}. Set
d=2.
Output: The disjoint partition (21,2, ...,Qq4) of the set of nodes
[n] = {1a2a"'an}'
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Spectral Algorithm using the Adjacency Matrix

Algorithm (Spectral Algorithm with A)

Input: Adjacency matrix A € R"*",
If the graph is not connected then produce a disjoint partition
(1,90, ...,Q4) into connected components.
Else:
© Compute the second largest eigenpair of A: (fa, p2), with Afy = uafs.
@ Define the partition Q1 = {k : fa(k) > 0}, Qo = {k : fo(k) < 0}. Set
d=2.

Output: The disjoint partition (1,2, ...,Q4) of the set of nodes
[n] ={1,2,---,n}.
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The SDP Relaxation

The Semi-Definite Program (SDP) relaxation of the QIP

min / max z"Sz
ze{-1,+1}"
zT - 1=0

is obtained in the following way: First one replaces the variable vector z by
the matrix Y € R™", Y = zzT . Note:

275z = trace(z" Sz) = trace(Szz") = trace(SY)

The constraints z € {—1,+1}" is equivalent to Yj; = 1. The constraint
zT .1 =0 s equivalent to Y - 1 = 0. Additionally, the matrix Y satisfies
also: Y >0 and rank(Y) = 1.
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The SDP Relaxation - 2

Putting together all conditions, we obtain the (equivalent!) problem:
min / max trace(SY
Y=YT">0
rank(Y) =1
’/ii =1 ) 1 < i <n
Y-1=0
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The SDP Relaxation - 2

Putting together all conditions, we obtain the (equivalent!) problem:
min / max trace(SY

Y=YT>0
rank(Y) =1
’/ii =1 ) 1 <i<n
Y-1=0
However this problem is not convex, due to the rank constraint. The
convex relaxation, known as the SDP relaxation, simply removes the rank
constraint:
min / max trace(SY)

Y=YT>0
1,1<i<n
Y-1=0
In general the result Y is not rank 1, so one approximates it by the leading
eigenvector of solution Y. Note, for Y =YT >0, Y-1=0is equivalent
to17Y1=0.
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The Graph Laplacian SDP

Algorithm (SDP with A)

Input: Adjacency matrix A € R"*".

If the graph is not connected then produce a disjoint partition

(1,92, ...,Q4) into connected components.
Else:

@ Compute the graph Laplacian A = D — A, with D = Diag(A - 1), the
degree matrix.

@ Solve the Semi-Definite Program:

min trace(AY)
Y subject to

Y=YT>0
Yi=1,1<i<n
1T.y.1=0

y.
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The Graph Laplacian SDP

Algorithm (SDP with A - continued)

© Find the leading eigenvector of Y, (€max, Omax), I-€.,
Yemax = Omax€max-
Q Define the partition Q1 = {k : emax(k) > 0},
Qy = {k: emax(k) < 0}. Set d =2.
Output: The disjoint partition (Q1,2, ...,Qq4) of the set of nodes
[n] = {172a" '7n}'
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The Adjacency Matrix SDP

Algorithm (SDP with A)

Input: Adjacency matrix A € R"*".

If the graph is not connected then produce a disjoint partition

(1,92, ...,Q4) into connected components.
Else:

@ Solve the Semi-Definite Program:

max trace(AY)
Y subject to

Y=YT>0
\/ii:]-) 1§I§n
1T.vy.1=0

@ Find the leading eigenvector of Y, (€max, Tmax), I.€.,

Yemax — OmaxCmax-
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The Adjacency Matrix SDP

Algorithm (SDP with A - continued)

© Define the partition Q1 = {k : emax(k) > 0},
Qp = {k : emax(k) < 0}. Setd = 2.
Output: The disjoint partition (21,2, ...,Q4) of the set of nodes
[n] = {172a" 'an}'
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The Normalized Graph Laplacian SDP

Algorithm (SDP with A)

Input: Adjacency matrix A € R"*".

If the graph is not connected then produce a disjoint partition

(21,92, ...,Q4) into connected components.
Else:

(1) Compute the symmetric normalized graph Laplacian
A =1—D"Y2ADY2 with D = Diag(A- 1), the degree matrix.
@ Solve the Semi-Definite Program:

min trace(AY)
Y subject to

Y=YT>0
K,:l,lglgn
T.y.1=0

4
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The Normalized Graph Laplacian SDP

Algorithm (SDP with A - continued)

© Find the leading eigenvector of Y, (€max, Tmax), I.€.,
Yemax = Omax€max-
Q Define the partition Q1 = {k : emax(k) > 0},
Qo = {k : emax(k) < 0}. Set d = 2.
Output: The disjoint partition (21,2, ...,Q4) of the set of nodes
[n] ={1,2,---,n}.

This is the SDP counterpart of the spectral algorithm we studied last time.

v
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Partitions of Weighted Graphs

In this section we rewrite all the previous algorithms in the case of
weighted graphs.

The idea: The Cheeger constant is simply replaced by total cross-weight
between partitions:

2xes,yes My
he = min — XEYE 7 Dii=) Wy
S min(}> . cs Dxx, > ,es D,,) ' ; Z

Solution: replace the adjacency matrix A by the weight matrix W.
Thus we obtain a total of six algorithms: 3 spectral algorithms, and 3 SDP
relaxations; each class using either/ — D~Y2WD=1/2 D — W, or W.
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Spectral Algorithm using the symmetric normalized

Weighted Graph Laplacian

Algorithm (Spectral Algorithm with symmetric normalized weighted
graph Laplacian A)

Input: Weight matrix W € R"™".

If the graph is not connected then produce a disjoint partition
(Q1,92,...,Q4) into connected components.

Else:

(1) Compute the symmetric normalized weighted graph Laplacian
A =1—D2WD~2 with D = Diag(W - 1).

@ Compute the second smallest eigenpair: (e1, A1), with Ae; = A\1e;
and A\1 > 0 = )\g.

© Define the partition Q1 = {k : e1(k) > 0}, Qo = {k : e1(k) < 0}. Set
d=2.

Output: Disjoint partition (1,2, ...,Qq4) of nodes [n] = {1,2,---, n}.
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Spectral Algorithm using the Weighted Graph Laplacian

Algorithm (Spectral Algorithm with weighted A)

Input: Weight matrix W € R"™".
If the graph is not connected then produce a disjoint partition
(21,92, ...,Q4) into connected components.
Else:
@ Compute the weighted graph Laplacian A = D — W, with
D = Diag(W - 1).
@ Compute the second smallest eigenpair: (e1, A1), with Ae; = A\1e;
and A\1 > 0 = )\g.
© Define the partition Q1 = {k : e1(k) > 0}, Qo = {k : e1(k) < 0}. Set
d=2.
Output: The disjoint partition (21,2, ...,Qq4) of the set of nodes
[n] = {1a2a"'an}'
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Spectral Algorithm using the Weight Matrix

Algorithm (Spectral Algorithm with W)

Input: Weight matrix W € R"™".
If the graph is not connected then produce a disjoint partition
(21,92, ...,Q4) into connected components.

Else:
@ Compute the second largest eigenpair of W: (fa, u2), with
Wh = o,
@ Define the partition Q1 = {k : fr(k) > 0}, Q2 = {k : (k) < 0}. Set
d=2.

Output: The disjoint partition (1,2, ...,Q4) of the set of nodes
[n] ={1,2,---,n}.
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The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted A)

Input: Weight matrix W € R"™".

If the graph is not connected then produce a disjoint partition

(21,92, ...,Q4) into connected components.
Else:

(1) Compute the symmetric normalized weighted graph Laplacian
A =1—D"Y2WD=1/2, with D = Diag(W - 1).
@ Solve the Semi-Definite Program:

min trace(AY)
Y subject to

Y=YT>0
K,:l,lglgn
T.y.1=0

4
MATH 420: SDP Relaxation April 20, 2023

Radu Balan (UMD)



Weighted Graphs
00000@000000

The Normalized weighted Graph Laplacian SDP

Algorithm (SDP with weighted A - continued)

© Find the leading eigenvector of Y, (€max, Tmax), I.€.,
Yemax = OmaxCmax-
Q Define the partition Q1 = {k : emax(k) > 0},
Qo = {k : emax(k) < 0}. Set d = 2.
Output: The disjoint partition (1,2, ...,Q4) of the set of nodes
[n] ={1,2,---,n}.
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The weighted Graph Laplacian SDP

Algorithm (SDP with weighted A)
Input: Weight matrix W € R"*".

If the graph is not connected then produce a disjoint partition

(1,2, ...,Q4) into connected components.
Else:

@ Compute the weighted graph Laplacian A = D — W, with
D = Diag(W - 1).

@ Solve the Semi-Definite Program:

min trace(AY)
Y subject to

Y=YT>0
Yi=1,1<i<n
1T.y.1=0
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The weighted Graph Laplacian SDP

Algorithm (SDP with weighted A - continued)

© Find the leading eigenvector of Y, (€max, Omax), I-€.,
Yemax = Omax€max-
Q Define the partition Q1 = {k : emax(k) > 0},
Qy = {k: emax(k) < 0}. Set d =2.
Output: The disjoint partition (Q1,2, ...,Qq4) of the set of nodes
[n] = {172a" '7n}'
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The Weight Matrix SDP

Algorithm (SDP with W)
Input: Weight matrix W € R"*".

If the graph is not connected then produce a disjoint partition

(1,2, ...,Q4) into connected components.
Else:

@ Solve the Semi-Definite Program:

max trace(WY)
Y subject to

Y=YT>0
\/fi:]-a ]-Slgn
1T.vy.1=0

@ Find the leading eigenvector of Y, (€max, Tmax), I.€.,

Yemax — OmaxCmax-
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The Weight Matrix SDP

Algorithm (SDP with W - continued)

© Define the partition Q1 = {k : emax(k) > 0},
Qp = {k : emax(k) < 0}. Setd = 2.
Output: The disjoint partition (21,2, ...,Q4) of the set of nodes
[n] = {172a" 'an}'
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Measures of Partition Accuracy

Problem: How to measure the quality of a given partition?
We previously studied:

Definition
The agreement between two community vectors x,y € [k|" is obtained by

maximizing the number of common components of these two vectors over
all possible relabelling (i.e., permutations):

n

1
Agr(x,y) = - e 1(x; = 7(yi))
i=1

where Sy denotes the group of permutations.
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Measures of Partition Accuracy (2)

In the case of 2-community detection, the above formula reduces to:

Agr(x,y) = % max (Z 1(xi = yi), Z 1(x; # y,-)) = %max(a, n—a)
i=1 i=1

where
a= Z 1(x; = yi).

measures the overlap. Typically it is more appropriate to report the
percentage agreement:

o o
Agr[%] = 100 max(—,1 — —).
n n
Note the agreement is always larger than or equal to 50%. In the case of k
communities, the previous formula involves taking maximum over k!
possible label assignments.
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Convex Sets. Convex Functions

Aset S C R" is called a convex set if for any points x,y € S the line
segment [x,y] == {tx+(1—t)y, 0 <t <1l}isincluded in S, [x,y] C S.

A function f : S — R is called convex if for any x,y € Sand 0 <t <1,
f(tx+(1—t)y) <tf(x)+(1—1t)f(y).

Here S is supposed to be a convex set in R”.

Equivalently, f is convex if its epigraph is a convex set in R"T1. Epigraph:
{(x,u); xeS,u>f(x)}.

A function f : S — R is called strictly convex if for any x # y € S and
0<t<l ftx+(1—1t)y) <tf(x)+(1—1t)f(y).
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Convex Optimization Problems

The general form of a convex optimization problem:

in f
T

where S is a closed convex set, and f is a convex function on S.
Properties:

@ Any local minimum is a global minimum. The set of minimizers is a
convex subset of S.

@ If f is strictly convex, then the minimizer is unique: there is only one
local minimizer.

In general S is defined by equality and inequality constraints:
S={gi(x) <0, 1<i<ptn{hi(x)=0,1<j< m}. Typically h; are
required to be affine: hj(x) = a’x + b.
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Convex Programs

The hiarchy of convex optimization problems:
© Linear Programs: Linear criterion with linear constraints
@ Quadratic Programs: Quadratic Criterion with Linear Constraints;
Quadratically Constrained Quadratic Problems (QCQP);
Second-Order Cone Program (SOCP)
© Semi-Definite Programs(SDP)

Typical SDP:
min trace(XA)
X=X">0
trace(XBk) =yk , 1< k<p
trace(XG) <z, 1<j<m

April 20, 2023
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CVX

Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined” Convex
Programming — a la Boyd [2].

m = 20; n=10; p = 4;

A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin
variable x(n) min ||Ax — bl|
minimize( norm( A * x - b, 2 ) ) Cx =
subject to x|l < €
C x x ==
norm( x, Inf ) <= e
cvx_end
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CVX

SDP Example

cvx_begin sdp

variable X(n,n) semidefinite;
minimize trace(X);

subject to

X*ones(n,1) == zeros(n,1);
abs (trace(E1*X)-d1)<=epsx;
abs (trace (E2+X)-d2) <=epsx;

minimize  trace(X)

subjectto X =XT >0
X-1T=0
|trace(E1 X) — di| < e
|trace(ExpX) — db| < €

cvx_end
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