Lecture 8: Calibration of SIR Models

Radu Balan

Department of Mathematics, NWC University of Maryland, College Park, MD

Version: February 21, 2023

SIR Model Calibration

Recall the model:

$$\begin{cases}
\frac{dS}{dt} = -\beta S \frac{I}{N}, S(0) \\
\frac{dI}{dt} = \beta S \frac{I}{N} - \alpha I, I(0) \\
\frac{dR}{dt} = \alpha I, R(0)
\end{cases}$$

with the sub-compartments $X(t) = (1 - \gamma)R(t)$ for "recovered" and $Y(t) = \gamma R(t)$ for deaths.

Before making useful predictions (testing), the model has to be calibrated. For calibration and testing we are using two pieces of measured data: the cumulative detected infections, $\{V(0), \dots, V(T_{max})\}$, and the time series of cumulative deaths, $\{Y(0), \dots, Y(T_{max})\}$. The cumulative detected infections will have to be converted into infection rates $\{I(0), \dots, I(T_{max})\}$. Note that, if we know γ and N we can compute $R(0) = \frac{Y(0)}{\gamma}$ and S(0) = N - I(0) - R(0). At the onset of an infectious disease it is the likely the case that Y(0) = 0 and I(0) can be neglected in which case, S(0) = N(regardless of γ). This approximation may hold for a certain interval of

The LSE

The least-squares estimator (LSE) tries to find parameters α, β, γ , and N that minimize:

$$\begin{array}{l} \text{minimize} \ \textit{I}(\alpha,\beta,\gamma;\textit{N}) \ , \ \textit{I}(\alpha,\beta,\gamma;\textit{N}) := \sum_{t=0}^{\textit{I}_{max}} (\textit{I}(t) - \textit{I}_{\textit{sim}}(t))^2 + (\textit{Y}(t) - \gamma \textit{R}_{\textit{sim}}(t))^2 \\ \textit{N} \in \mathbb{N} \\ \alpha,\beta,\gamma \geq 0 \\ \gamma \leq 1 \end{array}$$

where $(S_{sim}(t), I_{sim}(t), R_{sim}(t))$ are given by a numerical solver of the SRI model with parameters (α, β, γ) and total population N initialized at (S(0), I(0), R(0)).

The LSE

The least-squares estimator (LSE) tries to find parameters α, β, γ , and N that minimize:

minimize
$$I(\alpha, \beta, \gamma; N)$$
, $I(\alpha, \beta, \gamma; N) := \sum_{t=0}^{I_{max}} (I(t) - I_{sim}(t))^2 + (Y(t) - \gamma R_{sim}(t))^2$
 $\alpha, \beta, \gamma \ge 0$
 $\gamma < 1$

where $(S_{sim}(t), I_{sim}(t), R_{sim}(t))$ are given by a numerical solver of the SRI model with parameters (α, β, γ) and total population N initialized at (S(0), I(0), R(0)). However ... this is a hard optimization problem ... and potentially not useful!

We shall analyze different approaches to calibrate the SIR model. First, the initial time $t_0 = 0$ is chosen once a significant number of infections occured.

$\overline{\gamma}$ estimators

We start with the "simpler" problem of estimating γ . Assume $\{V(0), V(1), \dots, V(T_{max})\}\$ denotes the cumulative number of detected infections, and $\{Y(0), Y(1), \dots, Y(T_{max})\}\$ denote the time series of virus related deaths. It is necessary that $0 \le Y(t) \le V(t) \le V(T_{max})$ for every $0 \le t \le T_{max}$. Since all infected individuals eventually transit into the "removed" state, R(t'), for calibration purposes we make the assumption that $V(t) \approx R(t+\tau)$ for some $\tau > 0$. In fact, τ should be close to $\frac{1}{2}$. In this case we obtain: $Y(t+\tau) \approx \gamma V(t)$. A natural optimization problem is to minimize a norm of the difference between $\gamma V(t)$ and $Y(t+\tau)$. Consider $1 \le p < \infty$ and define

$$F(\gamma, \tau; p) := \frac{1}{T_{max} - \tau + 1} \sum_{t=0}^{T_{max} - \tau} |Y(t + \tau) - \gamma V(t)|^{p}$$

I^p estimators for γ

For $p = \infty$ adjust the definition:

$$F(\gamma, \tau; \infty) := \max_{0 \le t \le T_{max} - \tau} |Y(t + \tau) - \gamma V(t)|$$

Then consider the optimization problem:

$$\begin{array}{ll} \text{minimize} & \textit{F}(\gamma,\tau;\textit{p}) \\ \tau,\gamma \geq 0 &, & \gamma \leq 1 \end{array}$$

for the given calibration data set. In the following we analyze the cases $p=1,2,\infty$. In each case, the optimization problem minimizes an I^p norm of the form $\|Y(\cdot+\tau)-\gamma V\|_p$, scaled by the number of terms in each sum.

Good news: The optimization problem is convex. The bad news: Given τ , except for p=2, in the other cases the optimization problem does not have a closed form solution, but can be easily solved.

I^p estimators for γ

The general optimization problem is solved by an iterative algorithm:

Algorithm (Meta-Algorithm for γ estimation)

<u>Inputs</u>: Time series $\{V(0), \dots, V(T_{max})\}$, $\{Y(0), \dots, Y(T_{max})\}$.

Parameters: $p \in [1, \infty]$, τ_{max} .

- For each $\tau = 0, 1, 2, ..., \tau_{max}$ repeat:
 - Solve $[Fmin, \gamma_{min}] = min_{\gamma \in [0,1]} F(\gamma, \tau; p)$.
 - 2 Save vector $F(\tau) = F(\gamma_{min}, \tau; p)$, opt $Gamma(\tau) = \gamma_{min}$.
- **②** Determine the minimum and the minimizer $[minF, \hat{\tau}] = min(vectorF)$
- **3** Assign $\hat{\gamma} = optGamma(\hat{\tau})$, $F(\hat{\gamma}, \hat{\tau}; p) = minF$.

Outputs: Estimated $\hat{\gamma}, \hat{\tau}$ and minimum value of the objective function $F(\hat{\gamma}, \hat{\tau}; p)$.

Next we analyze the Step 1.1.

The case p = 2

The case p=2 is the easiest: it is solved by the least-squares fit with a linear model. Solution of

minimize
$$\sum_{t=0}^{T_{max}-\tau} |Y(t+\tau) - \gamma V(t)|^2$$

is given by:

$$\gamma_c = rac{\sum_{t=0}^{t=T_{max}- au} Y(t+ au) V(t)}{\sum_{t=0}^{T_{max}- au} |V(t)|^2}$$

If the above expression does not belong to [0,1], the adjust the value to the closest end point:

$$\gamma_{min} = \left\{ egin{array}{ll} 0 & \emph{if} & \gamma_c < 0 \ \gamma & \emph{if} & \gamma_c \in [0, 1] \ 1 & \emph{if} & \gamma_c > 1 \end{array}
ight.$$

The case p=1

Solution of optimization problem minimize $\sum_{t=0}^{T_{max}-\tau}|Y(t+\tau)-\gamma V(t)|$:

Algorithm (The I^1 estimator for γ)

- **1** For each $k = 0, 1, \dots, T_{max} \tau$ repeat:
 - Compute $r(k) = \frac{Y(k+\tau)}{V(k)}$.
 - **Q** If $r(k) \notin [0,1]$ then discard this value and proceed to the next k.
 - **3** Compute: $f(k) = \sum_{t=0}^{T_{max}-\tau} |Y(t+\tau) r(k)V(t)|$
- ② Find the minimum and the index [minf, indexMin] = min(f).
- **3** Assign: $\gamma_{min} = r(indexMin)$.

Independent problem: Try writing it as a linear program!

The case $p = \infty$

Solution of minimize $\max_{0 \le t \le T_{max} - \tau} |Y(t + \tau) - \gamma V(t)|$ is given by the following linear program:

$$\begin{array}{c} \textit{minimize} \\ -s \leq \textit{Y}(t+\tau) - \gamma \textit{V}(t) \leq s \;,\; 0 \leq t \leq \textit{T}_{\textit{max}} - \tau \end{array}$$

It can be rewritten into a standard form with vector $x = [s; \gamma]$, matrix A, vectors b, f = [1; 0], lower bound $\mathbf{0} = [0; 0]$ and upper bound $u_{\infty} = [\infty; 1]$:

minimize
$$f^T x$$

 $Ax \le b$
 $\mathbf{0} \le x \le u_{\infty}$

where:

$$A = \begin{bmatrix} -1 & -V(0) \\ -1 & V(0) \\ \vdots & \vdots \\ -1 & -V(T_{max} - \tau) \\ -1 & V(T_{max} - \tau) \end{bmatrix} , b = \begin{bmatrix} -Y(\tau) \\ Y(\tau) \\ \vdots \\ -Y(T_{max}) \\ Y(T_{max}) \end{bmatrix}.$$

Note: A is a matrix of size $2(T_{max} - \tau + 1)x^2$ and b is vector of length $2(T_{max} - \tau + 1)$.

SIR Model with Vitals

A simple modification of the SIR vanilla model is to consider vital signals, such as births and deaths at separate processes. In normalized form this becomes:

$$\begin{cases} \frac{ds}{dt} &= \frac{\Lambda}{N} - \beta si - \mu s , \quad s(0) = \frac{S_0}{N} \\ \frac{di}{dt} &= \beta si - \alpha i - \mu i , \quad i(0) = \frac{I_0}{N} \\ \frac{dr}{dt} &= \alpha i - \mu r , \quad r(0) = \frac{R_0}{N} \end{cases}$$
 (SIR Model)

where $\Lambda \geq 0$ is the constant source of births (=number of births/day) and $\mu \geq 0$ is the natural death rate (i.e., in the absence of this virus). Its reciprocal $1/\mu$ represents the average life expectancy.