Lecture 9: Full Calibration of SIR Models

Radu Balan

Department of Mathematics, NWC University of Maryland, College Park, MD

Version: February 23, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SIR Model Calibration

Recall the model:

$$\begin{array}{rcl} \frac{dS}{dt} &=& -\beta S \frac{I}{N} \ , \ S(0) \\ \frac{dI}{dt} &=& \beta S \frac{I}{N} - \alpha I \ , \ I(0) \\ \frac{dR}{dt} &=& \alpha I \ , \ R(0) \end{array}$$

with the sub-compartments $X(t) = (1 - \gamma)R(t)$ for "recovered" and $Y(t) = \gamma R(t)$ for deaths.

Before making useful predictions (testing), the model has to be calibrated. Last time we analyzed estimators for γ from the time series of *cumulative detected infections*, { $V(0), \dots, V(T_{max})$ }, and the time series of *cumulative deaths*, { $Y(0), \dots, Y(T_{max})$ }. The idea was to minimize over $\tau \ge 0, \gamma \in [0, 1]$ the norm $||Y(\cdot + \tau) - \gamma V||_p$, scaled by the number of terms in each sum. Now we integrate these estimators into a scheme that performs full calibration of the SIR model.

Radu Balan (UMD)

SEIR 0

Optimization based on Forward Model Simulation Pre-processing steps

Step 1: t_0 . First detect the onset of infections, and resent the time origin to match this onset t_0 .

Step 2: I(t). The time series of cumulative detected infections $\{V(0), \dots, V(T_{T_{max}})\}$ should be turned into a rate of infections. The daily rate may not be relevant to infection transmissions. Instead use a time window to convert the cumulative count into a rate:

$$I(t) = V(t + t_0 + au_0) - V(t + t_0 - au_0)$$
 , $t = 0, 1, 2, \cdots, T_{max}$

where $\tau_0 > 0$ is chosed so that τ_0 accounts for average infection period. For Covid-19 it is somewhere between 5 days and 10 days. A possible value is $\tau_0 = 7$. Thus I(t) measures the number of invections in a 2-week period centered around t. The Meta Loop

A natural choice for initial conditions is given by: S(0) = N and R(0) = 0, where we assumed $I(0) \ll N$:

$$\begin{cases} \frac{dS}{dt} = -\beta S \frac{I}{N} , \quad S(0) = N \\ \frac{dI}{dt} = \beta S \frac{I}{N} - \alpha I , \quad I(0) > 0 \\ \frac{dR}{dt} = \alpha I , \quad R(0) = 0 \\ Y = \gamma R \end{cases}$$

At this point, the parameters that need to be estimated are: $\{\alpha, \beta, \gamma, N\}$. The Forward Model based calibration works like this:

1. Construct a search set Ω of the "free" parameters (α, β, N)

2. For each triple $(\alpha, \beta, N) \in \Omega$: (i) run a SIR simulator using the Euler scheme that produces $(S_{sim}, I_{sim}, R_{sim})$. (ii) Fit $\hat{\gamma}$ to match the observed time series Y. (iii) Compute the value of the objective function $J(\alpha, \beta, N, \hat{\gamma})$ 3. Select $(\hat{\alpha}, \hat{\beta}, \hat{N})$ that minimize J. Details: The objective function

The objective function J can be chosen to measure a norm of residuals $I - I_{sim}$ and $Y - Y_{sim}$, where $Y_{sim} = \hat{\gamma} R_{sim}$ To do so, you need to choose and fix two meta-parameters p and λ . For $1 \le p < \infty$ define

$$J(\alpha,\beta,N,\gamma) = \sum_{t=0}^{T_{max}} |I(t) - I_{sim}(t)|^p + \lambda \sum_{t=0}^{T_{max}} |Y(t) - \gamma R_{sim}(t)|^p$$

For $p = \infty$ define

$$J(\alpha, \beta, N, \gamma) = \max_{0 \le t \le T_{max}} |I(t) - I_{sim}(t)| + \lambda \max_{0 \le t \le T_{max}} |Y(t) - \gamma R_{sim}(t)|$$

The meta-parameter λ weights one term of error measure (the rate of infections mismatch) against the other term (the number of deaths). Typical choices: $p = 1, 2, \infty$ and $\lambda = 1$.

Radu Balan (UMD)

Algorithm (Meta-Algorithm for SIR Calibration)

Inputs: Time series { $V(0), \dots, V(T)$ }, { $Y(0), \dots, Y(T)$ }. Parameters: V_{min} (default, $V_{min} = 5$), τ_0 (default, $\tau_0 = 7$), $p \in [1, \infty]$ (default, p = 2), $\lambda > 0$ (default, $\lambda = 1$), Search set Ω .

• Detect the onset of the infection t_0 as the first time so that $V(t_0) \ge V_{min}$, reset the time origin, and create the time series of infection rates $I(t) = V(t + t_0 + \tau_0) - V(t + t_0 - \tau_0), 0 \le t \le T_{max}$.

2 For each $(\alpha, \beta, N) \in \Omega$ repeat:

- Simulate a SIR model with parameters (α, β, N) and obtain daily time series (S_{sim}, I_{sim}, R_{sim}).
- **2** Solve $\hat{\gamma} = \operatorname{argmin}_{\gamma} \| Y \gamma R_{sim} \|_{p}$.
- ocmpute the objective function J.
- **③** Determine the minimum and the minimizer of J.

Outputs: Estimated $\hat{\alpha}, \hat{\beta}, \hat{N}, \hat{\gamma}$ and minimum value of the objective function J_{min} .

Radu Balan (UMD)

Numerical results (1)

Analysis of DC data for 2020

Numerical results (2) Analysis of DC data for 2020. p = 1

Results: $\hat{lpha}=$ 0.12, $\hat{eta}=$ 0.21,

 $\hat{R_0} = 1.75$,

CityPopulation = 705749.

 $\hat{\gamma} = 3.7\%.$

J=J(alpha,beta,21172,0.037135)

MATH 420: SIR Calibration

Results: $\hat{\alpha} = \hat{\beta} = 0.216,$

 $\hat{R}_{0} = 1.8$,

705749.

 $\hat{\gamma} = 3.5\%.$

Numerical results (3) Analysis of DC data for 2020. p = 2

Radu Balan (UMD)

MATH 420: SIR Calibration

version: February 23, 2023

Numerical results (4)

Analysis of DC data for 2020. $p = \infty$

J=J(alpha,beta,28230,0.827929)

MATH 420: SIR Calibration

version: February 23, 2023

Next Model: SEIR

The Susceptible-Exposed-Infected-Removed (SEIR) model is obtained from SIR by introducing a compartment between Susceptible and Infected of population that has been exposed to the virus but are not yet contagious:

$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} , S(0) \\ \frac{dE}{dt} = \beta \frac{SI}{N} - \delta E , E(0) \\ \frac{dI}{dt} = \delta E - \alpha I , I(0) \\ \frac{dR}{dt} = \alpha I , R(0) \end{cases}$$
(SEIR Model)

where $\delta \ge 0$ is the rate of transition from exposed to infected. Its reciprocal $1/\delta$ represents the *average incubation period*. If data is selected from the onset of infections, a natural initial condition is: $R(0) = N \gg I(0)$, R(0) = 0. The initial exposed population E(0) may be set to I(0), or can be fine tuned to fit the data. Assumin E(0) = I(0) is known, the parameters that need to be calibrated are: $\alpha, \beta, \gamma, \delta, N$.