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Convex Optimizations

Convex Sets. Convex Functions

A set S ⊂ Rn is called a convex set if for any points x , y ∈ S the line
segment [x , y ] := {tx + (1− t)y , 0 ≤ t ≤ 1} is included in S, [x , y ] ⊂ S.

A function f : S → R is called convex if for any x , y ∈ S and 0 ≤ t ≤ 1,
f (t x + (1− t)y) ≤ t f (x) + (1− t)f (y).
Here S is supposed to be a convex set in Rn.
Equivalently, f is convex if its epigraph is a convex set in Rn+1. Epigraph:
{(x , u) ; x ∈ S, u ≥ f (x)}.

A function f : S → R is called strictly convex if for any x 6= y ∈ S and
0 < t < 1, f (t x + (1− t)y) < t f (x) + (1− t)f (y).
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Convex Optimizations

Convex Optimization Problems

The general form of a convex optimization problem:

min
x∈S

f (x)

where S is a closed convex set, and f is a convex function on S.
Properties:

1 Any local minimum is a global minimum. The set of minimizers is a
convex subset of S.

2 If f is strictly convex, then the minimizer is unique: there is only one
local minimizer.

In general S is defined by equality and inequality constraints:
S = {gi (x) ≤ 0 , 1 ≤ i ≤ p} ∩ {hj(x) = 0 , 1 ≤ j ≤ m}. Typically hj are
required to be affine: hj(x) = aT x + b.
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Convex Optimizations

Primal-Dual Problems
Consider the primal optimization problem:

p∗ = minimize
subject to

fi (x) ≤ 0 , i ∈ [m]
hj(x) = 0 , j ∈ [p]

f0(x)

Its associated dual problem is constructed by computing first the Lagrange dual
function (known also as dual function):

g(λ, µ) = inf
x∈Dom

(
f0(x) +

m∑
i=1

λi fi (x) +
p∑

j=1
νjhj(x)

)
and the dual optimization problem:

d∗ = maximize
subject to

λi ≥ 0 , i ∈ [m]
νj ∈ R , j ∈ [p]

g(λ, ν)
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Convex Optimizations

Primal-Dual Problems (2)

Regardless of whether the primal problem is convex or not, always:

d∗ ≤ p∗

Hence the dual problem provides a lower bound of the optimum objective
function. An obvious upper bound is given by f0(xf ) for any feasible x ,
i.e., one that satisfies the constraints fi (xf ) ≤ 0 and hj(xf ) = 0.
When d∗ = p∗ we say that strong duality holds. Some conditions (Slater’s
constraint qualification) guarantee strong duality.
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Convex Optimizations

Convex Programs

The hiarchy of convex optimization problems:
1 Linear Programs: Linear criterion with linear constraints
2 Quadratic Programs: Quadratic Criterion with Linear Constraints;

Quadratically Constrained Quadratic Problems (QCQP);
Second-Order Cone Program (SOCP)

3 Semi-Definite Programs(SDP)
Typical SDP:

min
X = XT ≥ 0

trace(XBk) = yk , 1 ≤ k ≤ p
trace(XCj) ≤ zj , 1 ≤ j ≤ m

trace(XA)
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Convex Optimizations

CVX
Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows ”Disciplined” Convex
Programming – à la Boyd [1].

m = 20; n = 10; p = 4;
A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin

variable x(n);
minimize( norm( A * x - b, 2 ) )
subject to

C * x == d;
norm( x, Inf ) <= e;

cvx_end

min
Cx = d
‖x‖∞ ≤ e

‖Ax − b‖
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Convex Optimizations

CVX
SDP Example

n = 10;
E1 = randn(n,n); d1 = randn(n,1);
E2 = randn(n,n); d2 = randn(n,1);
epsx = 1e-1;
cvx_begin sdp

variable X(n,n) semidefinite;
minimize trace(X);
subject to
X*ones(n,1) == zeros(n,1);
abs(trace(E1*X)-d1)<=epsx;
abs(trace(E2*X)-d2)<=epsx;

cvx_end

minimize trace(X )
subject to X = XT ≥ 0

X · 1 = 0
|trace(E1X )− d1| ≤ ε
|trace(E2X )− d2| ≤ ε
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Convex Optimizations
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