Math 420, Spring 2023 Geometric Graphs: First Team Homework

I. (8pts) Consider the text files kn57Nodes1to57_exactdist.txt and kn57Nodes1to57_dist.txt, both attached to this homework. They are based on the KN57 dataset described here:
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
They contain pairwise distances between $n=57$ cities. In the first file distances are floating point numbers; in the second file distances are integers. The files have the following format:

```
line 1: n
line 2: d11 d12 d13 ... d1n
line 3: d21 d22 d23 ... d2n
line n+1: dn1 dn2 dn3 ... dnn
```

where n denotes the number of vertices of this geometric graph, $d 11, \ldots, d n n$ represents the pairwise distances between these n points. Note the following: the file $k n 57$ _exactdist.txt contains the noiseless distances (in particular, dii $=0$); the file kn57_dist.txt contains approximated measurements of these distances (no guarantee of symmetry or positivity).

Write a Matlab script that performs the following tasks, and apply separately on these two files

1. Read-in the file and create the matrix R of pairwise distances and S of squared-pairwise distances $\left(S_{k, j}=R_{k, j}^{2}\right)$;
2. Apply Algorithm 1 to compute the estimated Gramm matrix G;
3. Plot the eigenvalues of G; Print out the first 10 largest eigenvalues;
4. for $\mathrm{d}=2$ and $\mathrm{d}=3$ perform:
(a) Apply Algorithm 2 to determine a d-dimensional embedding of this geometric graph; call Y the $d \times n$ matrix of coordinates; plot the point cloud and print out the figure;
(b) Compute the pairwise distances between the d-dimensional points contained in Y : Let \hat{R} be the $n \times n$ matrix whose (k, j) entry is the Euclidean norm

$$
\hat{R}_{k, j}=\|Y(1: d, k)-Y(1: d, j)\|_{2}
$$

Detemine and print the norm $\|R-\hat{R}\|_{F}$;
(c) Compute $\varepsilon=\left\|G-Y^{T} Y\right\|_{F}$, the approximation error; print the result on screen;
(d) Compute $\sigma=\sqrt{\sum_{k=d+1}^{n} \lambda_{k}^{2}}$ and print out the result; here, $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$ are the ordered eigenvalues of G;
(e) Compare ε with σ.
2. (2pts) Denote by $Y_{\text {clean }}$ and $Y_{\text {noisy }}$ the two estimates matrices of ccordinates obtained by your code at part 1 when run respectively on $k n 57$ _exactdist.txt and $k n 57$ _dist.txt. Compute the Frobenius norm $\left\|Y_{\text {clean }}-Y_{\text {noisy }}\right\|_{F}$.

