Math 420, Spring 2023 Random Graphs: First Team Homework

Consider the datafile assigned to this homework: kn57Nodes1to57_adj20.txt The data is formatted as follows:

Line 1: NumberOfNodes NumberOfEdges
Line 2: $A(1,1) A(1,2) \ldots A(1, n)$

Line $n+1: A(n, 1) A(n, 2) \ldots A(n, n)$
where $\mathrm{n}=$ NumberOfNodes and $\mathrm{m}=$ NumberOfEdges.
Your task is to apply the two random graph models analyzed in class: ErdösRenyi and SSBM. In each case you need to estimate the model parameters (p and a, b, respectively) and compare the estimated number of q-cliques given the model to the actual number of q-cliques (with $q=3$ and $q=4$).

1. Write a function that computes the number of q-cliques of a given graph (defined through its adjacency matrix). Make sure your function works for $q=3$ and $q=4$. The case $q>4$ is optional.
2. Apply this function to your assigned data set to compute the following statistics: m, the number of edges; t, the number of 3 -cliques (triangles); and f, the number of 4 -cliques (complete four-vertex subgraphs).
3. For the Erdös-Renyi model $\mathcal{G}_{n, p}$ detemine the Maximum Likelihood Estimate for p that best fits the datset.
4. Compute the Expectation of the numbers of 3-cliques $X_{3, E R}=\mathcal{E}\left[X_{3} ; p\right]$, and of 4-cliques $X_{4, E R}=\mathcal{E}\left[X_{4} ; p\right]$ under the Erdös-Renyi model constructed at part 3.
5. For same dataset, compute the estimated parameters a, b for the Symmetric Stochastic Block Model with 2-communities $\operatorname{SSBM}(n, 2, a, b)$ using the Method of Moments.
6. Compute the Expectation of the number of 4-cliques $X_{4, S S B M}=\mathcal{E}\left[X_{4} ; a, b\right]$ under the $\operatorname{SSBM}(n, 2, a, b)$ model constructed at part 5 .
