Math 420, Spring 2023 Geometric Graphs: Third Team Homework

Consider the text files: Target = 'Cloud_kn57Nodes1to57_coord.txt', Source0 ='EstimatedCloud_kn57Nodes1to57_coord.txt' and nine additional files Source1
$=$ 'NoisyCloud1_kn57Nodes1to57_coord.txt' , ..., Source9 = 'NoisyCloud9_kn57Nodes1to57_coord.txt' assigned to this homework. You can find these files into archive 'kn57Nodes1to57_coord.zip' attached to this homework. These files have the following format:

```
line 1: x1 y1 z1
line 2: x2 y2 z2
line 3: x3 y3 z3
line 4: x4 y4 z4
line n: xn yn zn
```

where n denotes the number of vertices (points) of a 3D geometric graph, and each line constains the coordinates of these points; the $i^{t h}$ line contains the (x, y, z) coordinates of the $i^{t h}$ point.

The files whose name contains 'Noisy' include noisy measurements of these coordinates.

Your homework is to implement a Matlab code that performs a full alignment of each of the 10 source files (Source0 to Source 9) with the target file. In each case obtain the alignment error and create a movie file that ilustrates the transformation.
I. For each pair of files (Sourcej,Target), with $j=0,1,2, \ldots, 9$:

1. Implement the full alignment algorithm and estimate $(\hat{Q}, \hat{z}, \hat{a})$
2. Compute the alignment error $\left\|\hat{a} \hat{Q}\left(X-\hat{z} 1^{T}\right)-Y\right\|_{F}$
3. Create a .avi file using the videoWriter in Matlab, saving about 101 images (plots) where the $k^{t h}$ image (k running from 0 to 100) defines the $t=k / 100$ interpolation:
$X(t)=a(t) Q(t)\left(X-z(t) 1^{T}\right), a(t)=1-t+t \hat{a}, Q(t)=J^{T} \cdot \operatorname{expm}(t \cdot \operatorname{logm}(J \cdot \hat{Q})), z(t)=t \hat{z}$
where expm and logm are Matlab matrix exponential and matrix logarithm functions, and the matrix J is diagonal and defined as follows: if $\operatorname{det}(\hat{Q})=+1$ then $J=I$ (i.e., the identity matrix), whereas if $\operatorname{det}(\hat{Q})=-1$ then its diagonal is 1 everywhere execept on one location where it is -1 ; try a few choices for J, e.g., $J=\operatorname{diag}([-1,1,1])$ or $J=\operatorname{diag}([1,-1,1])$, or $J=\operatorname{diag}([1,1,-1])$. Each image should contain a plot of the geometric graph contained in $X(t)$. Plot the graph using the closest $K=4$ neighbors.
II. Once the 10 pairs (Sourcej,Target) files have been processed, plot the alignment error as function of index j, where j runs from 0 to 9 .
III. What type of dependency error $=\operatorname{error}(j)$ do you you obtain? That is, is it linear, polynomial or exponential? Try also error $=\operatorname{error}(9-j) . j$ measures the level of noise: the larger the value the larger the noise.
