AMSC/MATH 420, Spring 2024
 First Solo Homework:
 Linear Algebra and Geometry

For these problems you do not need a calculator.

Problem I

For each matrix, indicate if they are symmetric, orthogonal, or positive semidefinite?
1.

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 0
\end{array}\right]
$$

2.

$$
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

3.

$$
C=1 / 3\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

4.

$$
D=1 / \sqrt{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Problem II

The 4×4 symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ diagonalizes as follows
$A=\left[\begin{array}{cccc}1 & 2 & -0.5 & 1.5 \\ 2 & 1 & 1.5 & -0.5 \\ -0.5 & 1.5 & 1 & 2 \\ 1.5 & -0.5 & 2 & 1\end{array}\right]=\left[\begin{array}{cccc}0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5\end{array}\right]\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5\end{array}\right]$
Compute the following:
1.

$$
\begin{aligned}
a= & \text { maximum } \quad x^{T} A x \\
& \text { subject to } \\
& x^{T} x=1
\end{aligned}
$$

2.

$$
\begin{aligned}
b= & \text { minimum } \quad x^{T} A x \\
& \text { subject to } \\
& x^{T} x \leq 1
\end{aligned}
$$

3.

$$
\begin{aligned}
b= & \text { maximum } \quad \frac{x^{T} A x}{x^{T} x} \\
& \text { subject to } \\
& x \neq 0
\end{aligned}
$$

Problem III

Consider the two-dimensional surface in \mathbb{R}^{3} defined by the equation

$$
6 x^{2}+8 x y+4 x z+13 y^{2}+6 y z+z^{2}=38
$$

1. Prove that the point $P=(1,1,1)$ belongs to this surface;
2. Determine the normal line to this surface, passing through P;
3. Find two independent vectors that are tangent to this surface at P. Can you find three independent vectors tangent to the surface?

Total: 10 points

