Math 420, Spring 2024 Second Team Homework: SIR and SEIR Models

Consider the dataset associated to your team. The problems are stated with Matlab indexing convention: from 1 to the length of the vector. The algorithms presented in class use the natural convention, where time $t_{0}=0$ may be indexed by 0 . Be careful to implement algorithms correctly, regardless of indexing convention on your platform.

Exercise 1. This problem asks you to implement and run the Meta-Algorithm for SIR Calibration using the time series of cumulative number of detected infection $V(t)$ and the cumulative number of deaths $Y(t)$. Use initialization $S(0)=N, I(0)$ from the data set, $R(0)=0$. Use the following parameters: $T_{\max }=119$ (i.e., a total of 120 time samples), $V_{\text {min }}=5, \tau_{0}=7, p=1,2, \infty$ (check all three values), $\left(c_{I}, c_{Y}\right)=(0,1)$ and $\left(C_{I}, c_{Y}\right)=(1,1)$ (check both values). For the set Ω write nested loops over α and R_{0} by searching over the following intervals:

$$
\alpha \in[0.05,0.4] \text { stepsize }=0.01, R_{0} \in[0.8,2.2] \text { stepsize }=0.05
$$

Recall $\beta=R_{0} \alpha$, and $N=$ Population is extracted from your data set.
(1) Find and print the minimum of the objective function J. Print the optimal values of $\hat{\alpha}, \hat{\beta}, \hat{R}_{0}$ and $\hat{\gamma}, r \hat{h}$ o ($\hat{\gamma}$ is obtained by implementing the minimization of $\left\|Y-\gamma R_{\text {sim }}\right\|_{p}$ over γ, whereas $r \hat{h}$ o is obtained by minimization of $\left\|I-\rho I_{\text {sim }}\right\|_{p}$ over $\left.\rho\right)$.
(2) Visualize the $2 D$ surface (function) $(\alpha, \beta) \mapsto J=J(\alpha, \beta ; \hat{\gamma}, \hat{\rho})$ at the optimal values $\hat{\gamma}$ and rĥo for each value of (α, β). You should obtain one plot for each p.
(3) For $(\alpha, \beta)=(\hat{\alpha}, \hat{\beta})$, plot on the same graph the simulated $I_{\text {sim }}$ and the preprocessed rate of detected infections $I(t)=V\left(t+t_{0}+\tau_{0}\right)-V\left(t+t_{0}-\tau_{0}\right)$. Plot on the same graph the predicted number of deaths $Y_{\text {sim }}=\hat{\gamma} R_{\text {sim }}$ and the observed number of deaths $Y(t)$ from your data set (make sure to align Y with the same first time t_{0}). You should obtain two plots for each value of p.
(4) Repeat the previous questions for each pair $\left(c_{I}, c_{Y}\right)$.

NOTE: the Euler scheme produces an estimate of the solution every $h=1 / 100$ day time step. However the experimental data is measured daily. Hence you need to downsample the output of the Euler scheme by $1 / h=100$.

Exercise 2. This problem asks you to implement and run the Meta-Algorithm for SEIR Calibration using the time series of cumulative number of detected infection $V(t)$ and the cumulative number of deaths $Y(t)$.

Use the same parameters as in Problem 1 with the following initialization: $S(0)=N$, $E(0)=I(0)$ to match the data set value $V\left(t_{0}+\tau_{0}\right)-V\left(t_{0}-\tau_{0}\right), R(0)=0$. Use the following parameters: $T_{\max }=119$ (i.e., a total of 120 time samples), $V_{\min }=5, \tau_{0}=7, p=1,2, \infty$ (check all three values), $\left(c_{I}, c_{Y}\right)=(0,1)$ and $\left(C_{I}, c_{Y}\right)=(1,1)$ (check both values). For the set Ω write nested loops over α, R_{0}, and δ by searching over the following intervals:
$\alpha \in[0.05,0.4]$ stepsize $=0.01, \delta \in[0.05,0.4]$ stepsize $=0.01, R_{0} \in[0.8,2.2]$ stepsize $=0.05$
Recall $\beta=R_{0} \alpha$, and $N=$ Population is extracted from your data set.
(1) Find and print the minimum of the objective function J. Print the optimal values of $\hat{\alpha}, \hat{\beta}, \hat{\delta}, \hat{R}_{0}$ and $\hat{\gamma}, \hat{\rho}$ ($\hat{\gamma}$ is obtained by implementing the minimization of $\left\|Y-\gamma R_{s i m}\right\|_{p}$ over γ, whereas $r \hat{h} o$ is obtained by minimization of $\left\|I-\rho I_{\text {sim }}\right\|_{p}$ over ρ).
(2) Visualize the $2 D$ surfaces (functions):

- $(\alpha, \beta) \mapsto J=J(\alpha, \beta, \hat{\delta} ; \hat{\gamma}, \hat{\rho})$ at the optimal values $\hat{\delta}, \hat{\gamma}$, and $\hat{\rho}$ obtained before. You should obtain one plot for each p.
- $(\alpha, \delta) \mapsto J=J(\alpha, \hat{\beta}, \delta ; \hat{\gamma}, \hat{\rho})$ at the optimal values $\hat{\beta}, \hat{\gamma}$ and $\hat{\rho}$ obtained before. You should obtain one plot for each p.
- $(\beta, \delta) \mapsto J=J(\hat{\alpha}, \beta, \delta ; \hat{\gamma}, \hat{\rho})$ at the optimal values $\hat{\alpha}, \hat{\gamma}$ and $\hat{\rho}$ obtained before. You should obtain one plot for each p.
(3) For $(\alpha, \beta, \delta)=(\hat{\alpha}, \hat{\beta}, \hat{\delta})$, plot on the same graph the simulated $I_{\text {sim }}$ and the preprocessed rate of detected infections $I(t)=V\left(t+t_{0}+\tau_{0}\right)-V\left(t+t_{0}-\tau_{0}\right)$. Plot on the same graph the predicted number of deaths $Y_{\text {sim }}=\hat{\gamma} R_{\text {sim }}$ and the observed number of deaths $Y(t)$ from your data set. You should obtain two plots for each value of p.
(4) Repeat the previous questions for each pair $\left(c_{I}, c_{Y}\right)$.

