Lecture 3．5：Geometric Graph Embeddings with Partial Data

Radu Balan

Department of Mathematics，AMSC，CSCAMM and NWC University of Maryland，College Park，MD

$$
\text { April 2, } 2024
$$

Embedding Problems

Problem Statement and Ambiguities

Main Problem

Isometric Embedding: Given the set of all squared-distances $\left\{d_{i, j}^{2} ; 1 \leq i, j \leq n\right\}$ find a dimension d and a set of n points $\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that $\left\|y_{i}-y_{j}\right\|^{2}=d_{i, j}^{2}, 1 \leq i, j \leq n$.

Main Problem

Nearly Isometric Embedding: Given the set of all squared-distances $\left\{d_{i, j}^{2} ; 1 \leq i, j \leq n\right\}$ find a dimension d and a set of n points $\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that $\left\|y_{i}-y_{j}\right\|^{2} \approx d_{i, j}^{2}, 1 \leq i, j \leq n$.

Note the set of points is unique up to rigid transformations: translations, rotations and reflections: $\mathbb{R}^{d} \times O(d)$. This means two sets of n points in \mathbb{R}^{d} have the same pairwise distances if and only if one set is obtained from the other set bv a combination of rigid transformations?

Radu Balan (UMD)

Isometric Embeddings with Partial Data

Dimension estimation

Consider now the case that only a subset of the pairwise squared-distances are known, indexed by Θ. Assume that only m distances (out of $n(n-1) / 2$ possible values) are known - this means the cardinal of Θ is m.

Remark

Minimum number of measurements: $m \geq n d-\frac{d(d+1)}{2}$, because: nd is the number of degrees of freedom (coordinates) needed to describe n points in $\mathbb{R}^{d} ; d(d+1) / 2$ is the the dimension of the Lie group of Euclidean transformations: translations in \mathbb{R}^{d} of dimension d and orthogonal transformations $O(d)$ of dimension $d(d-1) / 2$ (the dimension of the Lie algebra of anti-symmetric matrices).

In the absence of noise, for sufficiently large m but less than $n(n-1) / 2$, exact (i.e. isometric) embedding is possible.

Geometry of the (Lie) Group $O(d)$

Recall the definition of orthogonal matrices: A matrix $U \in \mathbb{R}^{d \times d}$ is called orthogonal if $U U^{T}=I_{d}$. Note this means the matrix U is invertible, $U^{-1}=U^{T}$ and therefore $U^{T} U=I_{d}$. Hence if U is an orthogonal matrix so is U^{T}.
Let $O(n)$ denote the set of all $d \times d$ orthogonal matrices. Notice that it satisfies the following properties:
(1) $I_{d}:=\operatorname{eye}(d)$ is an orthogonal matrix, $I_{d} \in O(d)$;
(2) If $U \in O(d)$ then $U^{T} \in O(d)$ and $U U^{T}=U^{T} U=I_{d}$;
(3) If $U, V, W \in O(d)$ then:

$$
(U V) W=U(V W)
$$

(9) If $U, V \in O(d)$ then $U V \in O(d)$ because:

$$
(U V)(U V)^{T}=U V V^{T} U^{T}=U U^{T}=I_{d}
$$

All these properties combined say that $(O(d), \cdot)$ forms a group. Here \cdot denotes the matrix multiplication.

In addition to abstract algebraic properties, the $O(d)$ group admits more analytical and geometric properties. All these make $O(d)$ a prime example of a Lie group. Specifically:
(1) the set $O(d)$ has the structure of a manifold (generalization of the concepts of "curve" and "surface" from \mathbb{R}^{3});
(2) the matrix multiplication and inversion are differentiable maps.

In addition to abstract algebraic properties, the $O(d)$ group admits more analytical and geometric properties. All these make $O(d)$ a prime example of a Lie group. Specifically:
(1) the set $O(d)$ has the structure of a manifold (generalization of the concepts of "curve" and "surface" from \mathbb{R}^{3});
(2) the matrix multiplication and inversion are differentiable maps.

Two properties of matrix determinant:
i) For any $A, B \in \mathbb{R}^{d \times d}, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
ii) For any $A \in \mathbb{R}^{d \times d}, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

This implies: for any $U \in O(d)$,

$$
1=\operatorname{det}(I)=\operatorname{det}\left(U U^{T}\right)=\operatorname{det}(U) \operatorname{det}\left(U^{T}\right)=(\operatorname{det}(U))^{2}
$$

Thus $\operatorname{det}(U)= \pm 1$. We define:
$S O(d)=\{U \in O(d) ; \operatorname{det}(U)=1\}=\left\{U \in \mathbb{R}^{d \times d}, U U^{T}=I, \operatorname{det}(U)=1\right\}$
called the special orthogonal group of order d.
$S O(d)$ represents the connected component of $O(d)$, that is, the set of orthogonal matrices that can be connected by a continuous path to the identity. As we shall see later, the continuous path can be constructed using the matrix exponential map. The complement set $O(d) \backslash S O(d)$ is also a connected component (but not a subgroup of $O(d)$).
Consider a differentiable path $\gamma:(-1,1) \rightarrow S O(d), \gamma(0)=I$. We want to find the tangent vector of this curve at $t=0$. The set of such vectors is called the tangent space to manifold $S O(d)$ (and implicitly to manifold $O(d))$. We denote this tangent space by $s o(d)$. Let's compute them:

$$
\gamma(t) \gamma(t)^{T}=\left.I \rightarrow \frac{d}{d t}\left(\gamma(t) \gamma(t)^{T}\right)\right|_{t=0}=0
$$

Using the product rule and the fact that $\gamma(0)=I$, the above identity reduces to:

$$
\frac{d \gamma(t)}{d t}(0)+\frac{d \gamma(t)}{d t}(0)^{T}=0
$$

Hence:

$$
\operatorname{so}(d)=\left\{A \in \mathbb{R}^{d \times d} \quad, \quad A+A^{T}=0\right\}
$$

is the set of anti-symmetric matrices. We are going to use this information (the tangent space) to determine the dimension of the group $O(d)$, or SO(d).
First, notice the following properties:
(1) $s o(d)$ is a vector space: if A, B are anti-symmetric matrices so is $A+B$ as well as $c A$, for anay $c \in \mathbb{R}$.
(2) Since so(d) is a vector space, subspace of $\mathbb{R}^{d \times d}$, it has a finite dimension. Let $p=\operatorname{dim}(s o(d))$. Since all anti-symmetric matrices have 0 on the main diagonal, and the upper elements are repeated on the lower half of the matrix, with sign changed, the dimension of so(d) must be

$$
p=\operatorname{dim}(\operatorname{so}(d))=\frac{d(d-1)}{2}
$$

In addition to the vector space structure, so(d) has an additional internal operation, the Lie bracket (or the commutator):

$$
A, B \in s o(d) \rightarrow[A, B]=A B-B A \in s o(d)
$$

It is bilinear, anti-symmetric and satisfies a 3-term identity (called the Jacobi identity): for every $A, B, C \in \operatorname{so}(d), \alpha, \beta, \gamma \in \mathbb{R}$,
(1) $[\alpha A+\beta B, C]=\alpha[A, C]+\beta[B, C],[A, \beta B+\gamma C]=\beta[A, B]+\gamma[A, C]$;
(2) $[A, A]=0$
(3) $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$

These tree properties define a Lie algebra. Thus so (d) is a Lie algebra of dimension $\frac{d(d-1)}{2}$.
In general any Lie group (G, \cdot) admits a Lie algebra $(g,+,[]$,$) of some$ dimension p. The converse is also true (one of Lie theorems).

Isometric Embeddings with Partial Data

Linear constraints

Given any set of vectors $\left\{y_{1}, \cdots, y_{n}\right\}$ and their associated matrix $Y=\left[y_{1}|\cdots| y_{n}\right]$ their invariant to the action of the rigid transformations (translations, rotations, and reflections) is the Gram matrix of the centered system (L is an orthogonal projection):

$$
G=\left(I-\frac{1}{n} 1 \cdot 1^{T}\right) Y^{T} Y\left(I-\frac{1}{n} 1 \cdot 1^{T}\right)=: L Y^{T} Y L \quad, \quad L=I-\frac{1}{n} 1 \cdot 1^{T} .
$$

On the other hand, the distance between points i and j can be computed by:

$$
d_{i, j}^{2}=\left\|y_{i}-y_{j}\right\|^{2}=G_{i, i}-G_{i, j}+G_{j, j}-G_{j, i}=e_{i j}^{T} G e_{i j}
$$

where

$$
e_{i j}=\delta_{i}-\delta_{j}=[0 \cdots 01 \cdots-10 \cdots 0]^{T}
$$

where 1 is on position $i,-1$ is on position j, and 0 everywhere else.

Almost Isometric Embeddings with Partial Data

The SDP Problem
Reference [3] proposes to find the matrix G by solving the following Semi-Definite Program:

$$
\begin{gathered}
\min ^{\left(G^{T}\right.} \geq 0 \quad \operatorname{trace}(G) \\
G 1=0 \\
\left|\left\langle G e_{i j}, e_{i j}\right\rangle-\tilde{d}_{i, j}^{2}\right| \leq \varepsilon,(i, j) \in \Theta
\end{gathered}
$$

where $\tilde{d}_{i, j}^{2}$ are noisy estimates $d_{i, j}$ and ε is the maximum noise level. The trace promotes low rank in this optimization. Overall this is a feasibility problem: Decrease ε to the minimum value where a feasible solution exists. With probability 1 that is unique. How to do this: Use CVX for Matlab. Procedure summarized in Alg 3 and Alg 4 next.

Nearly Isometric Embeddings with Partial Data

Stability to Noise
Let $\Theta_{r}=\left\{(i, j),\left\|y_{i}-y_{j}\right\| \leq r\right\}$ be the set of all pairs of points at distance at most r.

Theorem (Javanmard, Montanari[3])

Let $\left\{y_{1}, \cdots, y_{n}\right\}$ be n nodes distributed uniformly at random in the hypercube $[-0.5,0.5]^{d}$. Further, assume that we are given noisy measurement of all distances in Θ_{r} for some $r \geq 10 \sqrt{d}(\log (n) / n)^{1 / d}$ and the induced geometric graph of edges is connected. Let $\tilde{d}_{i, j}^{2}=d_{i, j}^{2}+\nu_{i, j}$ with $\left|\nu_{i, j}\right| \leq \varepsilon$. Then with high probability, the error distance between the estimated $\hat{Y}=\left[\hat{y}_{1},|\cdots| \hat{y}_{n}\right]$ returned by the SDP algorithm and the true coordinate matrix $Y=\left[y_{1}|\cdots| y_{n}\right]$ is upper bounded as

$$
\left\|L \hat{Y}^{T} \hat{Y} L-L Y^{T} Y L\right\|_{1} \leq C_{1}\left(n r^{d}\right)^{5} \frac{\varepsilon}{r^{4}} .
$$

Conversely, w.h.p., there exist adversarial measurement errors $\left\{z_{i, j}\right\}_{(i, j) \in \Theta_{r}}$ such that

$$
\left\|L \hat{Y}^{T} \hat{Y} L-L Y^{T} Y L\right\|_{1} \geq C_{2} \min \left(1, \frac{\varepsilon}{r^{4}}\right)
$$

Here, C_{1} and C_{2} denote universal constants that depend only on d, and $L=I-\frac{1}{n} 1 \cdot 1^{T}$.

Computation of the Gram matrix

Algorithm (Alg 3 - The SDP Problem)

 Inputs:Collection of squared pairwise distances $\mathbb{S}=\left\{d_{i, j}^{2},(i, j) \in \Theta\right\}$; noise level parameters: $\varepsilon_{0}, \varepsilon_{\text {min }}>0$; (optional) maximum number of iterations: $N_{\text {max }}$.(1) Initialize $\varepsilon=\varepsilon_{0}$. If a maximum number of iterations is used, initialize $k=1$.
(3) Solve:

$$
\begin{gathered}
\min _{G} \quad \operatorname{trace}(G)(S D P) \\
G 1=0 \\
\mid\left\langle G_{i j}, e_{i j}\right\rangle-\tilde{d}_{i, j}^{2} \leq \varepsilon,(i, j) \in \Theta
\end{gathered}
$$

Computation of the Gram matrix -cont'd

Algorithm (Alg 3 - continued)

(3) If no solution of the SDP is found:
(a) if a solution was found at previous iteration, then report that solution G, parameter ε and the iteration index k for that solution;
(b) if no solution found so far, then increase ε_{0}, for instance double $\varepsilon_{0}=2 \varepsilon_{0}$, and go back to step 1 .
Else, if a solution of the SDP is found:
(a) If $\varepsilon>\varepsilon_{\min }$ and (optional) $k<N_{\max }$ then decrease ε, e.g., $\varepsilon=\varepsilon / 2$, increment $k=k+1$, and then go back to step 2.
(D) Else, report the last solution found G and parameters ε, and number of iterations k.

Output: Symmetric Gram matrix G, parameter ε, number of iterations k.

Gram matrix factorization

Algorithm (Alg 4)

Input: Symmetric $n \times n$ Gram matrix G.
(1) Compute the eigendecomposition of $G, G=Q \wedge Q^{\top}$ with diagonal of Λ sorted in a descending order;
(2) Determine the number d of significant positive eigevalues;

- Partition

$$
Q=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right], \text { and } \Lambda=\left[\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & \Lambda_{2}
\end{array}\right]
$$

where Q_{1} contains the first d columns of Q, and Λ_{1} is the $d \times d$ diagonal matrix of significant positive eigenvalues of G.

- Compute:

$$
Y=\Lambda_{1}^{1 / 2} Q_{1}^{T}
$$

Output: Dimension d and $d \times n$ matrix Y of vectors $Y=\left[y_{1}|\cdots| y_{n}\right]$

Convex Sets. Convex Functions

A set $S \subset \mathbb{R}^{n}$ is called a convex set if for any points $x, y \in S$ the line segment $[x, y]:=\{t x+(1-t) y, 0 \leq t \leq 1\}$ is included in $S,[x, y] \subset S$.

A function $f: S \rightarrow \mathbb{R}$ is called convex if for any $x, y \in S$ and $0 \leq t \leq 1$, $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$.
Here S is supposed to be a convex set in \mathbb{R}^{n}.
Equivalently, f is convex if its epigraph is a convex set in \mathbb{R}^{n+1}. Epigraph: $\{(x, u) ; x \in S, u \geq f(x)\}$.

A function $f: S \rightarrow \mathbb{R}$ is called strictly convex if for any $x \neq y \in S$ and $0<t<1, f(t x+(1-t) y)<t f(x)+(1-t) f(y)$.

Convex Optimization Problems

The general form of a convex optimization problem:

$$
\min _{x \in S} f(x)
$$

where S is a closed convex set, and f is a convex function on S.
Properties:
(1) Any local minimum is a global minimum. The set of minimizers is a convex subset of S.
(2) If f is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general S is defined by equality and inequality constraints:
$S=\left\{g_{i}(x) \leq 0,1 \leq i \leq p\right\} \cap\left\{h_{j}(x)=0,1 \leq j \leq m\right\}$. Typically h_{j} are required to be affine: $h_{j}(x)=a^{T} x+b$.

Convex Programs

The hiarchy of convex optimization problems:
(1) Linear Programs: Linear criterion with linear constraints
(2) Quadratic Programs: Quadratic Criterion with Linear Constraints; Quadratically Constrained Quadratic Problems (QCQP); Second-Order Cone Program (SOCP)
(3) Semi-Definite Programs(SDP)

Typical SDP:

$$
\begin{gathered}
\quad \min _{X^{\top}} \geq 0 \quad \operatorname{trace}(X A) \\
\operatorname{trace}\left(X B_{k}\right)=y_{k}, 1 \leq k \leq p \\
\operatorname{trace}\left(X C_{j}\right) \leq z_{j}, 1 \leq j \leq m
\end{gathered}
$$

CVX

Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming - à la Boyd [1].
$\mathrm{m}=20 ; \mathrm{n}=10 ; \mathrm{p}=4$;
$\mathrm{A}=\operatorname{randn}(\mathrm{m}, \mathrm{n}) ; \mathrm{b}=\operatorname{randn}(\mathrm{m}, 1)$;
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin
$\begin{array}{lc}\text { variable } \mathrm{x}(\mathrm{n}) ; & \min ^{\min } \quad\|A x-b\| \\ \text { minimize }(\operatorname{norm}(\mathrm{A} * \mathrm{x}-\mathrm{b}, 2)) & C x=d \\ \text { subject to } & \|x\|_{\infty} \leq e\end{array}$
C * $\mathrm{x}=\mathrm{d}$;
norm(x, Inf) <= e;
cvx_end

CVX

SDP Example

$\mathrm{n}=10 ;$
$\mathrm{E} 1=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{d} 1=\operatorname{randn}(\mathrm{n}, 1) ;$
$\mathrm{E} 2=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{d} 2=\operatorname{randn}(\mathrm{n}, 1)$;
epsx = 1e-1;
cvx_begin sdp
variable $X(n, n)$ semidefinite; minimize minimize trace(X) ; subject to
X*ones ($\mathrm{n}, 1$) == $\operatorname{zeros(n,1);~}$ $\operatorname{abs}(\operatorname{trace}(E 1 * X)-d 1)<=e p s x$; abs (trace (E2*X) -d2) <=epsx;

$$
\begin{aligned}
& \operatorname{trace}(X) \\
& X=X^{T} \geq 0 \\
& X \cdot 1=0 \\
& \left|\operatorname{trace}\left(E_{1} X\right)-d_{1}\right| \leq \varepsilon \\
& \left|\operatorname{trace}\left(E_{2} X\right)-d_{2}\right| \leq \varepsilon
\end{aligned}
$$

$c v x$ _end

References

囯 S．Boyd，L．Vandenberghe，Convex Optimization，available online at： http：／／stanford．edu／boyd／cvxbook／

國 F．Chung，Spectral Graph Theory，AMS 1997.
居［3］A．Javanmard，A．Montanari，Localization from Incomplete Noisy Distance Measurements，arXiv：1103．1417，Nov．2012；also ISIT 2011.

